JPS63172482A - Optical integrated element - Google Patents

Optical integrated element

Info

Publication number
JPS63172482A
JPS63172482A JP62003304A JP330487A JPS63172482A JP S63172482 A JPS63172482 A JP S63172482A JP 62003304 A JP62003304 A JP 62003304A JP 330487 A JP330487 A JP 330487A JP S63172482 A JPS63172482 A JP S63172482A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
photodetector
receiving element
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62003304A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
洋 小川
Hideaki Horikawa
英明 堀川
Masao Kobayashi
正男 小林
Saeko Oshiba
小枝子 大柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62003304A priority Critical patent/JPS63172482A/en
Publication of JPS63172482A publication Critical patent/JPS63172482A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To realize an optical integrated element, in which a semiconductor laser and a photodetector are brought near to each other and integrated onto the same substrate and which has high performance, by constituting a light- receiving surface in the photodetector in a plurality of the surfaces forming a Brewster angle to incident beams from the semiconductor laser. CONSTITUTION:A groove 5 in width of approximately 20mum is shaped to a semiconductor laser, and one of the semiconductor laser is operated as a semiconductor laser 2 and the other as a photodetector 3. The groove 5 is used as the reflecting surface of the semiconductor laser 2 formed vertically to the optical axis of the laser on the semiconductor laser 2 side at that time. The photodetector 3 side of the groove 5 is etched so as to shape a curve group. The reflectivity of the photodetector 3 reaches to zero, and incident beams from the semiconductor laser 2 can be absorbed into a crystal efficiently. Accordingly, a plurality of light-receiving surfaces are formed, thus shortening distances up to the light-receiving surfaces from a light-emitting surface, then improving coupling efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光集積化素子に関し、特に半導体レーザと受光
素子とが同一半導体基板上に形成された光集積化素子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical integrated device, and particularly to an optical integrated device in which a semiconductor laser and a light receiving element are formed on the same semiconductor substrate.

(従来の技術) 光通信等の光源として種々の構造の化合物半導体レーザ
が用いられ、またこのような半導体レーザの光出力を検
出するため、半導体レーザを形成した基板と同一基板上
に受光素子を設け、この受光素子によシ半導体レーザの
光出力を検出して、半導体レーザの発光出力の適否を管
理することができる光集積化素子が、文献エレクトロニ
クス・L/ / −ス(ELECTRONIC8LET
TER8) 、 1980−4−24゜Vol、 16
.49 、 p、 p、 342−343K 4記載サ
レテイるように、提案されている。
(Prior art) Compound semiconductor lasers with various structures are used as light sources for optical communications, etc., and in order to detect the optical output of such semiconductor lasers, a light receiving element is installed on the same substrate as the substrate on which the semiconductor laser is formed. An optical integrated element that can control the suitability of the light output of the semiconductor laser by detecting the light output of the semiconductor laser using the light receiving element is disclosed in the literature Electronics L//-S (ELECTRONIC8LET).
TER8), 1980-4-24゜Vol, 16
.. 49, p, p, 342-343K 4.

通常の光集積化素子は、共振器と垂直方向に数十μm@
の溝をエツチングによ多形成しこの溝によシ分離された
2つのダイオードの一方を半導体レーザ、他方を受光素
子として動作させる。すなわち、前者に順方向バイアス
、後者に逆方向バイアスを印加する事によシそれぞれ半
導体レーザ、受光素子として動作させる事ができる。
A typical optical integrated device is several tens of μm in the direction perpendicular to the resonator.
A plurality of grooves are formed by etching, and one of the two diodes separated by the groove operates as a semiconductor laser and the other as a light receiving element. That is, by applying a forward bias to the former and a reverse bias to the latter, they can be operated as a semiconductor laser and a light receiving element, respectively.

このような構成では同一基板上に半導体レーザと受光素
子とを作製するため、それぞれを個別の素子で構成する
場合に比べ全体として小型にでき。
In such a structure, since the semiconductor laser and the light receiving element are manufactured on the same substrate, the overall size can be made smaller than when each is formed from individual elements.

また半導体レーザの光軸と受光部が一致しているため位
置合わせが不要であるという利点がある。
Another advantage is that alignment is not required because the optical axis of the semiconductor laser and the light receiving section are aligned.

また、通常の受光素子では入射光を効率よく結晶内で吸
収させるため、受光面に反射防止膜をつける。(反射防
止膜がない場合InP等の半導体では一般に30%程度
の反射損失がある。)(発明が解決しようとする問題点
) しかしながら、上記構成の光集積化素子では、半導体レ
ーザと受光素子とは数十μm幅の溝で分離されているの
で、受光素子の溝部分の受光面に反射防止膜を形成する
ことが困難である。このため受光感度が低下してしまう
という問題点がある。
Furthermore, in order to efficiently absorb incident light within the crystal of a normal light receiving element, an antireflection film is applied to the light receiving surface. (If there is no antireflection film, semiconductors such as InP generally have a reflection loss of about 30%.) (Problem to be solved by the invention) However, in the optical integrated device with the above configuration, the semiconductor laser and the light receiving element are separated by grooves having a width of several tens of micrometers, so it is difficult to form an antireflection film on the light receiving surface of the groove portion of the light receiving element. Therefore, there is a problem that the light receiving sensitivity is reduced.

また受光面からの反射光が半導体レーザの特性を劣化さ
せる原因となる。
In addition, reflected light from the light receiving surface causes deterioration of the characteristics of the semiconductor laser.

本発明は以上述べた受光素子、の受光面での反射の問題
を除去し、同−半導体基板上忙半導体レーザと受光素子
とを集積化した高性能な光集積化素子を提供することを
目的とする。
An object of the present invention is to eliminate the problem of reflection on the light-receiving surface of the light-receiving element described above, and to provide a high-performance optical integrated element in which a semiconductor laser and a light-receiving element are integrated on the same semiconductor substrate. shall be.

(問題点を解決するための手段) 本発明は前記問題点を解決するために、半導体レーザと
モニタ用の受光素子とが同一半導体基板上に形成された
光集積化素子において、この受光素子の受光面を、前記
半導体レーザからの入射光に対してブリュースター角を
なす複数の面で構成したものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides an optical integrated device in which a semiconductor laser and a monitoring light-receiving element are formed on the same semiconductor substrate. The light receiving surface is composed of a plurality of surfaces forming a Brewster angle with respect to the incident light from the semiconductor laser.

(作用) 本発明によれば、以上のように、同一半導体基板上に半
導体レーザと、受光面がこの半導体レーザからの入射光
に対してブリュースター角をなす複数の面で構成される
受光素子とを形成しているので、半導体レーザからの出
力光は受光素子部分に常にブリュースター角で入射する
ことになシ、入射光を効率よく結晶内で吸収させること
ができるものである。さらに、この受光面を複数設ける
ことによシ、発光部から受光面までの距離を短くでき、
結合効率を大きくすることができる。
(Function) According to the present invention, as described above, a light-receiving element is formed of a semiconductor laser and a plurality of surfaces whose light-receiving surface forms a Brewster angle with respect to the incident light from the semiconductor laser on the same semiconductor substrate. As a result, the output light from the semiconductor laser does not always enter the light receiving element portion at Brewster's angle, and the incident light can be efficiently absorbed within the crystal. Furthermore, by providing multiple light-receiving surfaces, the distance from the light-emitting part to the light-receiving surface can be shortened.
The coupling efficiency can be increased.

(実施例) 第1図(−)及び(b)は、それぞれ本発明の詳細な説
明するための光集積化素子の斜視図及び平面図であシ、
以下図面を用いて説明する。
(Example) FIGS. 1(-) and 1(b) are a perspective view and a plan view, respectively, of an optical integrated device for detailed explanation of the present invention.
This will be explained below using the drawings.

第1図(a)において、lはInP等の化合物半導体基
板、2は半導体レーザ、3は半導体レーザ2からの入射
光をモニタする受光素子、4は電極、5は溝である。通
常の半導体レーザ忙、第1図(、)に示すような形状の
20μm程度幅の溝5を形成し。
In FIG. 1(a), 1 is a compound semiconductor substrate such as InP, 2 is a semiconductor laser, 3 is a light receiving element for monitoring the incident light from the semiconductor laser 2, 4 is an electrode, and 5 is a groove. Using a conventional semiconductor laser, a groove 5 having a width of about 20 μm and having a shape as shown in FIG. 1 (2) is formed.

一方を半導体レーザ2、他方を受光素子3として動作さ
せる。ここで、溝5は半導体レーザ2側ではレーザの光
軸に垂直に形成され半導体レーザ2の反射面として用い
られる。また、溝5の受光素子3側は次式(1)で与え
られる曲線群となるようにエツチングを行なう。
One is operated as a semiconductor laser 2 and the other as a light receiving element 3. Here, the groove 5 is formed perpendicular to the optical axis of the laser on the semiconductor laser 2 side and is used as a reflection surface of the semiconductor laser 2. Further, the groove 5 on the light receiving element 3 side is etched so as to form a group of curves given by the following equation (1).

。 r = aie”   (i =1 s 2 * 3・
”)  ・・・(1)ここで第1図(b)に示すように
、rは半導体レーザの出射点からの距離、θは半導体レ
ーザのストライブ方向と出射光とのなす角、nは受光素
子3の光吸収層の半導体の屈折率、町は定数とする。こ
の時、受光素子の材料に対するブリュースター角をON
として 一〇、=n              ・・・(2)
の関係が成立すれば半導体レーザ2からの出力光は受光
素子3部分に常にブリュースター角で入射することにな
シ、原理的に反射率は0となる。例えば受光部をInG
aAsP (パンドギ−w y 7’ 0.95eV)
とすると屈折率は3.51、すなわちb=3.51とす
ればよい。この時θ、=74°となる。このときのエツ
チングは、従来例の場合と同様、HCl :CH3CO
0H: H2O2=1 : 2 : 1の混合エツチン
グを用い、15°Cでエツチング、水洗、乾燥をくシ返
す多段エツチング法を用いてもよいし、リアクティブイ
オンエツチング、プラズマエツチング法等を用いてもよ
い。
. r = aie” (i = 1 s 2 * 3・
(1) As shown in Figure 1(b), r is the distance from the emission point of the semiconductor laser, θ is the angle between the stripe direction of the semiconductor laser and the emitted light, and n is The refractive index of the semiconductor of the light absorption layer of the light-receiving element 3 is a constant.At this time, the Brewster angle with respect to the material of the light-receiving element is ON.
As 10, = n...(2)
If the following relationship holds true, the output light from the semiconductor laser 2 will always be incident on the light receiving element 3 at the Brewster's angle, and the reflectance will be zero in principle. For example, the light receiving part is made of InG.
aAsP (pandogi-w y 7' 0.95eV)
Then, the refractive index should be 3.51, that is, b=3.51. At this time, θ=74°. Etching at this time was performed using HCl:CH3CO as in the conventional case.
A multi-stage etching method using a mixed etching ratio of 0H:H2O2=1:2:1 and repeating etching, washing with water, and drying at 15°C may be used, or a reactive ion etching method, a plasma etching method, etc. may be used. Good too.

以上のように本発明の実施例によれば、半導体レーザ2
と受光素子3の集積化において、従来半導体レーザのス
トライプと垂直に溝を切っていたのに対し、半導体レー
ザ2側を垂直、受光素子3側を入射光に対してブリュー
スター角をなすように溝5を形成しているので、受光素
子3は半導体レーザ2からの入射光を効率よく結晶内で
吸収することができる。さらに、このように複数の受光
面を形成することによシ、発光部から受光面までの距離
を短くできるため、結合効率を大きくすることができる
。さらに、本発明の実施例忙よれば、従来の製造方法を
用いることができ、高性能な光集積化素子を容易に形成
することができる。
As described above, according to the embodiment of the present invention, the semiconductor laser 2
In integrating the light receiving element 3 and the semiconductor laser stripe, conventionally the grooves were cut perpendicular to the stripes of the semiconductor laser, but the grooves were cut perpendicularly to the semiconductor laser 2 side and at a Brewster's angle to the light receiving element 3 side with respect to the incident light. Since the groove 5 is formed, the light receiving element 3 can efficiently absorb the incident light from the semiconductor laser 2 within the crystal. Furthermore, by forming a plurality of light-receiving surfaces in this manner, the distance from the light-emitting section to the light-receiving surface can be shortened, so that the coupling efficiency can be increased. Further, according to the embodiments of the present invention, conventional manufacturing methods can be used, and a high-performance integrated optical device can be easily formed.

(発明の効果) 以上のように本発明の構造によれば、受光部分における
反射がなくなり、受光素子の感度が向上するとともに反
射光による半導体レーザの特性劣化を除去でき、半導体
レーザと受光素子とを近接して同一基板上に集積化した
高性能な光集積化素子を実現することができる。
(Effects of the Invention) As described above, according to the structure of the present invention, reflection at the light-receiving part is eliminated, the sensitivity of the light-receiving element is improved, and characteristic deterioration of the semiconductor laser due to reflected light can be eliminated, and the semiconductor laser and the light-receiving element are It is possible to realize a high-performance optical integrated device in which these elements are closely integrated on the same substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)及び(b)は、それぞれ本発明の詳細な説
明するための光集積化素子の斜視図及び平面図である・ 1・・・化合物半導体基板、2・・・半導体レーザ、3
・・・受光素子、4・・・電極、5・・・溝。 特許出願人  沖電気工業株式会社 ((1)斜視図 (b)′+面凹 突紗11t?MtbAsa&1ld4siis!第1図
1(a) and (b) are a perspective view and a plan view, respectively, of an optical integrated device for explaining the present invention in detail. 1... Compound semiconductor substrate, 2... Semiconductor laser, 3
... Light receiving element, 4... Electrode, 5... Groove. Patent applicant: Oki Electric Industry Co., Ltd. ((1) Perspective view (b)' + Concave surface gusset 11t? MtbAsa & 1ld4siis! Figure 1

Claims (1)

【特許請求の範囲】 半導体レーザと受光素子とが同一半導体基板上に形成さ
れた光集積化素子において、 前記受光素子の受光面が、前記半導体レーザからの入射
光に対してブリュースター角をなす複数の面で構成され
てなることを特徴とする光集積化素子。
[Claims] In an optical integrated device in which a semiconductor laser and a light receiving element are formed on the same semiconductor substrate, a light receiving surface of the light receiving element forms a Brewster angle with respect to the incident light from the semiconductor laser. An optical integrated device characterized by being composed of a plurality of surfaces.
JP62003304A 1987-01-12 1987-01-12 Optical integrated element Pending JPS63172482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62003304A JPS63172482A (en) 1987-01-12 1987-01-12 Optical integrated element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003304A JPS63172482A (en) 1987-01-12 1987-01-12 Optical integrated element

Publications (1)

Publication Number Publication Date
JPS63172482A true JPS63172482A (en) 1988-07-16

Family

ID=11553618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003304A Pending JPS63172482A (en) 1987-01-12 1987-01-12 Optical integrated element

Country Status (1)

Country Link
JP (1) JPS63172482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105985A (en) * 1989-09-20 1991-05-02 Matsushita Electron Corp Semiconductor photodetector and optical semiconductor device using same
WO1997048137A1 (en) * 1996-06-13 1997-12-18 The Furukawa Electric Co., Ltd. Semiconductor waveguide type photodetector and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105985A (en) * 1989-09-20 1991-05-02 Matsushita Electron Corp Semiconductor photodetector and optical semiconductor device using same
WO1997048137A1 (en) * 1996-06-13 1997-12-18 The Furukawa Electric Co., Ltd. Semiconductor waveguide type photodetector and method for manufacturing the same
US6177710B1 (en) 1996-06-13 2001-01-23 The Furukawa Electric Co., Ltd. Semiconductor waveguide type photodetector and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US3996492A (en) Two-dimensional integrated injection laser array
JP2618875B2 (en) Waveguide
JPS6079786A (en) Bistable laser
EP0413365A2 (en) Method of manufacturing a diffraction grating
US5438208A (en) Mirror coupled monolithic laser diode and photodetector
US4648096A (en) Distributed feedback semiconductor laser
US6246097B1 (en) Semiconductor photodetector
JPS63172482A (en) Optical integrated element
US5639387A (en) Method for etching crystalline bodies
JPH01164077A (en) Light-emitting diode and its manufacture
JP3754995B2 (en) Semiconductor optical device
JPS59103394A (en) Laser diode with detector
JPS5861692A (en) Semiconductor laser device
JP2002323629A (en) Optical waveguide element and semiconductor laser beam device
JPS6376389A (en) Optical integrated element
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JP2667168B2 (en) Edge-receiving photodiode
KR0149775B1 (en) Laser diode for optoelectronic integrated circuit and its manufacture method
US20020089670A1 (en) Photodetector for ring laser gyros
JPH02260679A (en) Semiconductor laser device
JPH07221342A (en) Integrated light receiving/emitting element and its manufacture
JPS63278290A (en) Semiconductor laser and its use
JPS61290788A (en) Semiconductor laser device and manufacture thereof
JPS62221182A (en) Distributed reflection laser
JPH0247888A (en) Manufacture of semiconductor laser