JPS6238346A - Fluorescent polarized light measuring instrument - Google Patents
Fluorescent polarized light measuring instrumentInfo
- Publication number
- JPS6238346A JPS6238346A JP17753285A JP17753285A JPS6238346A JP S6238346 A JPS6238346 A JP S6238346A JP 17753285 A JP17753285 A JP 17753285A JP 17753285 A JP17753285 A JP 17753285A JP S6238346 A JPS6238346 A JP S6238346A
- Authority
- JP
- Japan
- Prior art keywords
- fluorescence
- light
- polarized light
- wavelength
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6445—Measuring fluorescence polarisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6421—Measuring at two or more wavelengths
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、蛍光偏光測定装置に係り、特に抗原抗体反応
の状態を蛍光偏光解消度の変化により測定するに好適な
蛍光偏光測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fluorescence polarization measurement device, and more particularly to a fluorescence polarization measurement device suitable for measuring the state of antigen-antibody reaction based on changes in the degree of fluorescence depolarization.
抗原抗体反応の状態を蛍光偏光解消度の変化から測定す
る方法は、1970年にD andlikerらによっ
て“I mmunochemistry、 vo Q
、7. p −799”に論じられている。このような
蛍光偏光免疫測定(F 1uorescanca P
olarization I mmunoassay
。A method for measuring the state of antigen-antibody reaction from changes in the degree of fluorescence depolarization was described in 1970 by Dan and Liker et al. in "Immunochemistry, voQ.
,7. Such a fluorescence polarization immunoassay (F 1uorescanca P
olarization I mmunoassay
.
以下FPIAと略すことがある)を実行する装置は1例
えば、特開昭57−136142号に示されている。An example of an apparatus for executing FPIA (hereinafter sometimes abbreviated as FPIA) is shown in Japanese Patent Laid-Open No. 136142/1983.
FPIAの測定原理について次に簡単に説明する。Next, the measurement principle of FPIA will be briefly explained.
測定対象とされるのは1分子量5000以下、好ましく
は1000以下の分子でこれらは免疫学的には。The molecules to be measured are molecules with a molecular weight of 5,000 or less, preferably 1,000 or less, and these are immunologically determined.
ハプテンと呼ばれる。蛍光色素はトレーサーと呼ばれ1
分子量は1000以下が好ましい、ハプテンとトレーサ
ーを結合したものを蛍光vsmと呼ぶ、一方、ハプテン
と抗原抗体反応を起こしうる蛋白質と抗体と呼ばれる。called hapten. Fluorescent dyes are called tracers.1
The molecular weight is preferably 1000 or less. A combination of a hapten and a tracer is called a fluorescent vsm, while a protein that can cause an antigen-antibody reaction with a hapten is called an antibody.
FPIAは、試薬中に、蛍光標識と抗体があり、これを
未知の量のハプテンを含む試料と混合し、蛍光標識と抗
体およびハプテンと抗体の競争的抗原抗体反応をさせる
。一般に抗原抗体反応しない蛍光標識は分子量が小さく
速い回転分子運動をしているが抗原抗体反応をした蛍光
標識は蛋白質である抗体と結合するため遅い回転分子運
動となり、蛍光色素の蛍光寿命と分子運動の回転速度よ
り導かれる蛍光偏光の変化と抗原抗体反応の有無が関係
づけられる。In FPIA, reagents include a fluorescent label and an antibody, which are mixed with a sample containing an unknown amount of hapten to cause competitive antigen-antibody reactions between the fluorescent label and the antibody and between the hapten and the antibody. In general, fluorescent labels that do not react with antigens and antibodies have small molecular weights and undergo rapid rotational molecular motion, but fluorescent labels that have undergone antigen-antibody reactions combine with antibodies, which are proteins, resulting in slow rotational molecular motion. The change in fluorescence polarization derived from the rotation speed of the molecule is correlated with the presence or absence of an antigen-antibody reaction.
このようにFPIAは、蛍光色素で標識された抗原と抗
体の反応を、蛍光偏光の解消の程度で識別する。より詳
細には、単一方向に偏光した特定の波長光によって蛍光
色素を励起し、放射された蛍光の偏光度を特定の波長の
直交ベクトルの光強度として検出する6
ところが、測定対象に共存妨害物としてバックグラウン
ド蛍光物質がある場合標識蛍光にバックグラウンド蛍光
が相乗するため正確な測定することができない、そのた
め、血清成分の定量を本方法によって行う場合、主たる
妨害成分であるビリルビン、リボフラビン等の影響を除
くため、標識蛍光物質を加える前に試料である血清のバ
ックグラウンド蛍光を測定しておき、その後標識蛍光物
質を加えて抗原抗体反応をさせて蛍光偏光測定を行い事
前に測定しておいた血清のバックグラウンド蛍光を差し
引いて真の蛍光偏光量を求めなくてはならなかった。In this way, FPIA identifies the reaction between an antigen labeled with a fluorescent dye and an antibody based on the degree of depolarization of fluorescence. More specifically, a fluorescent dye is excited by light of a specific wavelength polarized in a single direction, and the degree of polarization of the emitted fluorescence is detected as the light intensity of an orthogonal vector of the specific wavelength.6 However, coexistence interference with the measurement target If there is a background fluorescent substance as a substance, the background fluorescence will synergize with the label fluorescence, making accurate measurement impossible. Therefore, when quantifying serum components using this method, the main interfering components, such as bilirubin and riboflavin, cannot be measured. To eliminate the influence, measure the background fluorescence of the serum sample before adding the labeled fluorescent substance, and then add the labeled fluorescent substance to cause an antigen-antibody reaction and measure fluorescence polarization. The true amount of fluorescence polarization had to be determined by subtracting the background fluorescence of the serum present.
バックグラウンド蛍光を差し引くためには、反応を2段
階に分割し、第1にバックグラウンド蛍光の測定を行い
第2にバックグラウンド蛍光と標識蛍光物の相乗値を測
定し、第2段階より第1段階の蛍光強度を差し引く手順
をとる。すなわち。In order to subtract the background fluorescence, the reaction is divided into two steps, the first step is to measure the background fluorescence, the second step is to measure the synergistic value of the background fluorescence and the labeled fluorophore, and the second step is to measure the background fluorescence and the labeled fluorophore. Take steps to subtract the fluorescence intensity of the steps. Namely.
偏光度pは、
p= (工v−工h)/ (工、+rh)で表現され、
Iv、Iゎはそれぞれ偏光された蛍光強度の垂直成分お
よび水平成分である。標識蛍光をtracerのt、バ
ックグラウンドをsampleのSの上ツキ添字で表わ
すと、見かけの蛍光強度工、a。The degree of polarization p is expressed as p= (technique v - engineering h)/(technique, +rh),
Iv and Iゎ are the vertical and horizontal components of the polarized fluorescence intensity, respectively. When the labeled fluorescence is expressed by the superscript of t in tracer and the background is expressed by the superscript of S in sample, the apparent fluorescence intensity is expressed as a.
I−は、それぞれ。I- is respectively.
Iv1=工vt十工vS
I h&=I ht+ I h’
となり、バックグラウンド蛍光を補正した補正偏光度P
cは、
(Iv” I−’ Ih”+ Ih”)(Iv”
Iv’+Ih” Ih”)の如くなる。Iv1 = engineering vt juku v S I h & = I ht + I h', and the corrected polarization degree P that corrected the background fluorescence
c is (Iv"I-'Ih"+Ih")(Iv"
Iv'+Ih"Ih").
この従来技術では、補正偏光度Pc を求めるために、
各検体毎に2つの反応容器を準備し、一方でバックグラ
ウンド蛍光測定を他方で見かけの蛍光強度測定を行って
いた。このため、バックグラウンド測定をしない方法に
対し2倍の測定時間を要し、試薬量も2倍必要であった
。In this conventional technique, in order to obtain the corrected polarization degree Pc,
Two reaction vessels were prepared for each sample, and background fluorescence was measured in one, and apparent fluorescence intensity was measured in the other. For this reason, the measurement time required was twice that of the method without background measurement, and the amount of reagents was also twice as necessary.
本発明の目的は、バックグラウンド蛍光の影響を容易に
除くことができ、迅速測定ができる蛍光偏光測定装置を
提供することにある。An object of the present invention is to provide a fluorescence polarization measuring device that can easily eliminate the influence of background fluorescence and can perform rapid measurements.
本発明は、蛍光性液体試料を収容した試料容器と、試料
へ照射すべき励起光を偏光する励起側偏光手段と、試料
からの蛍光を垂直偏光と水平偏光に交互に偏光する蛍光
側光手段と、蛍光の垂直偏光と蛍光の水平偏光のそれぞ
れについて蛍光極大波長を取り出すとともに、この蛍光
極大波長におけるバックグラウンド蛍光量と同等のバッ
クグラウンド蛍光属を有する波長を取出す波長取出手段
と、取出された各波長に対応して蛍光偏光を検出する複
数の光検出器を備えたことを特徴とする。The present invention provides a sample container containing a fluorescent liquid sample, excitation side polarization means for polarizing excitation light to be irradiated onto the sample, and fluorescence side light means for alternately polarizing fluorescence from the sample into vertically polarized light and horizontally polarized light. a wavelength extracting means for extracting the fluorescence maximum wavelength for each of the vertically polarized fluorescence and the horizontally polarized fluorescence, and for extracting a wavelength having a background fluorescence equivalent to the amount of background fluorescence at the maximum fluorescence wavelength; It is characterized by comprising a plurality of photodetectors that detect fluorescence polarization corresponding to each wavelength.
本発明では、蛍光標識物の蛍光強度と試料のバックグラ
ウンド蛍光の強度が重畳した蛍光偏光のデータより、蛍
光標識物の蛍光偏光のみを光学的な検出手段によって取
出し、データ演算により正確な蛍光偏光度を求めること
ができる。In the present invention, only the fluorescence polarization of the fluorescent label is extracted by optical detection means from fluorescence polarization data in which the fluorescence intensity of the fluorescent label and the background fluorescence of the sample are superimposed, and accurate fluorescence polarization is determined by data calculation. You can find the degree.
本発明の詳細な説明するに先立って、第2図を参照して
偏光度の求め方を説明する。Prior to a detailed explanation of the present invention, how to determine the degree of polarization will be explained with reference to FIG.
第2図の吸収曲線は、蛍光極大波長が525nmのトレ
ーサーであるDTAFを含む試薬に、ビリルビン濃度1
5mg/dQの患者血清を加えて希釈した後、励起波長
480nmの単色光を照射して得た蛍光スペクトラムで
ある。The absorption curve in Figure 2 shows that a reagent containing DTAF, a tracer with a maximum fluorescence wavelength of 525 nm, was added to a bilirubin concentration of
This is a fluorescence spectrum obtained by diluting with 5 mg/dQ patient serum and irradiating monochromatic light with an excitation wavelength of 480 nm.
検知される2つの波長は、蛍光トレーサーの蛍光極大波
長(第1波長)と、その波長での蛍光バックグラウンド
の蛍光量と同等の蛍光パックグラランドの蛍光量を持つ
波長(第2波長)の組合せが用いられる6第1波長と第
2波長の差は30〜40r+mが好適である。第2図の
例では、第1波長が525nmであり、第2波長が56
0nmである。The two wavelengths to be detected are the maximum fluorescence wavelength of the fluorescent tracer (first wavelength) and the wavelength (second wavelength) at which the fluorescence amount of the fluorescent pack Gland is equivalent to the fluorescence amount of the background fluorescence at that wavelength. The difference between the 6 first wavelength and the second wavelength in which the combination is used is preferably 30 to 40 r+m. In the example of FIG. 2, the first wavelength is 525 nm and the second wavelength is 56 nm.
It is 0 nm.
ここで、第1波長と第2波長をそれぞれ(1)。Here, the first wavelength and the second wavelength are each (1).
(2)で表わすと、試料から放射される蛍光の偏光に関
し、垂直偏光と水平偏光のそれぞれに対応して(1)お
よび(2)の波長光を検出することにより、合計4種類
の蛍光偏光強度が得られる。Expressed in (2), regarding the polarization of fluorescence emitted from the sample, a total of four types of fluorescence polarization can be detected by detecting wavelengths (1) and (2) corresponding to vertical polarization and horizontal polarization, respectively. Provides strength.
これらの偏光強度をIh<tハ Iv(1)+ Ih
c2ハIvcz+で表わせば、妨害成分を含む試料の蛍
光強度の関係は1次のように表現される。These polarized light intensities are Ih<tc Iv(1)+Ih
When expressed as c2+Ivcz+, the relationship between the fluorescence intensity of a sample containing an interfering component can be expressed as linear.
I ha<z) = I ht (11+
I hS (1)I v a (1ン = I
v’ (I ン + I v s (x)I h
”(2,1= I h″L2) + I hS(z)I
v” (z) = I v’ (zン
+ I v”t、z)したがって見かけの偏光度P
aは、
そして真の偏光度Ptは、
Iv’ (l+ −Iv’ L21 +Ih″(1+
−Ih’ tu上式で、Ivs(12”p I v”(
21+ I %(1) : I h5(Q)となり、
P a ” P tとなる。I ha<z) = I ht (11+
I hS (1) I v a (1 = I
v' (I + I v s (x) I h
”(2,1= I h″L2) + I hS(z)I
v” (z) = I v’ (zn
+ I v”t, z) Therefore, the apparent degree of polarization P
a is, and the true degree of polarization Pt is Iv' (l+ -Iv' L21 +Ih''(1+
-Ih' tuIn the above formula, Ivs(12"p I v"(
21+I%(1): Ih5(Q),
P a ” P t.
従って第2図の如き方法を用いれば、従来のような面倒
な手順を行うことなく、バックグラウンド蛍光の干渉が
除去された偏光度を得ることができる。Therefore, by using the method shown in FIG. 2, it is possible to obtain a degree of polarization in which the interference of background fluorescence has been eliminated, without performing the conventional complicated procedures.
次に、第1図を参照して本発明の一実施例について説明
する。Next, an embodiment of the present invention will be described with reference to FIG.
光源ランプ1より出た光は、ハーフミラ−2aで2分さ
れ、一方の光は、干渉フィルター38にて480r+m
の励起波長光となり、偏光器4aで水平偏光または垂直
偏光を得て、トレーサおよび血清を含む試料5を収容し
た反応容器に照射される。The light emitted from the light source lamp 1 is divided into two parts by a half mirror 2a, and one of the lights is filtered by an interference filter 38 at 480r+m.
The excitation wavelength light is turned into horizontally polarized light or vertically polarized light by the polarizer 4a, and is irradiated onto the reaction container containing the sample 5 containing the tracer and serum.
ハーフミラ−2aで分割された他方の光は、光電子増倍
管15cで検知されアンプ回路9を経てディジタル・コ
ンピュータ8に取込まれる。The other light split by the half mirror 2a is detected by a photomultiplier tube 15c and taken into the digital computer 8 via the amplifier circuit 9.
試料5からは蛍光が放射される。第1図では紙面の都合
上蛍光の取出方向が励起光と同方向であるかのように示
しであるが、通常は励起光とは違った方向例えば直交方
向から取出される。試料5からの蛍光は、偏光器4bに
よって垂直偏光と水平偏光が交互に取り出される。偏光
器を経た光は。Fluorescence is emitted from the sample 5. In FIG. 1, due to space constraints, the extraction direction of fluorescence is shown as being in the same direction as the excitation light, but normally the fluorescence is extracted from a direction different from the excitation light, for example, in a direction perpendicular to the excitation light. The fluorescence from the sample 5 is alternately extracted into vertically polarized light and horizontally polarized light by the polarizer 4b. The light that passes through the polarizer.
ハーフミラ−2bで2分割され、一方の偏光は第1波長
用干渉フイルター3bで単色化されて光電子増倍管15
aで検知される。2分割された他方の偏光は反射鏡6を
経て第2波長用干渉フイルター 3 cで単色化されて
光電子増倍管15bで検知される。第1波長は525n
mであり、第2波長は560r++++である。The polarized light is divided into two parts by the half mirror 2b, and one polarized light is made monochromatic by the first wavelength interference filter 3b and sent to the photomultiplier tube 15.
Detected at a. The other polarized light divided into two passes through a reflecting mirror 6, is made monochromatic by a second wavelength interference filter 3c, and is detected by a photomultiplier tube 15b. The first wavelength is 525n
m, and the second wavelength is 560r++++.
偏光器4aおよび4bは、その偏光面を垂直および水平
に90”移動するように、偏光面駆動回路7a、7bに
よって駆動され、その動作はコンピュータ8によって制
御される。励起光が垂直偏光である間に、蛍光側偏光器
4bによって垂直偏光と水平偏光が順次選択され、各偏
光について2波長測光される。もちろん、励起光が水平
偏光である間に、蛍光側偏光器4bによって垂直偏光と
水平偏光を順次取り出すことができる。Polarizers 4a and 4b are driven by polarization plane drive circuits 7a and 7b to move their planes of polarization 90" vertically and horizontally, and their operation is controlled by computer 8. The excitation light is vertically polarized light. In the meantime, vertically polarized light and horizontally polarized light are sequentially selected by the fluorescent side polarizer 4b, and two-wavelength photometry is performed for each polarized light.Of course, while the excitation light is horizontally polarized light, the fluorescent side polarizer 4b selects vertically polarized light and horizontally polarized light. Polarized light can be extracted sequentially.
光電子増倍管15aおよび15bで検出された蛍光強度
に比例した電気信号はアンプ回路9に入力され、光電子
増倍管15cにより検出された光源ランプ強度に比例し
た電気信号とそれぞれ割算され、その後筒1の波長の放
射光に由来する信号と第2の波長の放射光に由来する信
号の引き算回路(図示せず)を通すデイジタル・コンピ
ュータ8に入力される。コンピュータ8は、偏光面の条
件と、放射光強度より、試料中の目的成分の濃度を演算
しプリンター10に出力する。The electric signals proportional to the fluorescence intensity detected by the photomultiplier tubes 15a and 15b are input to the amplifier circuit 9, and are divided by the electric signals proportional to the light source lamp intensity detected by the photomultiplier tube 15c, and then The signal is input to a digital computer 8 which passes through a subtraction circuit (not shown) for a signal originating from the radiation light of the wavelength of the tube 1 and a signal originating from the radiation light of the second wavelength. The computer 8 calculates the concentration of the target component in the sample based on the polarization plane conditions and the emitted light intensity, and outputs it to the printer 10.
第3図に本発明の効果を確認する実験結果を示す6血中
の薬物濃度を測定した例を示す。血中薬物として、アミ
ノグリコシド系の抗生物質である ゛ゲンタマイシ
ンを代表例とする。一定濃度のゲンタマイシン(約2.
2 μg/+nQ)を含む試料に標準ビリルビン(シグ
マ社)をそれぞれ、0,5゜10.15.20mg/m
Q添加し、従来からの1波長によるFPIAと本発明に
基づく2波長によるFPIAで測定した結果を比較した
。従来の1波長法イでは、ビリルビン濃度が上昇するに
っれて、ゲンタマイシン測定値に負の誤差が生じるが。FIG. 3 shows an example of measuring the drug concentration in 6 blood, showing the results of an experiment to confirm the effects of the present invention. A representative example of a blood drug is gentamicin, an aminoglycoside antibiotic. A constant concentration of gentamicin (approximately 2.
Standard bilirubin (Sigma) was added to the sample containing 0.5゜10.15.20mg/m
Q was added, and the results measured by conventional FPIA using one wavelength and FPIA using two wavelengths based on the present invention were compared. With the conventional single-wavelength method, as the bilirubin concentration increases, a negative error occurs in the measured value of gentamicin.
2波長法口では、ビリルビン20■/m12までその傾
向が見られなかった。In the two-wavelength method, this tendency was not observed up to bilirubin of 20 μm/m12.
本発明によれば、蛍光の垂直偏光および水平偏光のそれ
ぞれについて2つの波長で同時測定することによって、
バックグラウンド蛍光の影響を除くことができるので、
測定操作が簡略化され、測定時間も短縮される。According to the present invention, by simultaneously measuring vertically polarized light and horizontally polarized light of fluorescence at two wavelengths,
Since the influence of background fluorescence can be removed,
Measurement operations are simplified and measurement time is also shortened.
第1図は本発明の一実施例の概略構成を示す図。
第2図は2波長法による偏光度の求め方を説明するため
の図、第3図はビリルビンによる影響を検討した実験結
果を示す図である。
2a、2b−ハーフミラ−13a 、 3 b 、 3
c ・=干渉フィルター、4a、4b・・・偏光器、
5・・・試料。
8・・・ディジタル・コンピュータ、15a、15b。
15c・・・光電子増倍管。FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention. FIG. 2 is a diagram for explaining how to determine the degree of polarization using the two-wavelength method, and FIG. 3 is a diagram showing the results of an experiment examining the influence of bilirubin. 2a, 2b-half mirror-13a, 3b, 3
c = interference filter, 4a, 4b... polarizer,
5...Sample. 8...Digital computer, 15a, 15b. 15c...Photomultiplier tube.
Claims (1)
照射すべき励起光を偏光する励起側偏光手段と、上記試
料からの蛍光を垂直偏光と水平偏光に交互に偏光する蛍
光側偏光手段と、蛍光の垂直偏光と蛍光の水平偏光のそ
れぞれについて蛍光極大波長を取り出すとともに、この
蛍光極大波長におけるバックグラウンド蛍光量と同等の
バックグラウンド蛍光量を有する他の波長を取出す波長
取出手段と、取出された各波長に対応して蛍光偏光を検
出する複数の光検出器を備えたことを特徴とする蛍光偏
光測定装置。1. A sample container containing a fluorescent liquid sample, an excitation side polarization means for polarizing excitation light to be irradiated onto the sample, and a fluorescence side polarization means for alternately polarizing fluorescence from the sample into vertically polarized light and horizontally polarized light. a wavelength extraction means for extracting the fluorescence maximum wavelength for each of the vertically polarized fluorescence and the horizontally polarized fluorescence, and extracts other wavelengths having an amount of background fluorescence equivalent to the amount of background fluorescence at the maximum fluorescence wavelength; A fluorescence polarization measurement device comprising a plurality of photodetectors that detect fluorescence polarization corresponding to each wavelength.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17753285A JPS6238346A (en) | 1985-08-14 | 1985-08-14 | Fluorescent polarized light measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17753285A JPS6238346A (en) | 1985-08-14 | 1985-08-14 | Fluorescent polarized light measuring instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6238346A true JPS6238346A (en) | 1987-02-19 |
Family
ID=16032574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17753285A Pending JPS6238346A (en) | 1985-08-14 | 1985-08-14 | Fluorescent polarized light measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6238346A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63208733A (en) * | 1987-02-26 | 1988-08-30 | Nippon Tectron Co Ltd | Fluorescence measuring method |
FR2776775A1 (en) * | 1998-03-31 | 1999-10-01 | Commissariat Energie Atomique | FLUORESCENCE POLARIZATION OR ANISOTROPY MEASURING DEVICE |
EP1269159A1 (en) * | 2000-02-25 | 2003-01-02 | Cambridge Research & Instrumentation, Inc. | Instantaneous dual band fluorescence detection systems |
WO2003091712A1 (en) * | 2002-04-24 | 2003-11-06 | Imperial College Innovations Limited | Device and method for detecting fluorescence comprising a lightr emitting diode as excitation source |
WO2011152067A1 (en) * | 2010-06-04 | 2011-12-08 | 富士フイルム株式会社 | Device for detecting biomolecule and method for detecting biomolecule |
WO2012042880A1 (en) * | 2010-09-30 | 2012-04-05 | 富士フイルム株式会社 | Biomolecule detection device and biomolecule detection method |
WO2012042886A1 (en) * | 2010-09-30 | 2012-04-05 | 富士フイルム株式会社 | Biomolecule detection device and biomolecule detection method |
WO2012042882A1 (en) * | 2010-09-30 | 2012-04-05 | 富士フイルム株式会社 | Biomolecule detection device and biomolecule detection method |
JP2013072741A (en) * | 2011-09-28 | 2013-04-22 | Miura Co Ltd | Water quality evaluating method and water quality evaluating apparatus |
-
1985
- 1985-08-14 JP JP17753285A patent/JPS6238346A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63208733A (en) * | 1987-02-26 | 1988-08-30 | Nippon Tectron Co Ltd | Fluorescence measuring method |
JPH0663840B2 (en) * | 1987-02-26 | 1994-08-22 | 日本テクトロン株式会社 | Fluorescence measurement method |
FR2776775A1 (en) * | 1998-03-31 | 1999-10-01 | Commissariat Energie Atomique | FLUORESCENCE POLARIZATION OR ANISOTROPY MEASURING DEVICE |
WO1999050647A1 (en) * | 1998-03-31 | 1999-10-07 | Bio Logic | Device for measuring fluorescence polarisation or anisotropy |
EP1269159A1 (en) * | 2000-02-25 | 2003-01-02 | Cambridge Research & Instrumentation, Inc. | Instantaneous dual band fluorescence detection systems |
EP1269159A4 (en) * | 2000-02-25 | 2005-01-26 | Cambridge Res & Instrmnt Inc | Instantaneous dual band fluorescence detection systems |
WO2003091712A1 (en) * | 2002-04-24 | 2003-11-06 | Imperial College Innovations Limited | Device and method for detecting fluorescence comprising a lightr emitting diode as excitation source |
JP2012013684A (en) * | 2010-06-04 | 2012-01-19 | Fujifilm Corp | Biomolecule detector and biomolecule detection method |
WO2011152067A1 (en) * | 2010-06-04 | 2011-12-08 | 富士フイルム株式会社 | Device for detecting biomolecule and method for detecting biomolecule |
WO2012042880A1 (en) * | 2010-09-30 | 2012-04-05 | 富士フイルム株式会社 | Biomolecule detection device and biomolecule detection method |
WO2012042886A1 (en) * | 2010-09-30 | 2012-04-05 | 富士フイルム株式会社 | Biomolecule detection device and biomolecule detection method |
WO2012042882A1 (en) * | 2010-09-30 | 2012-04-05 | 富士フイルム株式会社 | Biomolecule detection device and biomolecule detection method |
JP2012093339A (en) * | 2010-09-30 | 2012-05-17 | Fujifilm Corp | Biomolecule detection device and biomolecule detection method |
JP2012093336A (en) * | 2010-09-30 | 2012-05-17 | Fujifilm Corp | Biomolecule detection device and biomolecule detection method |
CN103140751A (en) * | 2010-09-30 | 2013-06-05 | 富士胶片株式会社 | Biomolecule detection device and biomolecule detection method |
US8581213B2 (en) | 2010-09-30 | 2013-11-12 | Fujifilm Corporation | Biological molecule detecting apparatus and biological molecule detecting method |
US8680486B2 (en) | 2010-09-30 | 2014-03-25 | Fujifilm Corporation | Biological molecule detecting apparatus and biological molecule detecting method |
JP2013072741A (en) * | 2011-09-28 | 2013-04-22 | Miura Co Ltd | Water quality evaluating method and water quality evaluating apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Goa | A micro biuret method for protein determination Determination of total protein in cerebrospinal fluid | |
US4419583A (en) | Polarization fluoroimmunoassay with pulsed light source | |
JP2002303629A (en) | Immune chromatography device and method for determining substance to be tested using the same | |
US4313929A (en) | Method of measurement of antigens and antibodies | |
US4916080A (en) | Immunoassay with antigen or antibody labelled microcapsules containing fluorescent substance | |
JPH0255744B2 (en) | ||
US4203724A (en) | Method and apparatus for the measurement of antigens and antibodies | |
EP3295174B1 (en) | Method for re-using test probe and reagents in an immunoassay | |
JPS6238346A (en) | Fluorescent polarized light measuring instrument | |
Warner et al. | Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry | |
JPH0666808A (en) | Chromogen measurement method | |
US3528777A (en) | Process and compositions for determination of uric acid in blood serum | |
CN111721934A (en) | Improved specific growth factor detection kit and application thereof | |
JPH09113511A (en) | Dry test piece for measuring glyco-albumin | |
EP0272291B1 (en) | Method for measuring polarized fluorescence emissions | |
Luppa et al. | Pre-evaluation and system optimization of the Elecsys® thyroid electrochemiluminescence immunoassays | |
CN111413327B (en) | Dual mode detection system and dual mode detection method | |
US20010039005A1 (en) | Method for determining drug-serum protein binding | |
US20060281132A1 (en) | Method of immunoreaction measurement and, for use therein, reagent, kit and optical cell | |
Lakowicz et al. | Fluorescence lifetime energy-transfer immunoassay quantified by phase-modulation fluorometry | |
JPS61272637A (en) | Measuring instrument for polarized fluorescent light | |
US20230417785A1 (en) | Substance separating device, analysis device, and analysis method | |
Tahboub et al. | Phase-resolved fluoroimmunoassay of human serum albumin | |
JPS6058826B2 (en) | Nephelometry method | |
Astill et al. | Dual fluorometric/colorimetric detection system for an automated random-access instrument utilizing standard polystyrene test tubes as precision cuvettes. |