JPS5861692A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS5861692A
JPS5861692A JP15996881A JP15996881A JPS5861692A JP S5861692 A JPS5861692 A JP S5861692A JP 15996881 A JP15996881 A JP 15996881A JP 15996881 A JP15996881 A JP 15996881A JP S5861692 A JPS5861692 A JP S5861692A
Authority
JP
Japan
Prior art keywords
laser
wavelength
diffraction grating
semiconductor laser
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15996881A
Other languages
Japanese (ja)
Inventor
Shigeyuki Akiba
重幸 秋葉
Katsuyuki Uko
宇高 勝之
Kazuo Sakai
堺 和夫
Yuichi Matsushima
松島 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP15996881A priority Critical patent/JPS5861692A/en
Publication of JPS5861692A publication Critical patent/JPS5861692A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize stable single wavelength oscillation by disposing the convergent lens which outputs the parallel light and the optical waveguide material which has the diffraction grating at the inclined end surface. CONSTITUTION:An output beam of laser 9 is converted to the parallel beam by the convergent lens 11. The parallel beam advances in parallel within the optical waveguide rod 12 and reflected by the diffraction grating 8. Only the light beam which satisfies the wavelength relation determined by the refractive index of rod 12, period of grating 8 and incident angle is reflected in the same direction as the incident beam and then returned to the laser 9. Therefore, when observed from the laser element, the reflectivity is large only for such wavelength and the oscillation threshold level becomes small and thereby single wavelength operation in the vicinity of such wavelength can be realized. Moreover, further excellent efficiency can be obtained by providing the reflection film 15 to the grating 8 while mounting the reflection preventing films 13, 14 to the end of laser 9, lens 11 and rod 12, etc.

Description

【発明の詳細な説明】 本発明は半導体レーザの発振波長の安定化に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to stabilizing the oscillation wavelength of a semiconductor laser.

半導体レーザは光情報処理及び光ファイバ通イ1コの分
野の発光源として広く用いられている。これらの応用に
おいて、現状ではいわゆる光の強度のみを利用しており
、光の持つ本来的な特徴、すなわち、超広帯域性は生か
されていない。その理由は、通常の半導体レーザから出
射される光の周波数が極めて不安定なためである。特に
、通信の目的等で高速パルス動作させた場合の不安定性
は著しい。
Semiconductor lasers are widely used as light emitting sources in the fields of optical information processing and optical fiber communication. Currently, in these applications, only the so-called intensity of light is used, and the original characteristic of light, that is, its ultra-broadband nature, is not utilized. The reason for this is that the frequency of light emitted from a normal semiconductor laser is extremely unstable. In particular, instability is significant when high-speed pulse operation is performed for communication purposes or the like.

このような発振波長の不安定性は、通常の半畳体レーザ
が結晶の一対のへき開面を共振器として利用しており、
この共振器が何らの波長選択性をも有していないことに
起因している。従って、発振波長の安定化を図るために
は、何らかの方法で共振器に波長選択性を持たせる必要
がある。
This instability in the oscillation wavelength is caused by the fact that normal semiconvoluted lasers use a pair of cleavage planes in the crystal as a resonator.
This is due to the fact that this resonator does not have any wavelength selectivity. Therefore, in order to stabilize the oscillation wavelength, it is necessary to impart wavelength selectivity to the resonator by some method.

この目的で、2重共振器構造のレーザや回折格子を内装
した構造のレーザが提案され、試作も行なわれている。
For this purpose, lasers with a double resonator structure and lasers with a structure incorporating a diffraction grating have been proposed, and prototypes are being produced.

このうち、2重共振器構造では、詳細な波長の設定が因
難な上に、本質的に多波長発振の可能性を持っている。
Among these, the dual resonator structure requires detailed wavelength setting and inherently has the possibility of multi-wavelength oscillation.

一方、回折格子をンー内部あるいは外部に〜施した場合
は、回折格子がかなり鋭い波長選択性を有しているため
、完全な単一波長発振が可能でその安定性も極めて高い
On the other hand, when a diffraction grating is applied internally or externally, since the diffraction grating has a fairly sharp wavelength selectivity, complete single wavelength oscillation is possible and its stability is extremely high.

回折格子をレーザの内部に取り付けた例として、第1図
1alのような分布帰還形レーザやfblのような分布
反射形レーザが実験的に試作されており、高い波長安定
度が得られている。第1図1alおよびlblにおいて
、1は例えばInGa As Pの如き発光層または活
性層、2,3.4は例えばInPの如きクラッド層、5
は例えばInGaAsPの如き出力取出層、6゜7は電
極、8は回折格子である。しかるに、このようなレーザ
は製作が困難な上に、構造上信頼性に問題を残す可能性
がある。
As examples of attaching a diffraction grating inside a laser, a distributed feedback laser as shown in Fig. 1al and a distributed reflection laser as shown in FBL have been experimentally produced, and high wavelength stability has been obtained. . In FIGS. 1al and lbl, 1 is a light-emitting layer or active layer such as InGaAsP, 2, 3.4 is a cladding layer such as InP, and 5 is a cladding layer such as InP.
is an output extraction layer such as InGaAsP, 6.7 is an electrode, and 8 is a diffraction grating. However, such lasers are difficult to manufacture and may pose problems in terms of structural reliability.

一方、回折格子を外部に設ける場合は、従来では第2図
のようにレンズ等を介するためかなり大がかりになり、
光学系が不安定になるばかりでなく、半導体レーザの持
つ小型であるという特徴が生かされなくなる。第2図に
おい、て、8は回折格子、9は例えばInGaAsP/
InPレーザの如き半導体レーザ、lOはレンズである
On the other hand, when providing a diffraction grating externally, conventionally it is quite large-scale as it requires a lens etc. as shown in Figure 2.
Not only will the optical system become unstable, but the compact feature of semiconductor lasers will no longer be utilized. In FIG. 2, 8 is a diffraction grating, and 9 is, for example, InGaAsP/
In a semiconductor laser such as an InP laser, IO is a lens.

本発明は、上述のような従来技術の難点を解決するため
Kなされた半導体レーザ装置である。
The present invention is a semiconductor laser device designed to solve the above-mentioned difficulties of the prior art.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

第3図は本発明の一例を示したものである。第3図にお
いて、8は回折格子、9は半導体レーザ、11は円柱あ
るいは角柱状集束性レンズ、12は円柱あるいは角柱状
光導波棒の如き光導波体、13 、14は反射防止膜、
15は反射膜である。円柱状あるいは角柱状の集束性レ
ンズ11は、この例では約1/4ピツチであり、従っで
ある角度をもっレーザ9の出力光は平行光に変換される
。ここで、必ずしも1  +            
         1  。
FIG. 3 shows an example of the present invention. In FIG. 3, 8 is a diffraction grating, 9 is a semiconductor laser, 11 is a cylindrical or prismatic focusing lens, 12 is an optical waveguide such as a cylindrical or prismatic optical waveguide rod, 13 and 14 are antireflection films,
15 is a reflective film. The cylindrical or prismatic focusing lens 11 has a pitch of about 1/4 in this example, so that the output light of the laser 9 at a certain angle is converted into parallel light. Here, not necessarily 1 +
1.

約−ヒツチでなくても、約m +aヒ、チ(m ” O
r1.2,3・・・・・・)でも平行光が得られる。モ
行元はガラスあるいは石英等よりなり集束性を有しない
尤導波棒12内ではそのまま平行に進行し、回折格r8
によって反射される。回折格子8で反射される元は、元
導波棒12の屈折率をn1回折格子8の周期を71人射
角をθとすると、理想的な場合λ。−2n A sin
θの波長関係を満足するものだけが入射と同じ方向に反
射され、レーザ9内へ帰還される。
Even if it is not about - hit, about m + ahi, chi (m ” O
Parallel light can also be obtained with r1.2, 3...). The waveguide 12, which is made of glass or quartz and has no focusing property, travels in parallel as it is, and the diffraction grating r8
reflected by. The element reflected by the diffraction grating 8 is λ in an ideal case, where the refractive index of the original waveguide 12 is n1, the period of the diffraction grating 8 is 71, and the angle of incidence is θ. -2n A sin
Only those that satisfy the wavelength relationship θ are reflected in the same direction as the incident light and returned into the laser 9.

従って、レーザから見た場合この波長に対してのみ反射
率が大きく、従って、発振しきい値も小さくなり、この
波長付近での単一波長動作が実現される。一方、大きさ
の点から見ると、集束性レンズ11も光導波棒12もと
もに数量の長さで充分であるため、3つの部品全体の大
きさを10w以下にすることは充分可能である。従って
パッケージングも行うことができる。また、同図に示し
たように、回折格子8上に金の蒸着等により反射膜15
、レーザ9端面、集束性レンズ11、先導波棒12等に
反射防止膜13.14を施せば、一層効果的となる。
Therefore, when viewed from the laser, the reflectance is large only for this wavelength, and therefore the oscillation threshold is also small, realizing single wavelength operation around this wavelength. On the other hand, in terms of size, both the focusing lens 11 and the optical waveguide rod 12 are sufficient in length, so it is quite possible to reduce the size of the three parts as a whole to 10W or less. Therefore, packaging can also be performed. Further, as shown in the figure, a reflective film 15 is formed on the diffraction grating 8 by vapor deposition of gold or the like.
If antireflection coatings 13 and 14 are applied to the end face of the laser 9, the focusing lens 11, the waveguide rod 12, etc., the effect will be even more effective.

さらに、本発明は、半導体レーザは通常のへき開面を利
用したものであるため、信頼性を損う問題も生じない。
Furthermore, since the semiconductor laser of the present invention utilizes a normal cleavage plane, there is no problem of impairing reliability.

以上説明したように本発明によれば安定な単一波長発振
を行う半導体レーザ装置が得られるうえ、信頼性にも優
れ、かつ、半導体レーザの有する小型な特徴もそのまま
保持される。゛従って、本発明のレーザは低損失光ファ
イバ通信の発光層として極めて有望であり、長中継距離
かつ広帯域な元ファイバ通信の実現のためその有用性は
大きい。
As described above, according to the present invention, it is possible to obtain a semiconductor laser device that performs stable single wavelength oscillation, which is also excellent in reliability, and maintains the compact characteristics of the semiconductor laser. Therefore, the laser of the present invention is extremely promising as a light-emitting layer for low-loss optical fiber communications, and is highly useful for realizing long-distance and wide-band original fiber communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1al 、 (blは回折格子を内装した従来の
半導体レーザの例を示す縦断面図、第2図はレンズと回
折格子とを組み合わせた外部回折格子付レーザの従来例
を示す側面略図、第3図は本発明の一実施例を示す側面
略図である。 1・・・発光層または活性層(例えばInGaAsP/
InP系のレーザではInGaAsP )、  2 、
3 、4−・・クラッド層(例えばInP)、5・・・
出力取出層(例えばInGaAa P )、 6 、7
 ・・・電極、 8・・・回折格子、 9・・・半導体
レーザ(例えばInG aAsP/Inpレーザ)、1
0 ・V 7ズ、 11 ・・・円柱あるいは角柱状集
束性レンズ、 12・・・円柱−あるいは角柱状光導波
棒、13.14・・・反射防止膜、 15・・・反射膜
1al, (bl is a vertical cross-sectional view showing an example of a conventional semiconductor laser equipped with an internal diffraction grating; FIG. 2 is a schematic side view showing a conventional example of a laser with an external diffraction grating that combines a lens and a diffraction grating; Fig. 3 is a schematic side view showing one embodiment of the present invention. 1... Emitting layer or active layer (for example, InGaAsP/
For InP-based lasers, InGaAsP), 2,
3, 4-... cladding layer (e.g. InP), 5...
Output extraction layer (e.g. InGaAa P), 6, 7
...electrode, 8...diffraction grating, 9...semiconductor laser (e.g. InGaAsP/Inp laser), 1
0・V7zu, 11... Cylindrical or prismatic focusing lens, 12... Cylindrical or prismatic optical waveguide rod, 13.14... Anti-reflection film, 15... Reflective film.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体レーザと、平行光を出力する集束性レンズ
と、一方の端面が光軸に対して傾斜しかつその傾斜した
端面上に回折格子を有する光導波体とが、順次光軸が#
1ぼ一致するように近接又は接着されて配置された半導
体レーザ装置。
(1) A semiconductor laser, a focusing lens that outputs parallel light, and an optical waveguide whose one end surface is inclined with respect to the optical axis and which has a diffraction grating on the inclined end surface are sequentially arranged so that the optical axis is #
Semiconductor laser devices arranged close to each other or bonded to each other so as to coincide with each other.
(2)前記の回折格子を有する端面上には反射膜を備え
たことを特徴とする特許請求の範囲第1項記載の半導体
レーザ装置。
(2) The semiconductor laser device according to claim 1, further comprising a reflective film on the end face having the diffraction grating.
(3)前記半導体レーザと前記集束性レンズと前記光導
波体との互いに近接又は接着された端面上には反射防止
膜を備えたことを特徴とする特許請求の範囲第1項また
は第2項記載の半導体レーザ装置。
(3) An antireflection film is provided on the end faces of the semiconductor laser, the focusing lens, and the optical waveguide that are close to each other or bonded to each other. The semiconductor laser device described.
JP15996881A 1981-10-07 1981-10-07 Semiconductor laser device Pending JPS5861692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15996881A JPS5861692A (en) 1981-10-07 1981-10-07 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15996881A JPS5861692A (en) 1981-10-07 1981-10-07 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS5861692A true JPS5861692A (en) 1983-04-12

Family

ID=15705099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15996881A Pending JPS5861692A (en) 1981-10-07 1981-10-07 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS5861692A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100494A (en) * 1983-11-05 1985-06-04 Fujitsu Ltd Semiconductor light emitting device
JPS62230074A (en) * 1986-03-31 1987-10-08 Matsushita Electric Ind Co Ltd Frequency stabilized light source
EP0262435A2 (en) * 1986-09-29 1988-04-06 Siemens Aktiengesellschaft Narrow-band laser transmitter with an external resonator, the output power being extractable from the resonator
JPS63114293A (en) * 1986-10-31 1988-05-19 Matsushita Electric Ind Co Ltd Frequency stabilized light source
JPS63129686A (en) * 1986-11-20 1988-06-02 Matsushita Electric Ind Co Ltd Light feedback type emission device
EP0550095A2 (en) * 1991-12-30 1993-07-07 Koninklijke Philips Electronics N.V. Device in which electromagnetic radiation is raised in frequency and apparatus for optically scanning an information plane, comprising such a device
EP0582958A2 (en) * 1992-08-07 1994-02-16 Matsushita Electric Industrial Co., Ltd. A semiconductor laser device, an optical device and a method of producing the same
WO1998047032A3 (en) * 1997-04-11 1999-03-04 Digital Optics Corp Optical transmission systems including optical rods with three-dimensional patterns thereon and related structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991386A (en) * 1972-12-29 1974-08-31
JPS5384583A (en) * 1976-12-30 1978-07-26 Ibm Laser having lattice coupled waveguide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991386A (en) * 1972-12-29 1974-08-31
JPS5384583A (en) * 1976-12-30 1978-07-26 Ibm Laser having lattice coupled waveguide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100494A (en) * 1983-11-05 1985-06-04 Fujitsu Ltd Semiconductor light emitting device
JPS62230074A (en) * 1986-03-31 1987-10-08 Matsushita Electric Ind Co Ltd Frequency stabilized light source
EP0262435A2 (en) * 1986-09-29 1988-04-06 Siemens Aktiengesellschaft Narrow-band laser transmitter with an external resonator, the output power being extractable from the resonator
JPS63114293A (en) * 1986-10-31 1988-05-19 Matsushita Electric Ind Co Ltd Frequency stabilized light source
JPS63129686A (en) * 1986-11-20 1988-06-02 Matsushita Electric Ind Co Ltd Light feedback type emission device
EP0550095A2 (en) * 1991-12-30 1993-07-07 Koninklijke Philips Electronics N.V. Device in which electromagnetic radiation is raised in frequency and apparatus for optically scanning an information plane, comprising such a device
EP0582958A2 (en) * 1992-08-07 1994-02-16 Matsushita Electric Industrial Co., Ltd. A semiconductor laser device, an optical device and a method of producing the same
EP0582958A3 (en) * 1992-08-07 1994-07-27 Matsushita Electric Ind Co Ltd A semiconductor laser device, an optical device and a method of producing the same
US5373519A (en) * 1992-08-07 1994-12-13 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device, an optical device and a method of producing the same
WO1998047032A3 (en) * 1997-04-11 1999-03-04 Digital Optics Corp Optical transmission systems including optical rods with three-dimensional patterns thereon and related structures

Similar Documents

Publication Publication Date Title
US4911516A (en) Optical device with mode selecting grating
US5710847A (en) Semiconductor optical functional device
CN1147041C (en) Laser device
US5995692A (en) Light emitting device module
JPH0527130A (en) Optical waveguide device
JPS63205984A (en) Surface emitting type semiconductor laser
JPS5861692A (en) Semiconductor laser device
US4648096A (en) Distributed feedback semiconductor laser
CA1284205C (en) High-power, fundamental transverse mode laser
JP4106210B2 (en) Optical semiconductor device
US4787086A (en) High-power, fundamental transverse mode laser
JP4766775B2 (en) Terahertz light generation device and terahertz light generation method
JPH0720359A (en) Optical device
US5943349A (en) Variable wavelength laser device
US4811351A (en) Semiconductor laser array device
JPH01283892A (en) Semiconductor laser element
JPS60207389A (en) Semiconductor laser device
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JPS622217A (en) Semiconductor laser with single mode fiber
JPS60196710A (en) Optical coupler
JPH01231387A (en) Semiconductor light emitting device
JPS6043679B2 (en) Semiconductor laser device with coupling circuit
JPH0414024A (en) Secondary higher harmonic generation device
JPS62136890A (en) Semiconductor laser device
JPS6255987A (en) Self-light injection semiconductor laser