JPS63175750A - Rotary mechanism for container - Google Patents

Rotary mechanism for container

Info

Publication number
JPS63175750A
JPS63175750A JP774387A JP774387A JPS63175750A JP S63175750 A JPS63175750 A JP S63175750A JP 774387 A JP774387 A JP 774387A JP 774387 A JP774387 A JP 774387A JP S63175750 A JPS63175750 A JP S63175750A
Authority
JP
Japan
Prior art keywords
container
roller
support rods
rollers
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP774387A
Other languages
Japanese (ja)
Other versions
JPH0820379B2 (en
Inventor
Masaru Hoshino
優 星野
Kaneo Yamada
務夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP774387A priority Critical patent/JPH0820379B2/en
Publication of JPS63175750A publication Critical patent/JPS63175750A/en
Publication of JPH0820379B2 publication Critical patent/JPH0820379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9072Investigating the presence of flaws or contamination in a container or its contents with illumination or detection from inside the container
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9009Non-optical constructional details affecting optical inspection, e.g. cleaning mechanisms for optical parts, vibration reduction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9081Inspection especially designed for plastic containers, e.g. preforms

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To securely grip a container at a perpendicular attitude by providing two freely rotatable rollers and one driving roller for gripping the collar of the mouth part of the container at three positions, two roller support rods which are freely opened and closed to right and left, and a mechanism which opens and closes the support rods to right and left. CONSTITUTION:The container 3 is placed on a belt conveyor 35 and a motor is driven to move the driving roller as shown by an arrow. The roller supporting rods 52 of the container support mechanism 48 are opened to right and left to receive the container 3 and the collar 60 of the mouth part is crimped by the three rollers 49, 51, and 51 and rotated by 90 deg. as shown by an arrow together with a rotary disk 47. Then a rotary gear 53 engages a driving gear 58 and an inspection device 20 is lowered along the sensor support rods 59 to a constant position of the upper end part of the mouth part of the container 3 when the motor 56 is actuated, its force is transmitted to the driving roller 49 to which the rotary gear 53 is fixed through the driving gear 58 to rotates the container 3 and two rollers 51 and 51 with its frictional force. Thus, they are rotated while the upper part of the container 3 is supported at the three points, so the container 3 is securely held at the perpendicular attitude and the rotating operation is performed stably as well.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は容器の回転機構において、容器を確実かつ安定
に回転できるようにした容器の回転機構に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a container rotation mechanism that is capable of reliably and stably rotating a container.

(発明の技術的背景とその問題点) 合成樹脂製容器、特にPET(ポリエチレンテレフタレ
ート)製容器は、大型清涼飲料用容器を中心に市場の拡
大が続いている。そして、最近では耐熱多層容器のニー
ズが高まり、それを受けて、研究、開発が進められてい
る。一般的な合成樹Jll製容器(耐熱多層容器も含む
)の製法について第3図(Δ)〜(D)を参照して説明
すると、まず射出成形機(図示せず)によりパリソン1
を作製しく第3図(A))、次に延伸プロー成形機(図
示せず)の金型2にパリソンlの口部を把持して(第3
図(B))、延伸ブロー成形することで(第3図(C)
)、所定の形状の容器3を得ることができる(第3図(
D))。
(Technical background of the invention and its problems) The market for containers made of synthetic resin, particularly containers made of PET (polyethylene terephthalate), continues to expand, mainly for large soft drink containers. Recently, the need for heat-resistant multilayer containers has increased, and in response, research and development are progressing. To explain the manufacturing method of general synthetic Jll containers (including heat-resistant multilayer containers) with reference to FIGS. 3 (Δ) to (D), first, an injection molding machine (not shown)
3 (A)), and then hold the opening of the parison l in the mold 2 of a stretch blow molding machine (not shown) (the third
Figure (B)), by stretch blow molding (Figure 3 (C))
), a container 3 of a predetermined shape can be obtained (see Fig. 3 (
D)).

しかるに、上述した方法で作られた耐熱多層容器の性能
の良否を判定する必要があり、その基準は耐熱多層容器
全体に耐熱性樹脂が均一に存在していれば、良と判定す
るものである。
However, it is necessary to judge whether the performance of the heat-resistant multilayer container made by the method described above is good or bad, and the standard for this is that if the heat-resistant resin is uniformly present throughout the heat-resistant multilayer container, it is judged as good. .

従来の判定方法としては目視によるヂエックがあるが、
メイン樹脂と耐熱性樹脂が同一色もしくは、透明である
ときは判定できないという欠点がある。また、サンプリ
ングによる破壊検査は良否の判定をすることができるが
、耐熱多層容器は単体の容器に比べ、製造上に不安定な
要因が多く、突発的な不良を発生する恐れがあるため信
顆性に欠けるなどの問題があった。
The conventional method of determination is visual inspection, but
There is a drawback that determination cannot be made when the main resin and the heat-resistant resin are the same color or transparent. Destructive testing using sampling can determine pass/fail, but heat-resistant multilayer containers have more unstable manufacturing factors than single containers, and there is a risk of sudden defects. There were problems such as a lack of sexuality.

そこで、本出願人は、メイン樹脂が耐熱性樹脂に比べ特
定波長の紫外線透過率に優れているという性質を利用し
た検査方法及び装置を開発した。
Therefore, the present applicant has developed an inspection method and apparatus that utilizes the property that the main resin has superior ultraviolet transmittance at a specific wavelength compared to heat-resistant resins.

第4図は検査装面の概略構成の斜視図を、第5図にはセ
ンサ部の構造の断面側面図を示す。
FIG. 4 is a perspective view of the schematic structure of the inspection equipment, and FIG. 5 is a cross-sectional side view of the structure of the sensor section.

この検査装置20は水銀・キセノンランプ(図示せず)
で紫外線及び可視光線を発生する光源装置21と、この
光源装置21に接続されて前記紫外線及び可視光線を集
光、伝送する直径2mmのライト用石英系ファイバ22
を有する投光部23と、投光された光を受ける直径1n
+mのディテクタ用石英系ファイバ24及びこのディテ
クタ用石英系ファイバ24を支えるガイド25を有する
受光部26とを有している。ここで、光源に水銀・キセ
ノンランプを使用する理由は、紫外部の光量を増加させ
るためである。また、ライト用石英系ファイバ22及び
ディテクタ用石英系ファイバ24の先端を位置合わせす
る時、紫外線のみでは見えないが、可視光がでているた
め容易に行なえる。また、ディテクタ用石英系ファイバ
24の途中には、特定波長(350±10nm)のみを
透過させる干渉フィルタ27及び前記紫外線と可視光線
とを受光する光電変換型のガリウム・リン素子28で成
るセンサ部29と、さらにこのセンサ部29から延びて
いるケーブル30の先には増幅器(図示せず)及び判定
回路(図示せず)で成る判断部31とが設けられている
。成形工程上、容器の口部上端部に耐熱性樹脂層が存在
していれば容器全体に耐熱性樹脂層が存在していること
になるので、検査方法は容器の口部上端部を全周に渡っ
て測定し、耐熱性樹脂層の分布状態を求めることで達せ
られる。一般に容器の口部にはキャップで密封するため
のネジが設けられている場合が多く、ネジ部での測定は
不可であるが、キャップの内側に配設されているゴムパ
ツキンを潰して容器のシール効果を高める目的で設けら
れている容器の口部上端部のネジ部がない円筒形状を利
用して測定する。しかるに、第6図に示すようにライト
用石英系ファイバ22とディテクタ用石英系ファイバ2
4とが前記可視光線を用いて一直線上に配置されると、
前記光源装置21から発生した光はライト用石英系ファ
イバ22を通って投光され、スリット32で絞られて容
器回転装置34で回転している容器3の口部上端部33
に照射される。そして、口部上端部33を透過してきた
光はディテクタ用石英系ファイバ24で受光され、セン
サ部29内の干渉フィルタ27で特定波長(350±t
onm) に抽出され、この特定波長の光がガリウム・
リン素子28で検知されるとこのガリウム・リン素子2
8は電圧を発生し、この電圧は増幅器で増幅されて判定
回路に人力され容器3の良否が判定される(特願昭61
−289864号参照)。
This inspection device 20 uses a mercury/xenon lamp (not shown)
a light source device 21 that generates ultraviolet rays and visible rays; and a quartz fiber 22 for light with a diameter of 2 mm that is connected to this light source device 21 and condenses and transmits the ultraviolet rays and visible rays.
and a diameter 1n for receiving the projected light.
+m detector quartz fiber 24 and a light receiving section 26 having a guide 25 that supports the detector quartz fiber 24. Here, the reason why a mercury/xenon lamp is used as a light source is to increase the amount of light in the ultraviolet region. Further, when aligning the ends of the light quartz fiber 22 and the detector quartz fiber 24, it is not visible only with ultraviolet rays, but it can be easily done because visible light is emitted. Further, in the middle of the quartz-based fiber 24 for the detector, there is a sensor section consisting of an interference filter 27 that transmits only a specific wavelength (350±10 nm) and a photoelectric conversion type gallium phosphide element 28 that receives the ultraviolet rays and visible light. 29, and at the end of a cable 30 extending from the sensor section 29, a determination section 31 consisting of an amplifier (not shown) and a determination circuit (not shown) is provided. Due to the molding process, if a heat-resistant resin layer exists at the upper end of the mouth of the container, it means that the entire container has a heat-resistant resin layer, so the inspection method is to inspect the upper end of the mouth of the container all around. This can be achieved by measuring over a period of time and determining the distribution state of the heat-resistant resin layer. Generally, the mouth of the container is often equipped with a screw to seal it with a cap, so measurements cannot be taken at the screw, but the rubber gasket installed inside the cap can be crushed to seal the container. Measurement is performed using the cylindrical shape of the container, which has no threaded part at the upper end of the mouth, which is provided for the purpose of increasing the effectiveness. However, as shown in FIG. 6, the light quartz fiber 22 and the detector quartz fiber 2
4 are placed in a straight line using the visible light,
The light generated from the light source device 21 is projected through the quartz-based fiber 22 for light, is narrowed by a slit 32, and is focused on the upper end 33 of the opening of the container 3, which is being rotated by a container rotation device 34.
is irradiated. The light transmitted through the mouth upper end 33 is received by the detector quartz fiber 24, and is filtered at a specific wavelength (350±t
onm), and this specific wavelength of light is extracted from gallium.
When detected by the phosphorus element 28, this gallium phosphorus element 2
8 generates a voltage, and this voltage is amplified by an amplifier and manually inputted to a judgment circuit to judge whether the container 3 is good or bad (Patent Application No. 1983)
-289864).

しかるに、精度の良い測定を行なうには容器3を確実に
把持し、円滑に回転させる機構が必要となる。しかし、
従来は上述した様な検査方法及び装置が無かったため、
これに対応できる容器3の回転機構も無く、問題であっ
た。
However, in order to perform accurate measurements, a mechanism is required to reliably grip the container 3 and rotate it smoothly. but,
Conventionally, there were no inspection methods and equipment as described above,
There was no mechanism for rotating the container 3 that could accommodate this, which was a problem.

(発明の目的) 本発明は上述のような事情からなされたものであり、本
発明の目的は、容器を確実に把持し、円滑に回転できる
ようにした容器の回転機構を提供することにある。
(Object of the Invention) The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide a container rotation mechanism that can securely grip a container and rotate it smoothly. .

(発明の概要) 本発明は容器の回転機構に関するもので、容器の口部の
つばを3か所で把持するための2個の回転自在のローラ
及び1個の駆動ローラと、前記回転自在のローラを一端
に具備した前記容器の口部のつばを取込むための左右に
開閉自在な2個のローラ支持棒と、この2個のローラ支
持棒を左右に開閉するための機構と、前記容器を回転さ
せる前記駆動ローラを回転するための機構とを具備する
ものである。
(Summary of the Invention) The present invention relates to a container rotation mechanism, and includes two rotatable rollers and one drive roller for gripping the lip of the mouth of the container at three locations, and a rotatable roller and a driving roller. two roller support rods that can be opened and closed left and right to take in the brim of the mouth of the container, which is equipped with a roller at one end; a mechanism for opening and closing these two roller support rods left and right; and the container. and a mechanism for rotating the drive roller.

(発明の実施例) 以下、本発明の実施例を添付図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図(A)は、本発明の容器の回転機構の主要部の平
面図を示し、同図(B)はその側面図を示している。
FIG. 1(A) shows a plan view of the main part of the container rotation mechanism of the present invention, and FIG. 1(B) shows its side view.

容器支持機構48は容器3を回転させる駆動ローラ49
を具備した11tlI150を1組及び回転自在のロー
ラ51を具備したローラ支持棒52を2組有し、ローラ
支持棒52の回転lll1l161は、2組のローラ支
持棒52,52がψ1b50をはさみこむ様に台62上
に固着されている。そこで、3個のローラ49,51.
51は三角形に配置されることになり、駆動ローラ49
上部には回転ギヤ53が固着され、台62の上部に設け
られた台65上のモータ56の出力軸57と連接されて
いる駆動ギヤ58とかみ合う様になっている。ローラ支
持棒52は回転軸61を中心とした三つ又の形状をして
おり、一端には回転自在のローラ51.他の一端には開
閉用ローラ63、もう一端にはバネ64の一端が固着さ
れている。開閉用ローラδ3の後方の台[i2上にはエ
アシリンダ66及びコア棒67が固着されている。
The container support mechanism 48 includes a drive roller 49 that rotates the container 3.
It has one set of 11tlI150 equipped with 11tlI150 and two sets of roller support rods 52 equipped with rotatable rollers 51, and the rotation of the roller support rods 52 is such that the two sets of roller support rods 52, 52 sandwich ψ1b50. It is fixed on the stand 62. Therefore, three rollers 49, 51 .
51 is arranged in a triangular shape, and the drive roller 49
A rotating gear 53 is fixed to the upper part and meshes with a drive gear 58 connected to an output shaft 57 of a motor 56 on a stand 65 provided at the upper part of the stand 62. The roller support rod 52 has a three-pronged shape centered on a rotating shaft 61, and has a rotatable roller 51. An opening/closing roller 63 is fixed to the other end, and one end of a spring 64 is fixed to the other end. An air cylinder 66 and a core rod 67 are fixed on the stand [i2] behind the opening/closing roller δ3.

次に、上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

エアシリンダ66が作動してコア棒67が図の左方向へ
移動して、2個の開閉用ローラ63,63を押しやり、
ローラ回転軸61を中心に2個のローラ支持棒52.5
2を左右に広げる。そして、容器3の口部のつば60が
2個のローラ支持棒52.52の間に入ると、再びエア
シリンダ66が作動してコア棒67が図の右方向へ移動
する。すると、バネ64が復元してローラ回転軸61を
中心に2個のローラ支持棒52.52が閉じ、3個のロ
ーラ49゜51.51のくびれ部分で容器3の口部のつ
ば60を把持する。ここでモータ56が起動すると、出
力上h57.駆動ギヤ581回転ギヤ53を介して駆動
ローラ49を回転させ、その摩擦力によって容器3及び
2個の回転自在のローラ51,51が回転する。
The air cylinder 66 operates and the core rod 67 moves to the left in the figure, pushing away the two opening/closing rollers 63, 63.
Two roller support rods 52.5 are arranged around the roller rotation shaft 61.
Spread 2 to the left and right. When the brim 60 at the mouth of the container 3 enters between the two roller support rods 52 and 52, the air cylinder 66 is operated again and the core rod 67 is moved to the right in the figure. Then, the spring 64 is restored and the two roller support rods 52.52 are closed around the roller rotation shaft 61, and the constricted portions of the three rollers 49.degree. do. When the motor 56 starts, the output increases to h57. The drive roller 49 is rotated via the drive gear 581 and the rotating gear 53, and the friction force thereof causes the container 3 and the two rotatable rollers 51, 51 to rotate.

この回転は、容器3の上部を3点で支持して行なわれる
ので、容器3を確実に把持できると共に正確な鉛直姿勢
を保ちつつ安定した回転動作を行なうことかできる。
This rotation is performed by supporting the upper part of the container 3 at three points, so that the container 3 can be reliably gripped and a stable rotation operation can be performed while maintaining an accurate vertical posture.

なお、上記した回転伝達には、ギヤの代わりにベルトを
、また、エアシリンダ66の代わりに油圧シリンダを、
さらにバネ64の代わりにエアシリンダを用いても良く
特に限定はない。
In addition, for the above-mentioned rotation transmission, a belt is used instead of a gear, and a hydraulic cylinder is used instead of the air cylinder 66.
Furthermore, an air cylinder may be used instead of the spring 64 without any particular limitation.

そして第2図(八)及び([1)は上述した検査装置2
0及び回転機!’948を具備した容器回転装置の概略
構成の平面図及び側面図を示す。容器回転装置34は容
器3を搬入、搬出するコンベアベルト35.35と、そ
れらの末端に配置されたコンベアベルト用ローラ(図示
せず)とを有し、コンベアベルト用ローラの’Th!+
37.37端のプーリ38゜38と本体39内のモータ
40の減速機構41の出力軸42上のプーリ43とにベ
ルト44が掛けられ、コンベアベルト35.35を駆動
するようになっている。
FIG. 2 (8) and ([1)] show the above-mentioned inspection device 2.
0 and rotating machine! FIG. 11 shows a plan view and a side view of a schematic configuration of a container rotation device equipped with a '948. The container rotating device 34 has conveyor belts 35, 35 for carrying in and carrying out the containers 3, and conveyor belt rollers (not shown) arranged at the ends of the conveyor belts. +
A belt 44 is hooked around a pulley 38° 38 at the end of 37.37 and a pulley 43 on an output shaft 42 of a deceleration mechanism 41 of a motor 40 in the main body 39 to drive a conveyor belt 35.35.

この2木のコンベアベルト35.35の間には容器3を
回転させる機構45が設けられ、この機構45には前述
したモータ40及び減速機構41を利用して回転する回
転軸46が本体39上部に垂設され、この回転軸46と
一体となって回転する回転円板47が固着されている。
A mechanism 45 for rotating the container 3 is provided between the two conveyor belts 35 and 35, and a rotating shaft 46 that rotates using the motor 40 and deceleration mechanism 41 described above is attached to the upper part of the main body 39. A rotating disk 47 is fixed to the rotating shaft 46 and rotates integrally with the rotating shaft 46 .

この回転円板47の円周上には90°おきに駆動ローラ
49を具備した軸50が1組及び回転自在のローラ51
を具備したローラ支持棒52が2組で構成された4組の
容器支持機構48,48,48,411が固着されてい
る。3個のローラ49,51.51は三角形に配置され
、内周側に位置する駆動ローラ49上部には回転ギヤ5
3が固着されている。さらに、回転円板47上部には回
転lll1k46の回転に影ビされずに停止しているシ
ャフト54を有し、そのシャフト54には停止円板55
が固着されている。この停止円板55の左側90° (
コンベアベルト35の搬入方向を00とし、回転円板4
7の回転方向へ9o°)の円周上にはモータ56が固着
されており、その出力軸57端の駆動ギヤ58が回転ギ
ヤ53と噛合うように設りられている。さらに、この左
側90°の位置にはL形のセンサー支持棒59が本体3
9上部に垂設されており、その先端にと士ライト用石英
系ファイバ22.ガイドを有したディテクタ用石英系フ
ァイバ24及びスリット32が前述した位置(第6図参
照)に固定されている。
On the circumference of this rotary disk 47, there is a set of shafts 50 equipped with drive rollers 49 at every 90 degrees, and a set of rotatable rollers 51.
Four sets of container support mechanisms 48, 48, 48, and 411, each of which includes two sets of roller support rods 52, are fixed. The three rollers 49, 51, 51 are arranged in a triangular shape, and a rotating gear 5 is mounted above the drive roller 49 located on the inner circumferential side.
3 is fixed. Further, above the rotating disk 47, there is a shaft 54 that is stopped without being affected by the rotation of the rotating lll1k46, and a stopping disk 55 is attached to the shaft 54.
is fixed. 90° to the left of this stop disk 55 (
The carrying direction of the conveyor belt 35 is set as 00, and the rotating disk 4
A motor 56 is fixed on the circumference at 9° in the rotational direction of the motor 7, and a drive gear 58 at the end of its output shaft 57 is provided to mesh with the rotating gear 53. Furthermore, an L-shaped sensor support rod 59 is located at 90° to the left of the main body 3.
A silica-based fiber 22 for use as a light source is installed at the tip of the quartz-based fiber 22. A detector quartz fiber 24 having a guide and a slit 32 are fixed at the aforementioned positions (see FIG. 6).

次に、上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

コンベアベルト35上に容器3を載せ、モータ40を起
動して駆動ローラ(図示せず)を回転させ、容器3を図
中矢印方向へ移動させる。そして、容器支持機構4−8
のローラ支持棒52.52が左右に開き容器3を受入れ
、口部のつば60を3個のローラ49,51.51で挟
持し、回転円板47と共に図中矢印方向へ90°回転さ
せると、回転ギヤ53と駆動ギヤ58が噛合う。検査装
置20がセンサー支持棒59に沿って容器3の口部上端
部の定位置まで下降し、モータ56が起動すると、その
回転は駆動ギヤ58を介して回転ギヤ53が固若してい
る駆動ローライ9に伝達され、その摩擦力によフて容器
3及び回転自在の2個のローラ51,51が回転する。
The container 3 is placed on the conveyor belt 35, and the motor 40 is activated to rotate a drive roller (not shown) to move the container 3 in the direction of the arrow in the figure. And the container support mechanism 4-8
When the roller support rods 52, 52 open left and right to receive the container 3, the collar 60 at the mouth is held between the three rollers 49, 51, 51, and rotated 90 degrees in the direction of the arrow in the figure together with the rotary disk 47. , the rotating gear 53 and the driving gear 58 mesh with each other. When the inspection device 20 is lowered along the sensor support rod 59 to a fixed position at the upper end of the mouth of the container 3 and the motor 56 is started, its rotation is transmitted via the drive gear 58 to the fixed drive of the rotating gear 53. The friction force is transmitted to the roller 9, and the container 3 and the two rotatable rollers 51, 51 rotate due to the frictional force.

この回転は容器3の上部を3点で支持して行なわれるの
で、容器3は正確に鉛直姿勢を維持できると共に、その
回転動作も安定的に行なわれる。このような動きに応じ
て検査装置20は前述したような測定を行なう。測定終
了後、検査装置20はセンサー支持棒59に沿って上昇
し、容器3は再び回転円盤47と共に矢印方向へ90”
回転し、ローラ支持棒52.52が左右に開いて容器3
を開放してコンベアベルト35上に載せて図中矢印方向
へ移動させる0以上の動作は容器1個について述べたが
、容器が連続して搬送されて来るときは、上述の動作が
連続的に繰返される。
Since this rotation is carried out by supporting the upper part of the container 3 at three points, the container 3 can maintain an accurate vertical posture, and its rotating operation can also be performed stably. In response to such movements, the inspection device 20 performs the measurements described above. After the measurement is completed, the inspection device 20 rises along the sensor support rod 59, and the container 3 moves 90'' in the direction of the arrow again together with the rotating disk 47.
rotates, and the roller support rods 52 and 52 open left and right to open the container 3.
The above operation of opening the container, placing it on the conveyor belt 35, and moving it in the direction of the arrow in the figure has been described for one container, but when the containers are conveyed continuously, the above operation is performed continuously. repeated.

また、この回転m描は上述した容器の検査装置ばかりで
なく、例えば容器の異物検査装置にも用いることができ
、装置を特に限定するものではない。
Moreover, this rotational m-drawing can be used not only for the above-mentioned container inspection apparatus, but also, for example, for a container foreign matter inspection apparatus, and the apparatus is not particularly limited.

(発明の効果) 以上のように本発明の容器の回転機構によれば、容器の
上部を3点で支持するため、容器を確実に把持できる。
(Effects of the Invention) As described above, according to the container rotation mechanism of the present invention, since the upper part of the container is supported at three points, the container can be reliably gripped.

さらに、正確な鉛直姿勢を保ちつつ安定した回転を行な
うことができるようになる。
Furthermore, it becomes possible to perform stable rotation while maintaining an accurate vertical posture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(八)及び(B)は本発明を実現する容器の回転
機構の概略を示す平面図及び側面図、第2図(A)及び
([1)は本発明を適用した容器の検査装置を具備した
容器回転装置の概略を示す平面図及び側面図、第3図(
^)〜(D)は合成樹脂製容器の製法を示す図、′f3
4図は容器の検査装置の概略を示す斜視図、第5図はセ
ンサ部を示す断面側面図、第6図は容器の検査装置によ
る検査方法を示す側面図である。 1・・・パリソン、20・・・検査装置、22・・・ラ
イト用石英系ファイバ、24・・・ディテクタ用石英系
ファイバ、3イ・・・容器回転装置、イ8・・・回転機
構。 出願人代理人  安 形 雄 三 茶4固 蓼5 則 (A)            CB+第 (C)             (D)3 回
Figures 1 (8) and (B) are a plan view and side view schematically showing the rotation mechanism of a container that realizes the present invention, and Figures 2 (A) and ([1] are inspections of a container to which the present invention is applied. A plan view and a side view schematically showing the container rotating device equipped with the device, FIG.
^) ~ (D) are diagrams showing the manufacturing method of synthetic resin containers, 'f3
FIG. 4 is a perspective view schematically showing the container inspection device, FIG. 5 is a sectional side view showing the sensor section, and FIG. 6 is a side view showing an inspection method using the container inspection device. DESCRIPTION OF SYMBOLS 1... Parison, 20... Inspection device, 22... Quartz fiber for light, 24... Quartz fiber for detector, 3A... Container rotation device, A8... Rotation mechanism. Applicant's agent Yu Yasugata Sancha 4 Kogyo 5 Rules (A) CB + No. (C) (D) 3 times

Claims (1)

【特許請求の範囲】[Claims] 容器の口部のつばを3か所で把持するための2個の回転
自在のローラ及び1個の駆動ローラと、前記回転自在の
ローラを一端に具備した前記容器の口部のつばを取込む
ための左右に開閉自在な2個のローラ支持棒と、この2
個のローラ支持棒を左右に開閉するための機構と、前記
容器を回転させる前記駆動ローラを回転するための機構
とを具備することを特徴とする容器の回転機構。
two rotatable rollers and one driving roller for gripping the mouth brim of the container at three places, and the brim of the container mouth provided with the rotatable roller at one end; There are two roller support rods that can be opened and closed on the left and right sides for
1. A container rotation mechanism comprising: a mechanism for opening and closing the roller support rods left and right; and a mechanism for rotating the drive roller that rotates the container.
JP774387A 1987-01-16 1987-01-16 Container rotation mechanism Expired - Lifetime JPH0820379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP774387A JPH0820379B2 (en) 1987-01-16 1987-01-16 Container rotation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP774387A JPH0820379B2 (en) 1987-01-16 1987-01-16 Container rotation mechanism

Publications (2)

Publication Number Publication Date
JPS63175750A true JPS63175750A (en) 1988-07-20
JPH0820379B2 JPH0820379B2 (en) 1996-03-04

Family

ID=11674181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP774387A Expired - Lifetime JPH0820379B2 (en) 1987-01-16 1987-01-16 Container rotation mechanism

Country Status (1)

Country Link
JP (1) JPH0820379B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008951A1 (en) * 1989-02-06 1990-08-09 Dai Nippon Insatsu Kabushiki Kaisha Method and apparatus for inspecting heat-resistant multi-layered container made of synthetic resin
US5139406A (en) * 1987-12-16 1992-08-18 Dai Nippon Insatsu Kabushiki Kaisha Apparatus and system for inspecting wall thickness of synthetic resin containers
US5259716A (en) * 1987-12-16 1993-11-09 Dai Nippon Insatsu Kabushiki Kaisha Container conveyor for conveying a container to an inspecting station
US5328018A (en) * 1990-12-03 1994-07-12 Dai Nippon Insatsu Kabushiki Kaisha Transfer device including a rotating mechanism for rotating a container
CN110044912A (en) * 2019-05-21 2019-07-23 齐鲁工业大学 A kind of small-bore closed container inner wall surface defect detecting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139406A (en) * 1987-12-16 1992-08-18 Dai Nippon Insatsu Kabushiki Kaisha Apparatus and system for inspecting wall thickness of synthetic resin containers
US5259716A (en) * 1987-12-16 1993-11-09 Dai Nippon Insatsu Kabushiki Kaisha Container conveyor for conveying a container to an inspecting station
WO1990008951A1 (en) * 1989-02-06 1990-08-09 Dai Nippon Insatsu Kabushiki Kaisha Method and apparatus for inspecting heat-resistant multi-layered container made of synthetic resin
EP0408745A1 (en) * 1989-02-06 1991-01-23 Dai Nippon Insatsu Kabushiki Kaisha Method and apparatus for inspecting heat-resistant multi-layered container made of synthetic resin
US5331167A (en) * 1989-02-06 1994-07-19 Dai Nippon Insatsu Kabushiki Kaisha Method and apparatus for inspecting heat-resistant multilayer containers made of synthetic resin
US5328018A (en) * 1990-12-03 1994-07-12 Dai Nippon Insatsu Kabushiki Kaisha Transfer device including a rotating mechanism for rotating a container
CN110044912A (en) * 2019-05-21 2019-07-23 齐鲁工业大学 A kind of small-bore closed container inner wall surface defect detecting device
CN110044912B (en) * 2019-05-21 2023-10-10 齐鲁工业大学(山东省科学院) Device for detecting surface defects of inner wall of small-caliber closed container

Also Published As

Publication number Publication date
JPH0820379B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
CN104662411B (en) Bottom is passed from below through to the inspection inside container
JP4995303B2 (en) Inspection equipment for filled and sealed containers
EP1812788B1 (en) Optical inspection of container walls
JP2018506701A (en) Process and apparatus for inspecting tires in a process and plant for manufacturing tires for vehicle wheels
JP2009008637A (en) Device for inspecting angle seamed with cap in bottle-cap assembly
JPS63175750A (en) Rotary mechanism for container
JPH07243990A (en) Method and device for scanning type inspection for rotary symmetry type container especially cylindrical container
CN106706667B (en) A kind of needle roller detection device and detection method
JP2009069099A (en) Foreign matter detector and foreign matter detecting method in vessel
JPS63177010A (en) Apparatus for measuring verticality of container
JP2004513046A (en) Apparatus for continuously moving a plurality of objects having rotational symmetry and application of the apparatus to visual inspection and checking
JP2000105202A (en) Inspecting device for pinhole in cylindrical container
KR101760119B1 (en) Apparatus for inspecting preform and method thereof
JPH06186173A (en) Inverted inspection bottle machine
CN114324378A (en) Automatic cloth inspecting device capable of inspecting defects of balling-up joints on cloth
KR20180128032A (en) Liquid container labeling machine with optical inspection device
JPH0423746B2 (en)
CN204330630U (en) Bottleneck 360 degree of photographic testers
JPS6388431A (en) Foreign matter detecting method and apparatus therefor
JPS6461655A (en) Defect inspecting instrument
US5331167A (en) Method and apparatus for inspecting heat-resistant multilayer containers made of synthetic resin
JPH03257356A (en) Light guide of container inspecting apparatus
JPS6098341A (en) Method and device for detecting photodecomposable solid matter in solution
JP5314633B2 (en) Ampoule defect detection apparatus and defect detection method
JP3216720B2 (en) Method and apparatus for detecting defects such as press wrinkles in a transparent container