JPS63175749A - Transmitting light photometric instrument - Google Patents

Transmitting light photometric instrument

Info

Publication number
JPS63175749A
JPS63175749A JP752787A JP752787A JPS63175749A JP S63175749 A JPS63175749 A JP S63175749A JP 752787 A JP752787 A JP 752787A JP 752787 A JP752787 A JP 752787A JP S63175749 A JPS63175749 A JP S63175749A
Authority
JP
Japan
Prior art keywords
sample
timer
reaction
time
transmitted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP752787A
Other languages
Japanese (ja)
Other versions
JP2524728B2 (en
Inventor
Yoshitsugu Sakata
佐方 由嗣
Haruki Oishi
晴樹 大石
Hiroki Shiraishi
浩己 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP62007527A priority Critical patent/JP2524728B2/en
Publication of JPS63175749A publication Critical patent/JPS63175749A/en
Application granted granted Critical
Publication of JP2524728B2 publication Critical patent/JP2524728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To start measuring plural samples one after another by an easy operation and to strictly control the reaction time of each sample at the same time by dispensing a reagent solution repeatedly by a pipetter according to optional timing of an operator. CONSTITUTION:A mixture (sample liquid to be inspected) of a sample and a reaction reagent is put in plural sample cuvettes 1, which are radiated with light beams from respective light sources 2. Photodetectors 3 detect the quantities of transmitted light from the cuvettes 1, and those quantities of transmitted light are switched in order by a multiplexer 5, processed by an amplifier 6 and an A/D converter 7, and inputted to a computer 8. Further, the point of time when the sample and reaction reagent are mixed is detected by a switch 4 and one of plural timers 10 which are not in operation begins to count a reaction time by the computer 8 associatively with the detection of the point of time of the mixing. Then an indicating element 18 in a counting state is turned on associatively with the timer to take measurements in order by the simple operation.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、測定効率が高く且つ安価に製造し得る透過光
測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a transmitted light measuring device that has high measurement efficiency and can be manufactured at low cost.

「従来技術及びその問題点」 透過光の測定は、化学物質の呈色反応を利用する生体試
料中の各種基質、酵素等の定量分析に輻広く応用されて
いる。また、近年濁度の測定にも使用され、抗原、抗体
等の免疫関連物質の定量に応用が拡がっている。これら
の反応の測定では、反応試薬と試料の混合時点からの経
過時間、すなわち反応時間を厳密に管理することが精度
の向上に不可欠である。また、近年、測定項目数、試料
数の増加に起因して、操作が容易で測定効率の高い装置
が求められている。
"Prior art and its problems" Measurement of transmitted light is widely applied to quantitative analysis of various substrates, enzymes, etc. in biological samples using color reaction of chemical substances. In recent years, it has also been used to measure turbidity, and its application is expanding to quantify immune-related substances such as antigens and antibodies. In measuring these reactions, it is essential to strictly control the elapsed time from the time of mixing the reaction reagent and sample, that is, the reaction time, to improve accuracy. Furthermore, in recent years, due to an increase in the number of measurement items and the number of samples, there has been a demand for devices that are easy to operate and have high measurement efficiency.

透過光の測定装置としては、従来より光度計が使用され
ている。光度計は簡便で安価である反面、−検体毎の測
定装置であるので、マニュアル操作で複数個の試料の透
過光の変化を測定するためには、反応時間を厳密に管理
しながら繰り返し試料セルを光学系へ出し入れしなけれ
ばならなかった。しかしながら、これは非常に繁雑で極
めて困難を伴うものである。特に反応途上の2以上の時
点で透過光量を測定する動的測定では、多数の試料を出
し入れして並行測定することは実際上不可能であった0
通常は1つの試料が測定終了迄光学系を専有する方法が
とられるため、測定の効率は極めて低くなる。
A photometer has conventionally been used as a measuring device for transmitted light. While a photometer is simple and inexpensive, it is a measurement device for each sample, so in order to manually measure changes in the transmitted light of multiple samples, it is necessary to repeatedly repeat the sample cell while strictly controlling the reaction time. had to be taken in and out of the optical system. However, this is very complicated and extremely difficult. Particularly in dynamic measurements where the amount of transmitted light is measured at two or more points in the course of a reaction, it is practically impossible to take out and take out a large number of samples in parallel.
Usually, a method is adopted in which one sample monopolizes the optical system until the end of the measurement, resulting in extremely low measurement efficiency.

一方、自動的に複数個の試料に試薬を分注し、単一の光
学系への被検試料液あるいは試料セルの出し入れを機械
的に行なう自動分析装置が市販されているが、このもの
は非常に高価である難点があった。
On the other hand, there are automatic analyzers on the market that automatically dispense reagents to multiple samples and mechanically move test sample liquids or sample cells into and out of a single optical system. The drawback was that it was very expensive.

本発明は、上記問題点を解消し、厳密な測定時間の管理
が可能で測定の効率が高く、しかも操作性にも優れ、且
つ安価に製造し得る透過光測定装置を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a transmitted light measuring device that allows strict measurement time management, high measurement efficiency, excellent operability, and can be manufactured at low cost. do.

「発明の概要」 本発明は、試料と反応試薬の混合物(被検試料液)の混
合・反応開始後の透過光量の変化を測定する装置に於て
、該被検試料液を収容する複数の被検試料キュベツトを
保持する手段と、該被検試料キュベツトに各々光線を照
射し各々の透過光量を別々に検知する手段と、前記被検
試料の各々の混合・反応開始後の経過時間を別々に計時
する複数のタイマーと、ピペッタ−に連動し試料と反応
試薬の混合時点を検出する手段と、該混合時点の検出に
連動して前記複数のタイマーのうちの動作中でないタイ
マーの1つを計時開始する手段と、計時開始したタイマ
ーに連動してタイマーが計時状態にあることを報知する
手段と、計時開始したタイマーに連動して任意のタイミ
ングで被検試料の透過光量をサンプリングして記憶する
手段とを具備し、複数試料の透過光量の時間変化を同時
に並行して測定することを特徴とする。
``Summary of the Invention'' The present invention provides an apparatus for measuring changes in the amount of transmitted light after mixing and reaction of a mixture of a sample and a reaction reagent (test sample liquid). means for holding the test sample cuvettes; means for irradiating each test sample cuvette with a light beam and separately detecting the amount of transmitted light; a plurality of timers for measuring time, a means for detecting the time point at which the sample and the reaction reagent are mixed in conjunction with the pipetter, and a means for detecting the time point at which the sample and the reaction reagent are mixed; A means for starting timing, a means for notifying that the timer is in a timing state in conjunction with the timer that has started timing, and a means for sampling and storing the amount of transmitted light of the test sample at an arbitrary timing in conjunction with the timer that has started timing. The present invention is characterized in that it measures time changes in the amount of transmitted light of a plurality of samples simultaneously and in parallel.

要するに本発明は、従来が単一の光源と検出器を使用す
ることを考えているだけで、複数の光学系での並列測定
という点に考えが及んでいなかったのに対し、複数個の
光学系とそれに対応する複数個の反応時間管理タイマー
と1 (11のピペッタ−とを組合わせ、ピペッタ−の
分注動作に連動して動作中でないタイマーを起動し測定
を行なうタイミングの基準となる反応時間を厳密に管理
できるようにすると共に、1つのピペッタ−で複数個の
試料について順次反応を開始すると、それに合せて複数
個の光学系が順次測定を開始することができるようにす
ることで、操作性がよく、しかも安価に製造可能な装置
を提供することを特徴とする「実施例」 次に本発明の望ましい実施例を図面を参照しながら説明
する。
In short, the present invention uses multiple optical systems, whereas conventional methods only considered the use of a single light source and detector and did not consider parallel measurements using multiple optical systems. By combining the optical system, multiple reaction time management timers corresponding to the optical system, and 1 (11) pipetters, the timer that is not in operation is started in conjunction with the dispensing operation of the pipettor, and becomes the reference timing for measurement. In addition to making it possible to strictly control the reaction time, when a single pipettor starts reactions for multiple samples in sequence, multiple optical systems can start measurements in sequence. Embodiment 2 A preferred embodiment of the present invention will be described with reference to the drawings.

第1図は本発明に係る測定装置のブロック図であり、試
料と反応試薬との混合物(被検試料液)を収容する複数
の被検試料キュベツト1と、複数の光源2から各々対応
する複数の被検試料キュベツト1に光線を照射し複数の
透過光量を別々に検知する光電検出器3と、光電検出器
3で検知された複数の透過光量を順次切替えて次々に送
信するマルチプレクサ5と、送信された信号を増幅する
増幅回路6と、増幅回路8で増幅された信号をデジタル
値に変換するA/D変換器7と、試料と反応試薬との混
合を行なうピペッタ−に連動し混合時点を検出するスイ
ッチ4と、混合時点の検出に連動して動作中でないもの
の1つがコンピュータ8により計時開始され反応時間の
計時を行なう複数のタイマー10と、計時開始したタイ
マーに連動し透過光測定状態となった光学系に対応して
計時(すなわち測定)状態を報知する素子18と、前記
デジタル化された透過光景を計時開始したタイマーに連
動して任意のタイミングでサンプリングしメモリ11に
記憶すると共に透過光量の変化のデータ処理と装置全体
の動作を制御するコンピュータ8とから構成された例を
示す、尚、キュベツトlを保持する手段は図では省略さ
れている。
FIG. 1 is a block diagram of a measuring device according to the present invention, which includes a plurality of test sample cuvettes 1 containing a mixture of a sample and a reaction reagent (test sample liquid), a plurality of light sources 2, and a corresponding plurality of cuvettes. a photoelectric detector 3 that irradiates the test sample cuvette 1 with a light beam and separately detects a plurality of amounts of transmitted light; a multiplexer 5 that sequentially switches and transmits the plurality of amounts of transmitted light detected by the photoelectric detector 3; An amplification circuit 6 that amplifies the transmitted signal, an A/D converter 7 that converts the signal amplified by the amplification circuit 8 into a digital value, and a pipettor that mixes the sample and reaction reagent are linked to each other. A switch 4 detects the mixing time, one of which is not in operation is started by the computer 8, and a plurality of timers 10 are used to measure the reaction time. an element 18 that notifies the timing (that is, measurement) state corresponding to the optical system that has become digitized, and samples the digitized transmission scene at an arbitrary timing in conjunction with a timer that starts timing and stores it in the memory 11. An example is shown in which the apparatus comprises a computer 8 which processes data on changes in the amount of transmitted light and controls the operation of the entire apparatus. Note that the means for holding the cuvette 1 is omitted in the figure.

光源2としては、LED 、タングステンランプ等の発
光素子を使用することができる。また光源2は、複数段
けなくとも、単一光源から光ファイバーで各被検試料キ
ュベツトに照射光を導いてもよい。
As the light source 2, a light emitting element such as an LED or a tungsten lamp can be used. Further, the light source 2 does not need to be arranged in multiple stages, and the irradiation light may be guided from a single light source to each test sample cuvette through an optical fiber.

光電検出器3としては、透過光量に対応する電気信号が
発生するフォトダイオード、光電セル等の受光素子を使
用することができる。光電検出器も光源と同様に、単一
の光電検出器に光ファイバーで各被検試料キュベツトの
透過光を導いてもよい。
As the photoelectric detector 3, a light receiving element such as a photodiode or a photocell that generates an electric signal corresponding to the amount of transmitted light can be used. Similar to the light source, the photoelectric detector may also guide the transmitted light of each test sample cuvette to a single photodetector using an optical fiber.

ピペッタ−に連動し試料と反応試薬との混合時点を検出
するスイッチ4は、吸入吐出式ピペッタ−の試液吐出動
作時にスイッチ4が動作する様、マイクロスイッチ或い
は磁気スイッチをピペッタ−に内蔵すること等で実現す
ることができる。この様なピペッタ−とスイッチの構成
例を第2図に示す、この実施例では、ピストン22に連
動したピストンノブ21を押すことでシリンダ2B内を
ピストン22が移動し試液の吸入吐出を行なう公知のピ
ペッタ−に於て、ピストンの移動に連動して移動するマ
グネット23を設置し、ピストンが試液吐出位置に移動
した時に動作する磁気検出素子24をピペッタ−ハウジ
ングに設置している。この素子からの信号を信号ケーブ
ル25で取り出すことで、ピペッタ−が試液吐出動作を
行なった時点を正確に検出することができる。磁気検出
素子24としては、ホール素子やリードスイッチを使用
することができる。また、磁気検出以外に、マイクロス
イッチによる機械的検出や、光学センサを用いる光学的
検出を行なうことも可能である。
The switch 4, which is linked to the pipettor and detects the mixing point of the sample and the reaction reagent, may include a microswitch or a magnetic switch built into the pipettor so that the switch 4 operates when the reagent is discharged from the pipettor. It can be realized with. An example of the structure of such a pipetter and switch is shown in FIG. 2. In this embodiment, when a piston knob 21 linked to a piston 22 is pressed, the piston 22 moves within the cylinder 2B to aspirate and discharge a sample liquid. In this pipettor, a magnet 23 that moves in conjunction with the movement of the piston is installed, and a magnetic detection element 24 that is activated when the piston moves to the reagent discharge position is installed in the pipetter housing. By extracting the signal from this element using the signal cable 25, it is possible to accurately detect the point in time when the pipetter performs a reagent discharging operation. As the magnetic detection element 24, a Hall element or a reed switch can be used. In addition to magnetic detection, it is also possible to perform mechanical detection using a microswitch or optical detection using an optical sensor.

スイッチ4の動作毎に順次計時を開始する複数タイマー
10は公知の順序回路とカウンターで構成できるが、1
つの基本タイマーとコンピュータ8とメモリ11による
プログラム動作で置換えることもできる。
The multiple timers 10 that sequentially start timing each time the switch 4 is operated can be constructed from a known sequential circuit and a counter.
It is also possible to replace it with one basic timer and a program operation using the computer 8 and memory 11.

現在どの光学系が測定状態になっているかを報知する素
子1日にはLEDが使用でき、その報知状態から次のス
イッチ4の動作でどの光学系が次に測定状態に入るかを
知ることができる。
An LED can be used as an element to notify which optical system is currently in the measurement state, and from the notification state it is possible to know which optical system will enter the measurement state next by the next operation of switch 4. can.

コンピュータ8は、スイッチ4の動作でタイマー10の
うちのどれを起動するかを判断し制御すると共に計時動
作中のタイマーlOのカウントを観測しながら任意のタ
イミングで被検試料の透過光量をサンプリングしメモリ
11にデータとして記憶する。また、所定時間経過後、
タイマーの停止を制御する。ピペッタ4の動作に連動し
て厳密な反応時間の管理がなされているため、記憶され
たデータを使って反応のエンドポイント法による測定或
いはレート法による動的な反応測定を厳密に行なうこと
ができる。
The computer 8 determines and controls which of the timers 10 to start by operating the switch 4, and samples the amount of transmitted light of the test sample at an arbitrary timing while observing the count of the timer 10 during the timekeeping operation. It is stored in the memory 11 as data. Also, after a predetermined period of time has passed,
Controls stopping of the timer. Since the reaction time is strictly controlled in conjunction with the operation of the pipettor 4, the memorized data can be used to strictly measure reactions using the endpoint method or dynamic reaction measurements using the rate method. .

コンピュータ8とメモリ11のプログラム動作で複数の
光学系間の特性差を補正し、全光学系を同一の測定項目
に使用することもできる。
It is also possible to correct differences in characteristics between a plurality of optical systems through program operations of the computer 8 and memory 11, and use all optical systems for the same measurement item.

上記構成を有する本発明の測定装置の機能を十分発揮せ
しめるため、上記実施例に於いては、データの数値表示
装置12(LED、CRTディスプレイ等)、データの
数値表示制御スイッチ13、データの印字プリンター1
4、外部コンピュータとの通信装置15を設けている0
表示装置12にCRTディスプレイを用いる場合には、
測定状態表示素子18をこれらディスプレイで置き替え
ることもできる。
In order to fully exhibit the functions of the measuring device of the present invention having the above configuration, in the above embodiment, a data numerical display device 12 (LED, CRT display, etc.), a data numerical display control switch 13, a data printing Printer 1
4. 0 equipped with a communication device 15 for communicating with an external computer
When using a CRT display as the display device 12,
It is also possible to replace the measurement status display element 18 with these displays.

次に、第3図に示す本発明装置の基本的な動作タイミン
グの例を使って、本発明をさらに詳しく説明する。ここ
では、8個の複数試料の並列測定の例を示している。
Next, the present invention will be explained in more detail using an example of the basic operation timing of the apparatus of the present invention shown in FIG. Here, an example of parallel measurement of eight multiple samples is shown.

8ケ所の光学系に対応して8種のタイミングを作成する
8個のタイマー1〜8が準備される。ピペッタ−により
、最初に第1の試料と反応試薬とが混合されるタイミン
グP でタイマーlの計時が開始される。この時点で、
第1図での報知素子18のタイマー1に対応する1つが
点灯する。計時開始後、透過光量が安定した時点T か
ら反応時S 間の終了時点TIK”コンピュータ8がタイマー1の計
時値を見ながら任意のタイミングで透過光量データをメ
モリー1に格納する。また、タイ′ミングT1Eでタイ
マー1は動作停止され、報知素子1Bの対応するものは
消灯する。この動作と並行してタイマー1のタイミング
と無関係に第2の試料が反応試薬と混合されるタイミン
グP2が発生すると、タイマー2の計時が開始される。
Eight timers 1 to 8 are prepared to create eight types of timing corresponding to eight optical systems. A timer 1 is started by the pipetter at timing P when the first sample and the reaction reagent are mixed for the first time. at this point
One of the notification elements 18 in FIG. 1 corresponding to timer 1 lights up. After starting time measurement, the computer 8 stores the transmitted light amount data in the memory 1 at an arbitrary timing while checking the time value of the timer 1. Timer 1 is stopped at timing T1E, and the corresponding notification element 1B is turned off.In parallel with this operation, timing P2 occurs at which the second sample is mixed with the reaction reagent regardless of the timing of timer 1. , timer 2 starts counting.

P2のタイミングでタイマー2に対応する報知素子18
の1つが点灯し、T からT2E迄透過光量が任意のタ
イS ミングでサンプリングされメモリに格納され、”2にで
タイマー2が停止され、報知素子18の対応するものが
消灯する一連の動作が同様に行なわれる。タイマー3以
下についても、タイマー1、タイマー2のタイミングと
は無関係に実験操作者の任意のタイミングで、第3.第
4・・・・・・の試料と反応試薬とをピペッタ−で混合
する毎にタイマー計時スタートタイミングp3.p、・
・・・・・が発生し、測定報知、データサンプリングが
同様に実行される。
Notification element 18 corresponding to timer 2 at timing P2
one of them lights up, the amount of transmitted light from T to T2E is sampled at an arbitrary timing and stored in memory, and at "2", timer 2 is stopped and the corresponding one of the notification elements 18 is turned off. For timers 3 and below, the 3rd, 4th, etc. samples and reaction reagents are pipetted at any timing of the experiment operator, regardless of the timing of timers 1 and 2. - Every time you mix, the timer starts timing p3.p, ・
... occurs, and measurement notification and data sampling are similarly executed.

第9番目の試料が混合される時には、タイマーlの最初
の計時動作は既に終了しており、タイミングP8により
タイマー1による新たな計時、測定シーフェンスが開始
される。以下連続してタイマー2による第10番目試料
の測定、タイマー3による第11番目試料の測定が繰り
返される。この様に、複数の試料を1つのピペッタ−を
使って測定開始し、複数の光学系に振り分けながら並列
測定を行なうことで、各試料毎に厳密な反応時間の管理
ができると同時に、操作者は1つの試料の測定が終了す
る迄次の試料を測定開始することができないという従来
装置での待ち時間を失くすごとができ、複数の試料を効
率よく測定することができるようになる。また、1つの
ピペッタ−で混合動作を繰り返すだけで複数の試料の測
定を起動でき、しかも各起動タイミングは互いに無関係
で独立していることから操作者の都合のよいタイミング
でピペッタ−による混合動作を行なえばよく、操作が非
常に容易になる。また、光学系とタイマーが・複数個あ
るだけで、ピペッタ−と測定電気回路は1つで済むため
、複数個の光度系を並べて測定を行なう場合に比べて非
常に安価に装置を構成することができる。更に、酵素反
応の様に反応時の温度を厳密に制御することが必要な場
合、本発明では複数のキュベツトを保持するホルダーに
1つの温度制御装置を設置すればよく、同様な機能の光
度計を複数個並べるより一層安価に同等の機能を実現す
ることができる。
When the ninth sample is mixed, the first timing operation of the timer 1 has already been completed, and a new timing and measurement sea fencing by the timer 1 is started at timing P8. Thereafter, the measurement of the 10th sample by timer 2 and the measurement of the 11th sample by timer 3 are repeated. In this way, by starting the measurement of multiple samples using one pipettor and performing parallel measurements while distributing them to multiple optical systems, it is possible to strictly control the reaction time for each sample, and at the same time, the operator can It is possible to eliminate the waiting time in conventional apparatuses in which measurement of the next sample cannot be started until measurement of one sample is completed, and it becomes possible to efficiently measure a plurality of samples. In addition, measurement of multiple samples can be started simply by repeating the mixing operation with one pipetter, and since each start-up timing is independent and independent of each other, the operator can perform the mixing operation with the pipetter at a timing convenient for the operator. All you have to do is just do it and it will be very easy to operate. In addition, since only one pipetter and one measurement electric circuit are required with only multiple optical systems and timers, the device can be constructed at a much lower cost than when measuring multiple photometric systems side by side. Can be done. Furthermore, when it is necessary to strictly control the temperature during a reaction such as in an enzyme reaction, the present invention suffices to install one temperature control device in a holder that holds multiple cuvettes, and a photometer with a similar function can be used. It is possible to achieve the same function at a lower cost than by arranging multiple units.

第4図は、具体的に構成された本発明の測定装置の斜視
図を示すもので、12  は測定した試料のデータを表
示する数値表示装置、13  は複数の表示データを切
替える制御スイッチ、IEIは被検試料キュベツトを保
持する温度制御装置付きの測光ホルダー、17は試液吐
出検出スイッチを内蔵したピペッタ−118は現在どの
光学系が測定状態になっているかを報知する素子である
。ここでは1例として8本の被検試料キュベツトの同時
保持を行なう例を示した。ピペッタ−17で試料または
反応試薬を分注するとこの吐出動作がスイッチ4と連動
し、動作中でないタイマーの1つが起動される。
FIG. 4 shows a perspective view of a specifically constructed measuring device of the present invention, in which 12 is a numerical display device for displaying the data of the measured sample, 13 is a control switch for switching between a plurality of display data, and IEI Reference numeral 17 is a photometric holder equipped with a temperature control device for holding a test sample cuvette, and a pipetter 118 having a built-in reagent discharge detection switch is an element that informs which optical system is currently in the measurement state. Here, as an example, eight test sample cuvettes are held simultaneously. When a sample or a reaction reagent is dispensed with the pipettor 17, this discharge operation is linked to the switch 4, and one of the timers that is not in operation is activated.

このタイマーの起動に連動して対応する報知素子18の
うちの1つが点灯するので、そこの測光ホルダーに被検
試料キュベツトをセットし、あとはその報知素子が消灯
する迄放置すれば測定とデータ処理が自動的に終了して
いる。
One of the corresponding notification elements 18 lights up in conjunction with the activation of this timer, so set the test sample cuvette in the photometry holder there, and then leave it until the notification element turns off, and the measurement and data will be taken. Processing has finished automatically.

「発明の効果」 以上述べた如く1本発明によれば、操作者の任意のタイ
ミングに従ってピペッタ−による試液分注を繰り返すだ
けの非常に簡単な操作で、複数の試料を次々に測定開始
することができると同時に各試料の反応時間の厳密な管
理が可能になる。また、測光ホルダーが被検試料キュベ
ツトで一杯になる頃には最初の試料の測定が終了するの
で、その測光ホルダーを再び使用することで、空き時間
なく、非常に効率よく多数の試料を迅速に測定できる。
"Effects of the Invention" As described above, according to the present invention, measurement of multiple samples can be started one after another with a very simple operation of repeating reagent dispensing with a pipettor according to the operator's arbitrary timing. At the same time, it becomes possible to strictly control the reaction time of each sample. In addition, by the time the photometric holder is full of test sample cuvettes, the measurement of the first sample has been completed, so by using the photometric holder again, you can quickly and efficiently measure a large number of samples without any idle time. Can be measured.

また、簡単な構成であるのでこのような多量検体処理装
置が安価に製造できると共に、各試料を独立したタイミ
ングで操作できるため、操作性にも優れている。
Moreover, since the structure is simple, such a large-volume sample processing apparatus can be manufactured at low cost, and since each sample can be operated at independent timing, it has excellent operability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示すブロック図、第2図は
、ピペッタ−に連動して試料と反応試薬との混合時点を
検出するスイッチの例を示すピペッタ−の断面図、 第3図は、本発明の実施例の基本動作タイミング図、 第4図は1本発明の測定装置の斜視図である。 図中。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a sectional view of a pipettor showing an example of a switch that detects the mixing point of a sample and a reaction reagent in conjunction with the pipetter, and FIG. The figure is a basic operation timing diagram of an embodiment of the present invention, and FIG. 4 is a perspective view of a measuring device of the present invention. In the figure.

Claims (1)

【特許請求の範囲】 試料と反応試薬の混合物(被検試料液)の混合・反応開
始後の透過光量の変化を測定する装置に於て、 (1)該被検試料液を収容する複数の試料キュベットを
保持する手段と、 (2)該被検試料キュベットに各々光線を照射し各々の
透過光量を別々に検知する手段と、 (3)前記被検試料の各々の混合・反応開始後の経過時
間を別々に計時する複数のタイマーと、 (4)ピペッターに連動し試料と反応試薬の混合時点を
検出する手段と、 (5)該混合時点の検出に連動して前記複数のタイマー
のうちの動作中でないタイマーの1つを計時開始する手
段と、 (6)計時開始したタイマーに連動してタイマーが計時
状態にあることを報知する手段と、 (7)計時開始したタイマーに連動して任意のタイミン
グで被検試料の透過光量をサンプリングして記憶する手
段と、 を具備し、複数試料の透過光量の時間変化を測定するこ
とを特徴とする透過光測定装置。
[Scope of Claims] In an apparatus for measuring changes in the amount of transmitted light after the start of mixing and reaction of a mixture of a sample and a reaction reagent (test sample liquid), (1) a plurality of means for holding the sample cuvettes; (2) means for irradiating each test sample cuvette with a light beam and separately detecting the amount of transmitted light; and (3) after starting the mixing and reaction of each of the test samples. a plurality of timers that separately measure the elapsed time; (4) a means for detecting the mixing point of the sample and the reaction reagent in conjunction with the pipetter; (6) a means for notifying that the timer is in a timing state in conjunction with the timer that has started counting, (7) a means for notifying that the timer is in a timing state in conjunction with the timer that has started timing; What is claimed is: 1. A transmitted light measuring device comprising: means for sampling and storing the amount of transmitted light of a test sample at an arbitrary timing;
JP62007527A 1987-01-16 1987-01-16 Transmitted light measuring device Expired - Lifetime JP2524728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007527A JP2524728B2 (en) 1987-01-16 1987-01-16 Transmitted light measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007527A JP2524728B2 (en) 1987-01-16 1987-01-16 Transmitted light measuring device

Publications (2)

Publication Number Publication Date
JPS63175749A true JPS63175749A (en) 1988-07-20
JP2524728B2 JP2524728B2 (en) 1996-08-14

Family

ID=11668253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007527A Expired - Lifetime JP2524728B2 (en) 1987-01-16 1987-01-16 Transmitted light measuring device

Country Status (1)

Country Link
JP (1) JP2524728B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076913A1 (en) * 2002-03-13 2003-09-18 Matsushita Electric Industrial Co., Ltd. Method of judging homogenization/reaction completion and method of measuring solution concentration using the same
JP2006266938A (en) * 2005-03-24 2006-10-05 Hamamatsu Photonics Kk Apparatus for measuring luminescence
JP2010203773A (en) * 2009-02-05 2010-09-16 Yokogawa Electric Corp Dispenser
JP2011002379A (en) * 2009-06-19 2011-01-06 Kowa Co Optical reaction measuring instrument and optical reaction measuring method
JP2014052376A (en) * 2012-09-06 2014-03-20 Siemens Healthcare Diagnostics Products Gmbh Adjustment system for transfer system in in-vitro diagnostic system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391689U (en) * 1976-12-25 1978-07-26
JPS55155235A (en) * 1979-05-22 1980-12-03 Aloka Co Ltd Analysis for trace component in test piece
JPS58193465A (en) * 1982-02-09 1983-11-11 ロ−ン−プ−ラン・エス・ア Automating device executing biological, biochemical or physicochemical determination operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391689U (en) * 1976-12-25 1978-07-26
JPS55155235A (en) * 1979-05-22 1980-12-03 Aloka Co Ltd Analysis for trace component in test piece
JPS58193465A (en) * 1982-02-09 1983-11-11 ロ−ン−プ−ラン・エス・ア Automating device executing biological, biochemical or physicochemical determination operation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076913A1 (en) * 2002-03-13 2003-09-18 Matsushita Electric Industrial Co., Ltd. Method of judging homogenization/reaction completion and method of measuring solution concentration using the same
US7476544B2 (en) 2002-03-13 2009-01-13 Panasonic Corporation Method of judging homogenization/reaction completion and method of measuring solution concentration using the same
JP2006266938A (en) * 2005-03-24 2006-10-05 Hamamatsu Photonics Kk Apparatus for measuring luminescence
JP4545622B2 (en) * 2005-03-24 2010-09-15 浜松ホトニクス株式会社 Luminescence measuring device
JP2010203773A (en) * 2009-02-05 2010-09-16 Yokogawa Electric Corp Dispenser
JP2011002379A (en) * 2009-06-19 2011-01-06 Kowa Co Optical reaction measuring instrument and optical reaction measuring method
JP2014052376A (en) * 2012-09-06 2014-03-20 Siemens Healthcare Diagnostics Products Gmbh Adjustment system for transfer system in in-vitro diagnostic system

Also Published As

Publication number Publication date
JP2524728B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
JP4969060B2 (en) Automatic analyzer
JP2616360B2 (en) Blood coagulation analyzer
JPH0619351B2 (en) Latex agglutination reaction measuring device
US10267817B2 (en) Automatic analysis apparatus
JPH05297007A (en) Automatic analysis device
CA2392943A1 (en) Chemistry system for a clinical analyzer
US11808671B2 (en) Automatic analysis device
JP2524728B2 (en) Transmitted light measuring device
JPH0723896B2 (en) Chemical analyzer
JP2001512827A (en) Detector
US11971426B2 (en) Automatic analysis device
JP2018017603A (en) Autoanalyzer
JP2616359B2 (en) Blood coagulation analyzer
JP2001194371A (en) Chemical analyzer
JP2533527B2 (en) Automatic analyzer
JP2508115B2 (en) Automatic biochemical analyzer
JPS62217163A (en) Automatic analyzing instrument
WO2024075511A1 (en) Automated analysis device
US11579159B2 (en) Automatic analysis device
JP2001004636A (en) Automatic analyzer
JPH0710280Y2 (en) Quantitative analyzer
EP0497019A1 (en) Automatic immunological analysing system
JPH046467A (en) Automatic analyser
JPH0217449A (en) Automatic apparatus for chemical analysis
JPH067054U (en) Bubble detector in automatic analyzer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term