JPS61272637A - Measuring instrument for polarized fluorescent light - Google Patents

Measuring instrument for polarized fluorescent light

Info

Publication number
JPS61272637A
JPS61272637A JP11416285A JP11416285A JPS61272637A JP S61272637 A JPS61272637 A JP S61272637A JP 11416285 A JP11416285 A JP 11416285A JP 11416285 A JP11416285 A JP 11416285A JP S61272637 A JPS61272637 A JP S61272637A
Authority
JP
Japan
Prior art keywords
fluorescent light
sample
light
polarization
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11416285A
Other languages
Japanese (ja)
Inventor
Fujiko Takano
高野 富志子
Kyoko Makita
牧田 恭子
Yasushi Nomura
靖 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11416285A priority Critical patent/JPS61272637A/en
Publication of JPS61272637A publication Critical patent/JPS61272637A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6445Measuring fluorescence polarisation

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To obtain an invariably accurate value by providing a cell which contains a sample, a polarizing filter for exciting light which illuminates the cell, and fixed polarizing filters which pass the vertical and horizontal components of fluorescent light from the sample, and computing the degree of polarization of the fluorescent light from photodetection signals which are obtained at the same time. CONSTITUTION:The sample cell 3 which is treated as specified is irradiated with light obtained by making a selection 11 of wavelength of a light source 1 and performing polarization 2. The vertical polarized component of fluorescent light emitted by a sample is passed through the filter 7 and photodetected 14 and the horizontal polarized component is passed through the filter 8 and photodetected 4; and selections 12 and 13 of wavelengths are made on respective optical paths to select the same fluorescent light wavelength. Signals which are detected 4 and 14 as to the same light source at the same time are amplified 5 and 15 and the degree of polarization of fluorescent light is computed 9 and displayed 6. Consequently, the reaction of variation in the intensity of the fluorescent light from the sample is tracked accurately and even when background fluorescent light varies, an accurate measured value is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、けい光測光測定装置に係り、特に生体液中の
標的物質を定量的に測定するに好適なけい光測光測定装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fluorescence photometry measurement device, and particularly to a fluorescence photometry measurement device suitable for quantitatively measuring a target substance in a biological fluid.

〔発明の背景〕[Background of the invention]

けい光測光測定装置は、抗原抗体反応を利用して生体液
中の微量の抗原や抗体を定量するために用いられている
Fluorescence photometry measurement devices are used to quantify trace amounts of antigens and antibodies in biological fluids using antigen-antibody reactions.

けい光性分子が偏光した光で励起されると、光の吸収と
発光の間に分子のブラウン運動による回転で、励起分子
の配向性が解消してけい光の偏光度が低下する。励起光
側の偏光板を垂直に固定し、けい先側の偏光板をそれに
平行にしたとき、あるいは直角にしたときに得られるけ
い光強度をそれぞれ■ヮとIoとすると、けい光偏光度
Pは次式で表わされる。
When a fluorescent molecule is excited by polarized light, the rotation of the molecule due to Brownian motion between absorption and emission of light dissolves the orientation of the excited molecule and reduces the degree of polarization of the fluorescent light. If the polarizing plate on the excitation light side is fixed vertically and the polarizing plate on the tip side is parallel or perpendicular to it and the fluorescence intensities obtained are ヮ and Io, respectively, then the degree of fluorescence polarization P is is expressed by the following equation.

けい光物質で標識した抗原が、対応する抗体と結合する
と、分子が著しく大きくなり、けい光分子の回転ブラウ
ン運動が抑えられ、偏光度は抗体が結合する前に比べて
大きくなる。上記の原理を利用したものがけい光側光分
析(polarizationfluoroimmun
oassay)であり、まずけい光標識抗原と抗体を反
応させ、この系に測定しようとする非標識抗原(未知物
質)を加えると抗体を消費し、抗体と結合する標識抗原
が少なくなり、結合しないものが多くなる。このものは
低分子なので回転ブラウン運動が活発に起こり、偏光度
が小さくなることから、小さくなった程度に応し、未知
物質の蝋を求めることができる。けい光標識抗原の分子
緻が小さいJJが、抗体と結合する前後のブラウン運動
に差が生じ、より高い感Ja′が得られる。この方法に
用いられるけい光物質としてフルオレセイン系けい光物
質が一般に用いられる。
When an antigen labeled with a fluorescent substance binds to the corresponding antibody, the molecule becomes significantly larger, the rotational Brownian motion of the fluorescent molecule is suppressed, and the degree of polarization becomes greater than before binding with the antibody. A device that utilizes the above principle is polarization fluoroimun analysis.
First, a fluorescently labeled antigen and an antibody are reacted, and when an unlabeled antigen (unknown substance) to be measured is added to this system, the antibody is consumed, and the amount of labeled antigen that binds to the antibody decreases, resulting in no binding. There will be more things. Since this substance is a low molecule, rotational Brownian motion occurs actively, and the degree of polarization decreases, so it is possible to find the unknown substance wax according to the degree of decrease. A difference occurs in the Brownian motion before and after JJ, which has a small molecular density of the fluorescently labeled antigen, binds to the antibody, and a higher sensitivity Ja' can be obtained. Fluorescein-based fluorescent substances are generally used as fluorescent substances in this method.

けい先制光度Pを測定する従来の装置は、偏光成分の垂
直成分(Tよ)と」1構成分(1,)ti:偏光板を回
転することによって交77、に測定していたため、両成
分の21tq定に時間差が生じた。Il値濱質のために
は、異なる測定タイミングにおける各偏光強度を使用せ
ざるを得なかったので、ある測定時点での正確なJJ値
を求めることはできないという欠点があった。このため
、偏光成分測定にあたり時間経過につれて蛍光強度が変
化する反応を正確に追跡することは困難であった。また
、パックグラウンド蛍光が時間とともに変化する場合に
は、このバックグラウンドの変化とI」的とする成分に
由来する蛍光強度を区別することができなかった。
Conventional equipment for measuring the preemptive luminosity P measures the perpendicular component of the polarized light component (T) and one component (1,) ti: by rotating the polarizing plate, it is measured at the intersection of 77. There was a time difference in the 21tq constant. In order to determine the Il value of the beach quality, it was necessary to use each polarized light intensity at different measurement timings, so there was a drawback that it was not possible to obtain an accurate JJ value at a certain measurement point. For this reason, it has been difficult to accurately track the reaction in which the fluorescence intensity changes over time when measuring polarized light components. Furthermore, when the background fluorescence changes over time, it was not possible to distinguish between this background change and the fluorescence intensity derived from the target component.

〔発明0月1的〕 本発明の目的は、試料からのけい光強度が変化する反応
を11(確に追跡でき、パックブラウン1−はい光が変
動する場合でもII:確な測定値が得られるけい売悩光
測定装置を提供することにある。
[Invented on October 1] The object of the present invention is to accurately track reactions in which the fluorescence intensity from a sample changes, and to obtain accurate measurement values even when Pack Brown 1-II fluorescence fluctuates. The purpose of the present invention is to provide a light measuring device that can be used for commercial purposes.

「発明の概要〕 本発明は、試料を収容し得るセルと、このセルに照射す
る励起光を偏光する偏光フィルタと、試料からのけい光
の垂直偏光成分を通す第1の固定偏光フィルタと、試料
からのけい光の+lZ行偏光成分を通す第2のIi’、
’I定偏光フィルタと、同#、¥に得られた垂直成分と
ip行酸成分受光信号がらけい先制光度を演算する演算
装置を備えたことを特徴とする。
“Summary of the Invention” The present invention provides a cell that can accommodate a sample, a polarizing filter that polarizes excitation light irradiated to the cell, a first fixed polarizing filter that passes a vertically polarized component of fluorescence from the sample, a second Ii' that passes the +lZ row polarized component of fluorescence from the sample;
It is characterized by being equipped with an I constant polarization filter and an arithmetic device that calculates the preemptive luminous intensity of the vertical component and the IP component light reception signal obtained at the same # and ¥.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の一実施例の概略構成をボす。 FIG. 1 shows a schematic configuration of an embodiment of the present invention.

試料セル3は、反応容器として用いられ、光度計の光路
に位置づけられ得る。試料セル;うが光路に位置づけら
れる前に、フルオレセイン系けい光物質で標識した抗原
を含む試薬液を所定量加えられ、さらに対応する抗体を
含む試薬液の所定酸加えることによって抗原抗体反応を
生ぜしぬる。その後試料添加装置によって所定量の被検
体(離油試料)を加える。この被検体は非標識抗原を含
んでいる。
The sample cell 3 is used as a reaction vessel and can be positioned in the light path of the photometer. Sample cell: Before the sample cell is placed in the optical path, a predetermined amount of a reagent solution containing an antigen labeled with a fluorescein-based fluorescent substance is added, and a predetermined acidity of the reagent solution containing the corresponding antibody is added to generate an antigen-antibody reaction. Shinuru. Thereafter, a predetermined amount of the analyte (oil separation sample) is added using a sample addition device. This analyte contains unlabeled antigen.

続いて試料セルは第1図のように光路に位置づけられる
The sample cell is then positioned in the optical path as shown in FIG.

この試料セルには特定波長の偏光が照射される。This sample cell is irradiated with polarized light of a specific wavelength.

光源Jからの光は、励起波長選択器]、 1 k通った
あと偏光フィルタ2を通ってセル3に照射される。
The light from the light source J passes through the excitation wavelength selector], 1k, and then passes through the polarizing filter 2 and is irradiated onto the cell 3.

セル3の少なくとも励起光入射方向と二つのけい光取出
方向の壁面は透光性材料からなっている。
At least the wall surfaces of the cell 3 in the excitation light incident direction and the two fluorescent light extraction directions are made of a transparent material.

試料から発生されるけい光の垂直偏光成分は、固定設置
されている垂直偏光フィルタ7を選択的に透過し光検出
器14で受光される。また試料からのけい光の平行偏光
成分は、固定設置されている平行偏光フィルタ8を選択
的に透過し光検出器4で受光される。二方向のけい光光
路には、けい光波長選択##12,1.3が配置され、
同じけい光波長が選択される。第1図ではけい光波長選
択器を2つ設けているが、けい光の取出方向を一方向と
し、1つの波長選択器で特定の波長光を選択した後、光
路を2つに分岐して各分岐光路に違う偏光成分を取り出
す偏光フィルタを設けることもできる。
The vertically polarized component of the fluorescence generated from the sample selectively passes through a vertically polarizing filter 7 that is fixedly installed, and is received by a photodetector 14. Further, the parallel polarized component of the fluorescence from the sample selectively passes through a fixedly installed parallel polarizing filter 8 and is received by the photodetector 4. Fluorescent wavelength selection ##12, 1.3 is arranged in the two-way fluorescent optical path,
The same fluorescent wavelength is selected. In Figure 1, two fluorescent wavelength selectors are provided, but the fluorescent light is taken out in one direction, and after selecting a specific wavelength light with one wavelength selector, the optical path is split into two. It is also possible to provide a polarizing filter for extracting different polarized light components in each branched optical path.

いずれの場合も、光検出器4および14は同時に同じ発
光源からのはい光を観測できる。各受光信号は増幅器5
.15で増幅され、演算器9にてけい先制光度の演算に
供される。演算結果は、被検成分の濃度として、あるい
はけい先制光度として表示装置6に表示される。
In either case, photodetectors 4 and 14 can simultaneously observe the fluorescence from the same light source. Each received light signal is sent to the amplifier 5.
.. The signal is amplified in step 15 and provided to calculation unit 9 to calculate the preemptive luminous intensity. The calculation result is displayed on the display device 6 as the concentration of the component to be detected or as the luminous intensity.

第1表には、従来の偏光成分交〃受売方式による81す
定結果例を示す。この例では、試料として高じリルビン
血清を生理食塩水で20倍に希釈したものを用いた1、
第1表ではジゴキシン測定用として調製した反応液を用
いている。なお、抗j)Kとしては、α−フェトなと、
抗体としては、フェリチン、コルチゾール、コルチコレ
ステリン、ウヮバミンなどを用いることができる。けい
光標識物質としてはFTTCなどを用いることができる
Table 1 shows 81 examples of results obtained using the conventional polarization component exchange method. In this example, we used a 20-fold dilution of Takajirirubin serum with physiological saline as a sample.
In Table 1, a reaction solution prepared for measuring digoxin is used. In addition, as anti-j) K, α-feto,
As the antibody, ferritin, cortisol, corticholesterin, uvamine, etc. can be used. FTTC or the like can be used as the fluorescent labeling substance.

第1表における測定装置の条件は、励起波長が490 
n m、けい光波長が520 n rn、検出器が第1
表 光電子増倍管である。第1表では、けい先部光度をミリ
雫位のrn Pとして表示しである。
The conditions of the measuring device in Table 1 are that the excitation wavelength is 490
nm, the fluorescence wavelength is 520 nm, the detector is the first
This is a photomultiplier tube. In Table 1, the tip luminosity is expressed as rn P in millidrops.

一方、第2表には本発明に基づく測定結果例を示す。第
2表の例は、m++定装置が違う他は、第1表と同じ条
件で測定された。第1表と第2表の結果を比較すると、
従来法(第1表)では時間の経過によってバ1P値が変
動しているが、本発明法(第2表)ではin T’値が
ほぼ−・定となっている。
On the other hand, Table 2 shows examples of measurement results based on the present invention. The examples in Table 2 were measured under the same conditions as in Table 1, except that the m++ constant equipment was different. Comparing the results in Tables 1 and 2,
In the conventional method (Table 1), the B1P value fluctuates with the passage of time, but in the method of the present invention (Table 2), the inT' value is almost constant.

従来の装置は、偏光板回転により各偏光成分k測定する
のに30秒以−Lユの時間を要していたが、第2表 ができレート測定においても、ある測定時点での1F確
なP値演算により、短時間に反J、L;液中の強度変化
酸を求めることができた。第;う表に、この結果を示す
。第3表におけるレート測定の傾配第:3表 (7m T’ )は、25秒間に0.89mPであるの
で、0.035611IP/ secとなる。
Conventional equipment required 30 seconds or more to measure each polarization component by rotating the polarizing plate, but Table 2 was created and even in rate measurement, it was possible to accurately measure 1F at a certain point in time. By calculating the P value, it was possible to determine the anti-J, L; strength change acid in the liquid in a short time. Table 1 shows the results. The rate measurement slope in Table 3: Table 3 (7m T') is 0.89 mP in 25 seconds, so it is 0.035611 IP/sec.

第3表の測定値をもとに、ジゴキシン測定用検鼠線を作
成した例を第2図に示す。
FIG. 2 shows an example of a rat line for measuring digoxin based on the measured values in Table 3.

以−■二の実施例により、今まで不困難であった短時間
のけい光測光測定が可能となり、またバックグラウンド
のけい光強度の変化を取り除くけい売悩光の測定を可能
にした。−L述の実施例では、偏光成分の垂直成分(■
□)と平行成分(I//)を同時測定することにより、
時間経過によりけい光強度が変化する反応を正確に追跡
することが可能となり、また、バックグラウンドけい光
が時間とともに変化する場合に、このバックグラウンド
の変化と目的とする成分に由来するけい光強度を区別す
ることが可能となる効果がある。
The second embodiment makes it possible to carry out short-time fluorescence photometry measurement, which has been difficult up to now, and also makes it possible to measure fluorescent light by eliminating changes in background fluorescence intensity. - In the embodiment described above, the vertical component of the polarization component (■
By simultaneously measuring □) and parallel component (I//),
It is now possible to accurately track reactions in which the fluorescence intensity changes over time, and when the background fluorescence changes over time, it is possible to accurately track the reaction in which the fluorescence intensity changes over time. This has the effect of making it possible to distinguish between

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、同じタイミング
でけい光の平行成分と垂直成分の信号が得られ、それら
をけい光偏光度演算に利用できるので、正確な測定値が
得られるという効果が奏せられる。
As explained above, according to the present invention, signals of the parallel component and the perpendicular component of fluorescence can be obtained at the same timing, and these can be used to calculate the degree of polarization of the fluorescence, so that accurate measurement values can be obtained. is played.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略楕成図、第2図はジゴ
キシンの検量線例に示す図である。 2.7.8・・・偏光フィルタ、3・試料セル、4゜】
4・・・光検出器、9・・・演算器。
FIG. 1 is a schematic ellipse diagram of one embodiment of the present invention, and FIG. 2 is a diagram showing an example of a calibration curve for digoxin. 2.7.8...Polarizing filter, 3. Sample cell, 4°]
4... Photodetector, 9... Arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 1、試料を収容し得るセルと、このセルに照射する励起
光を偏光する偏光フィルタと、試料からのけい光の垂直
偏光成分を通す第1の固定偏光フィルタと、試料からの
けい光の平行偏光成分を通す第2の固定偏光フィルタと
、同時に得られた上記垂直成分の受光信号と上記平行成
分の受光信号とからけい光偏光度を演算する演算装置を
備えたけい光偏光測定装置。
1. A cell capable of accommodating a sample, a polarizing filter that polarizes the excitation light irradiated to this cell, a first fixed polarizing filter that passes the vertically polarized component of the fluorescent light from the sample, and a polarizing filter that allows the vertically polarized component of the fluorescent light from the sample to pass A fluorescence polarization measurement device comprising: a second fixed polarization filter that passes a polarization component; and an arithmetic device that calculates a degree of polarization of fluorescence from the vertical component light reception signal and the parallel component light reception signal obtained at the same time.
JP11416285A 1985-05-29 1985-05-29 Measuring instrument for polarized fluorescent light Pending JPS61272637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11416285A JPS61272637A (en) 1985-05-29 1985-05-29 Measuring instrument for polarized fluorescent light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11416285A JPS61272637A (en) 1985-05-29 1985-05-29 Measuring instrument for polarized fluorescent light

Publications (1)

Publication Number Publication Date
JPS61272637A true JPS61272637A (en) 1986-12-02

Family

ID=14630712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11416285A Pending JPS61272637A (en) 1985-05-29 1985-05-29 Measuring instrument for polarized fluorescent light

Country Status (1)

Country Link
JP (1) JPS61272637A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152067A1 (en) * 2010-06-04 2011-12-08 富士フイルム株式会社 Device for detecting biomolecule and method for detecting biomolecule
WO2012042886A1 (en) * 2010-09-30 2012-04-05 富士フイルム株式会社 Biomolecule detection device and biomolecule detection method
WO2012042882A1 (en) * 2010-09-30 2012-04-05 富士フイルム株式会社 Biomolecule detection device and biomolecule detection method
WO2012042880A1 (en) * 2010-09-30 2012-04-05 富士フイルム株式会社 Biomolecule detection device and biomolecule detection method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152067A1 (en) * 2010-06-04 2011-12-08 富士フイルム株式会社 Device for detecting biomolecule and method for detecting biomolecule
JP2012013684A (en) * 2010-06-04 2012-01-19 Fujifilm Corp Biomolecule detector and biomolecule detection method
CN102933954A (en) * 2010-06-04 2013-02-13 富士胶片株式会社 Biomolecule detector and biomolecule detection method
WO2012042886A1 (en) * 2010-09-30 2012-04-05 富士フイルム株式会社 Biomolecule detection device and biomolecule detection method
WO2012042882A1 (en) * 2010-09-30 2012-04-05 富士フイルム株式会社 Biomolecule detection device and biomolecule detection method
WO2012042880A1 (en) * 2010-09-30 2012-04-05 富士フイルム株式会社 Biomolecule detection device and biomolecule detection method
JP2012093339A (en) * 2010-09-30 2012-05-17 Fujifilm Corp Biomolecule detection device and biomolecule detection method
JP2012093336A (en) * 2010-09-30 2012-05-17 Fujifilm Corp Biomolecule detection device and biomolecule detection method
CN103140751A (en) * 2010-09-30 2013-06-05 富士胶片株式会社 Biomolecule detection device and biomolecule detection method
US8581213B2 (en) 2010-09-30 2013-11-12 Fujifilm Corporation Biological molecule detecting apparatus and biological molecule detecting method
US8680486B2 (en) 2010-09-30 2014-03-25 Fujifilm Corporation Biological molecule detecting apparatus and biological molecule detecting method

Similar Documents

Publication Publication Date Title
US3973129A (en) Fluorimetric apparatus and method for analysis of body fluid
WO1997018470A1 (en) Method and apparatus for urinalysis, method of measuring optical rotation and polarimeter
McDade et al. Whole blood collected on filter paper provides a minimally invasive method for assessing human transferrin receptor level
NL2003743A (en) Method for detection of an analyte in a fluid sample.
JPS608748A (en) Fluorimetrical measuring method of concentration of substance and measuring device of said concentration
CN101876629B (en) Method for calculating the haemolysis of a blood sample and device
US4916080A (en) Immunoassay with antigen or antibody labelled microcapsules containing fluorescent substance
JP2009109196A (en) Dilution ratio deriving method, quantity determination method and analyzer
US7700360B2 (en) Optical method and system to determine distribution of lipid particles in a sample
JP3014633B2 (en) Urine test method
JP2008523378A (en) Cholesterol analysis
JP3203798B2 (en) How to measure chromogen
JPS61272637A (en) Measuring instrument for polarized fluorescent light
JPS6238346A (en) Fluorescent polarized light measuring instrument
Ang et al. A rapid test strip for diagnosing glycosylated hemoglobin (HbA1c) based on fluorescent affinity immunochromatography
JPH0486546A (en) Specimen inspection device
JPH03272466A (en) Multiple immunologocal evaluating analyzing system
Kim et al. Hemoglobin assay in anemic patients with a photothermal spectral-domain optical coherence reflectometric sensor
JPH07113635B2 (en) Method for determining prozone in immune reaction
McNamara et al. Dynamic analytical chemistry: a kinetic study of the labeling of normal and age fractionated human erythrocytes with monobromobimane
JP2005337960A (en) Immunoreaction measuring method, immunoreaction measuring kit, and immunoreaction measuring apparatus
JP2023512407A (en) Method and apparatus for analysis of liquid samples
RU2034297C1 (en) Porphyrine metabolism disorder determination method
JPS63247644A (en) Method for measuring immune reaction
CN108680533A (en) Utilize Resonance Rayleigh Scattering Spectral Method for Determination EGF-R ELISA concentration method