JPS6376389A - Optical integrated element - Google Patents

Optical integrated element

Info

Publication number
JPS6376389A
JPS6376389A JP21806086A JP21806086A JPS6376389A JP S6376389 A JPS6376389 A JP S6376389A JP 21806086 A JP21806086 A JP 21806086A JP 21806086 A JP21806086 A JP 21806086A JP S6376389 A JPS6376389 A JP S6376389A
Authority
JP
Japan
Prior art keywords
semiconductor laser
photodetector
light receiving
receiving element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21806086A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
洋 小川
Masao Kobayashi
正男 小林
Masato Kawahara
正人 川原
Yoshio Kawai
義雄 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP21806086A priority Critical patent/JPS6376389A/en
Publication of JPS6376389A publication Critical patent/JPS6376389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To absorb efficiently incident light inside a crystal by forming a light receiving face of a photodetector so that it has an angle of polarization to the incident light coming from a semiconductor laser. CONSTITUTION:A groove 5 having a width of around 50mum is formed in a semiconductor laser element and its element permits one side of the laser to functions as the semiconductor laser 2 and other side to functions as a photodetector 3. And the groove 5 is vertically formed to an optical axis at the semiconductor laser 2 side and is used as a reflecting interface of the semiconductor laser 2. In such a case, when a relation of tan thetaB=b (constant), where thetaB is an angle of polarization toward materials of the photodetector, is valid, an output light out of the laser semiconductor laser 2 always comes at the angle of polarization toward a portion of the photodetector 3 and in principle its reflectance results in zero. Subsequently, the photodetector 3 can absorb efficiently an incident light coming from the semiconductor laser 2 inside a crystal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光集積化素子に関し、特に半導体レーザと受光
素子とが同一半導体基板上に形成された光集積化素子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical integrated device, and particularly to an optical integrated device in which a semiconductor laser and a light receiving element are formed on the same semiconductor substrate.

(従来の技術) 光通信等の光源として種々の構造の化合物半導体レーザ
が用いられ、またこのような半導体レーデの光出力を検
出するため、半導体レーザを形成した基板と同一基板上
に受光素子を設け、この受光素子により半導体レーザの
光出力を検出して、半導体レーザの発光出力の適否を管
理することができる光集積化素子が、文献エレクトロニ
クス・レターズ(ELECTRONIC8LETTER
3) 、 1980−4−24゜Vol、16.A9 
、p−p−342−343にも記載されているように、
提案されている。
(Prior Art) Compound semiconductor lasers with various structures are used as light sources for optical communications, etc., and in order to detect the optical output of such semiconductor lasers, a light receiving element is installed on the same substrate as the substrate on which the semiconductor laser is formed. An optical integrated element that can control the suitability of the light output of the semiconductor laser by detecting the light output of the semiconductor laser using the light receiving element is disclosed in the document ELECTRONIC LETTER.
3), 1980-4-24゜Vol, 16. A9
, pp. 342-343,
Proposed.

通常の光集積化素子は、共振器と垂直方向に数十μm幅
の溝をエツチングにより形成しこの溝により分離された
2つのダイオードの一方を半導体レーデ、他方を受光素
子として動作させる。すなわち、前者に順方向バイアス
、後者に逆方向バイアスを印加する事によりそれぞれ半
導体レーザ、受光素子として動作させる事ができる。
In a typical optical integrated device, a groove with a width of several tens of micrometers is formed by etching in a direction perpendicular to the resonator, and one of two diodes separated by this groove operates as a semiconductor radar and the other as a light receiving element. That is, by applying a forward bias to the former and a reverse bias to the latter, they can be operated as a semiconductor laser and a light receiving element, respectively.

このような構成では同一基板上に半導体レーザと受光素
子とを作製するため、それぞれを個別の素子で構成する
場合に比べ全体として小型にでき、また半導体レーデの
光軸と受光部が一致しているため位置合わせが不要であ
るという利点がある。
In this configuration, since the semiconductor laser and the photodetector are fabricated on the same substrate, the overall size can be made smaller than when each is made up of separate elements, and the optical axis of the semiconductor laser and the photodetector are aligned. This has the advantage that positioning is not required.

また、通常の受光素子では入射光を効率よく結晶内で吸
収させるため、受光面に反射防止膜をつける。(反射防
止膜がない場合InP等の半導体装置一般に30%程度
の反射損失がある。)(発明が解決しようとする問題点
) しかしながら、上記構成の光集積化素子では、半導体レ
ーザと受光素子とは数十μm幅の溝で分離されているの
で、受光素子の溝部分の受光面に反射防止膜を形成する
ことが困難である。このため受光感度が低下してしまう
という問題点がある。
Furthermore, in order to efficiently absorb incident light within the crystal of a normal light receiving element, an antireflection film is applied to the light receiving surface. (If there is no anti-reflection film, semiconductor devices such as InP generally have a reflection loss of about 30%.) (Problem to be solved by the invention) However, in the optical integrated device with the above configuration, the semiconductor laser and the light receiving element are separated by grooves having a width of several tens of micrometers, so it is difficult to form an antireflection film on the light receiving surface of the groove portion of the light receiving element. Therefore, there is a problem that the light receiving sensitivity is reduced.

また受光面からの反射光が半導体レーザの特性を劣化さ
せる原因となる。
In addition, reflected light from the light receiving surface causes deterioration of the characteristics of the semiconductor laser.

この発明は以上述べた受光素子の受光面での反射の問題
を除去し、同一半導体基板上に半導体レーザと受光素子
とを集積化した高性能な光集積化素子を提供することを
目的とする。
The object of the present invention is to eliminate the above-mentioned problem of reflection on the light receiving surface of a light receiving element and to provide a high-performance optical integrated element in which a semiconductor laser and a light receiving element are integrated on the same semiconductor substrate. .

(問題点を解決するための手段) 本発明は前記問題点を解決するために、半導体レーザと
モニタ用の受光素子とが同一半導体基板上に形成された
光集積化素子において、この受光素子の受光面が前記半
導体レーデからの入射光に対してブリュースター角をな
すように形成されてなるものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides an optical integrated device in which a semiconductor laser and a monitoring light-receiving element are formed on the same semiconductor substrate. The light receiving surface is formed to form a Brewster angle with respect to the incident light from the semiconductor radar.

(作用) 本発明によれば、以上のように、同一半導体基板上に半
導体レーデと、受光面がこの半導体レーザからの入射光
に対してブリュ−スター角をなす受光素子とを形成して
いるので、半導体レーデからの出力光は受光素子部分に
常にブリュースター角で入射することになシ、入射光を
効率よく結晶内で吸収させることができるものである。
(Function) According to the present invention, as described above, a semiconductor laser and a light receiving element whose light receiving surface forms a Brewster angle with respect to the incident light from the semiconductor laser are formed on the same semiconductor substrate. Therefore, the output light from the semiconductor radar does not always enter the light receiving element portion at Brewster's angle, and the incident light can be efficiently absorbed within the crystal.

(実施例) 第1図(a)及び(b)は、それぞれ本発明の詳細な説
明するための光集積化素子の斜視図及び平面図であり、
以下図面を用いて説明する。
(Example) FIGS. 1(a) and 1(b) are a perspective view and a plan view, respectively, of an optical integrated device for explaining the present invention in detail,
This will be explained below using the drawings.

第1図(a)において、1はInP等の化合物半導体基
板、2は半導体レーザ、3は半導体レーザ2からの入射
光をモニタする受光素子、4は電極、5は溝である。通
常の半導体レーザに、第1図(a)に示すような形状の
50μm程度幅の溝5を形成し、一方を半導体レーザ2
、他方を受光素子3として動作させる。ここで、溝5は
半導体レーデ2側ではレーザの光軸に垂直に形成され半
導体レーザ2の反射面として用いられる。また、溝5の
受光素子3側は次式(1)で与えられる曲線となるよう
にエツチングを行なう。
In FIG. 1(a), 1 is a compound semiconductor substrate such as InP, 2 is a semiconductor laser, 3 is a light receiving element for monitoring incident light from the semiconductor laser 2, 4 is an electrode, and 5 is a groove. A groove 5 having a width of about 50 μm as shown in FIG.
, the other is operated as the light receiving element 3. Here, the groove 5 is formed perpendicular to the optical axis of the laser on the side of the semiconductor laser 2 and is used as a reflection surface of the semiconductor laser 2. Further, the groove 5 on the light receiving element 3 side is etched so as to form a curve given by the following equation (1).

r=aebθ     ・・・ (1)ここで第1図(
b)に示すように、rは半導体レーザの出射点からの距
離、θは半導体レーザのストライブ方向と出射光とのな
す角、a及びbは定数とする。この時、受光素子の材料
に対するブリュースター角をθ8として 一〇、=b      ・・・ (2)の関係が成立す
れば半導体レーザ2からの出力光は受光素子3部分に常
にブリュースター角で入射することになり、原理的に反
射率は0となる。例えば受光部をInGaAsP (バ
ンドギャップ0.95eV)とすると屈折率は3.51
、すなわちb=3゜51とすればよい。この時θ8=7
4°となる。このときのエツチングは、従来例の場合と
同様、HCl :CHCOOH:H20□=1:2:1
の混合エツチングを用い、15℃でエツチング、水洗、
乾燥をくり返す多段エツチング法を用いてもよいし、リ
アクティブイオンエツチング、プラズマエツチング法等
を用いてもよい。
r=aebθ... (1) Here, Fig. 1 (
As shown in b), r is the distance from the emission point of the semiconductor laser, θ is the angle between the stripe direction of the semiconductor laser and the emitted light, and a and b are constants. At this time, assuming that the Brewster's angle with respect to the material of the photodetector is θ8, 10, = b... If the relationship (2) holds, the output light from the semiconductor laser 2 will always be incident on the photodetector 3 at the Brewster's angle. Therefore, in principle, the reflectance becomes 0. For example, if the light receiving part is InGaAsP (band gap 0.95 eV), the refractive index is 3.51.
, that is, b=3°51. At this time θ8=7
It becomes 4°. Etching at this time was performed using HCl:CHCOOH:H20□=1:2:1 as in the conventional case.
Etching at 15℃, washing with water,
A multi-stage etching method in which drying is repeated, a reactive ion etching method, a plasma etching method, etc. may be used.

以上のように本発明の実施例によれば、半導体レーザ2
と受光素子3の集積化において、従来半導体レーザのス
トライプと垂直に溝を切っていたのに対し、半導体レー
ザ2側を垂直、受光素子3側を入射光に対してブリー−
スター角をなすように溝5を形成しているので、受光素
子3は半導体レーザ2からの入射光を効率よく結晶内で
吸収することができる。さらに、本発明の実施例によれ
ば、従来の製造方法を用いることができ、高性能な光集
積化素子を容易に形成することができる。
As described above, according to the embodiment of the present invention, the semiconductor laser 2
In integrating the light-receiving element 3, whereas conventional grooves were cut perpendicular to the stripes of the semiconductor laser, grooves were cut perpendicularly to the semiconductor laser 2 side, and grooves were cut perpendicularly to the light-receiving element 3 side to the incident light.
Since the groove 5 is formed to form a star angle, the light receiving element 3 can efficiently absorb the incident light from the semiconductor laser 2 within the crystal. Further, according to the embodiments of the present invention, a conventional manufacturing method can be used, and a high-performance optical integrated device can be easily formed.

(発明の効果) 以上のように本発明の構造によれば、受光部分における
反射がなくなり、受光素子の感度が向上するとともに反
射光による半導体レーザの特性劣化を除去でき、半導体
レーザと受光素子とを同一基板上に集積化した高性能な
光集積化素子を実現することができる。
(Effects of the Invention) As described above, according to the structure of the present invention, reflection at the light-receiving part is eliminated, the sensitivity of the light-receiving element is improved, and characteristic deterioration of the semiconductor laser due to reflected light can be eliminated, and the semiconductor laser and the light-receiving element are It is possible to realize a high-performance optical integrated device that integrates these on the same substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)及び(b)は、それぞれ本発明の詳細な説
明するだめの光集積化素子の斜視図及び平面図である。 1・・・化合物半導体基板、2・・・半導体レーザ、3
・・・受光素子、4・・・電極、5・・・溝。 特許出願人  沖電気工業株式会社 (a)@4図 (b)千を辺
FIGS. 1(a) and 1(b) are a perspective view and a plan view, respectively, of an optical integrated device for detailed explanation of the present invention. 1... Compound semiconductor substrate, 2... Semiconductor laser, 3
... Light receiving element, 4... Electrode, 5... Groove. Patent applicant: Oki Electric Industry Co., Ltd. (a) @Figure 4 (b) Senwobe

Claims (1)

【特許請求の範囲】 半導体レーザと受光素子とが同一半導体基板上に形成さ
れた光集積化素子において、 前記受光素子の受光面が前記半導体レーザからの入射光
に対してブリュースター角をなすように形成されてなる
ことを特徴とする光集積化素子。
[Claims] In an optical integrated device in which a semiconductor laser and a light receiving element are formed on the same semiconductor substrate, the light receiving surface of the light receiving element forms a Brewster angle with respect to the incident light from the semiconductor laser. An optical integrated device characterized by being formed in.
JP21806086A 1986-09-18 1986-09-18 Optical integrated element Pending JPS6376389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21806086A JPS6376389A (en) 1986-09-18 1986-09-18 Optical integrated element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21806086A JPS6376389A (en) 1986-09-18 1986-09-18 Optical integrated element

Publications (1)

Publication Number Publication Date
JPS6376389A true JPS6376389A (en) 1988-04-06

Family

ID=16714016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21806086A Pending JPS6376389A (en) 1986-09-18 1986-09-18 Optical integrated element

Country Status (1)

Country Link
JP (1) JPS6376389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113083A (en) * 2007-11-07 2009-05-28 Ultrasonic Engineering Co Ltd Ultrasonic joining tool, and fitting method for ultrasonic joining tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113083A (en) * 2007-11-07 2009-05-28 Ultrasonic Engineering Co Ltd Ultrasonic joining tool, and fitting method for ultrasonic joining tool

Similar Documents

Publication Publication Date Title
JP2618875B2 (en) Waveguide
US4648096A (en) Distributed feedback semiconductor laser
EP0670618A1 (en) Semiconductor laser and light-sensing device using the same
US4788690A (en) Distributed feedback semiconductor laser with monitor
US5438208A (en) Mirror coupled monolithic laser diode and photodetector
JPS6215878A (en) Semiconductor laser device
JP2014531049A (en) Suppression of waveguide back reflection
US11075315B2 (en) Optical semiconductor element and method of manufacturing optical semiconductor element
JPS6376389A (en) Optical integrated element
JPS5861692A (en) Semiconductor laser device
JPS59103394A (en) Laser diode with detector
US4780175A (en) Method for the production of an optical phase-shifting board
JPS63172482A (en) Optical integrated element
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
US20020089670A1 (en) Photodetector for ring laser gyros
JPH02260488A (en) Semiconductor optical amplifier
JP2667168B2 (en) Edge-receiving photodiode
JP3089584B2 (en) Semiconductor laser with monitor
JPH04116977A (en) Semiconductor photodetector
KR100566216B1 (en) Semiconductor optical device being monolith integrated
JPH03145174A (en) External resonator type laser
JPS61271875A (en) Semiconductor light receiving element
JPH1117281A (en) Optical integrated element and planar optical integrated circuit
JPS61259593A (en) Distributed reflection type semiconductor laser
KR100334791B1 (en) Photodetector and fabrication method thereof for wavelength division multiplexing systems