JPH02260679A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH02260679A
JPH02260679A JP8194889A JP8194889A JPH02260679A JP H02260679 A JPH02260679 A JP H02260679A JP 8194889 A JP8194889 A JP 8194889A JP 8194889 A JP8194889 A JP 8194889A JP H02260679 A JPH02260679 A JP H02260679A
Authority
JP
Japan
Prior art keywords
layer
face
semiconductor laser
window region
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8194889A
Other languages
Japanese (ja)
Inventor
Kouichi Kuronaga
康一 玄永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8194889A priority Critical patent/JPH02260679A/en
Publication of JPH02260679A publication Critical patent/JPH02260679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer

Abstract

PURPOSE:To enable a laser device of this design to be easily manufactured by a method wherein a window region formed of a specific semiconductor compound layer is provided to the end face of an optical waveguide and is specified in length, whose peripheral part is formed into an arc surface of a condensing lens to improve the coupling efficiency of the window region with an optical fiber. CONSTITUTION:A GaInAsP active layer 22 serving as an optical waveguide 31, a P-InP clad layer 23, and a P-GaInAsP ohmic contact layer 24 are successively formed in lamination on an N-InP substrate 21 through a crystal growth method. The double hetero-structure section composed of layers 22-24 is etched up to the underside of the active layer 22 into an inverted mesa stripe, and an incident end face 32 and a projecting end face 33 side are also subjected to etching. Then, a P-InP buried layer 25 and an N-InP layer 26 are successively grown along the end face of the mesa stripe and the end faces 32 and 33 side to form a buried hetero-structure provided with a window region. The lengths of the layers 25 and 26 are made equal to or larger than 30mum, and both the end faces of the substrate 21, and the layers 25 and 26 are formed into a protrudent arc part 27.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体レーザ装置に係り、特に生産性が高く光
ファイバとの結合効率に優れ、光通信における増幅器と
して好適な半導体レーザ装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor laser device, and in particular, a semiconductor laser device that has high productivity, excellent coupling efficiency with an optical fiber, and is suitable as an amplifier in optical communication. This invention relates to a laser device.

(従来の技術) 近年の光通信分野の発展に伴い、光フアイバ網の敷設も
拡大されている。そこで、光フアイバ網の敷設費用の低
価格化が増々要求されている。
(Prior Art) With the recent development of the optical communication field, the installation of optical fiber networks is also expanding. Therefore, there is an increasing demand for lower costs for installing optical fiber networks.

ところで、このような敷設費用の中で大きな位置を占め
るものの一つとして中継器がある。
Incidentally, one of the items that occupies a large part of such installation costs is a repeater.

この中継器は、受光素子、受光素子駆動回路、増幅器、
波形整形回路、発光素子、発光素子駆動回路等の多数部
品から構成されており、゛これら部品の購入費用、調整
費用、信頼性確認のための試験費用等により多額の経費
が必要となる。このため、上記部品全てを一素子で代替
できる半導体レーザ増幅器の開発が期待されている。
This repeater consists of a light receiving element, a light receiving element driving circuit, an amplifier,
It is composed of many parts such as a waveform shaping circuit, a light emitting element, a light emitting element drive circuit, etc., and requires a large amount of money due to the purchase cost of these parts, adjustment cost, testing cost to confirm reliability, etc. Therefore, there are expectations for the development of a semiconductor laser amplifier that can replace all of the above components with a single element.

第6図は、従来の半導体レーザ増幅器の一例を示す図で
、半導体レーザ増幅器を素子上面より見た概念図である
FIG. 6 is a diagram showing an example of a conventional semiconductor laser amplifier, and is a conceptual diagram of the semiconductor laser amplifier viewed from the top of the device.

図中、符号1.2が単層あるいは多層の誘電体による反
射防止膜であり、これら反射防止膜の略中央部に入射端
面3および出射端面4が形成されており、これら入射端
面3および出射端面4間に光導波路5が埋設されている
。この光導波路5は電流および光狭窄層6内に埋設され
ており、図示を省略した電極部からの電流注入により光
増幅利得を発生させる活性層として作用する。
In the figure, reference numeral 1.2 indicates an anti-reflection film made of a single layer or multilayer dielectric material, and an entrance end surface 3 and an output end surface 4 are formed approximately in the center of these anti-reflection films. An optical waveguide 5 is embedded between the end faces 4. This optical waveguide 5 is buried in a current and optical confinement layer 6, and acts as an active layer that generates optical amplification gain by current injection from an electrode portion (not shown).

このような半導体レーザ増幅器では、反射防止膜1を通
して入射端面3に入射した光は、光導波路5を導波しな
がら増幅された後、出射端面4から出射される。
In such a semiconductor laser amplifier, light that enters the input end face 3 through the antireflection film 1 is amplified while being guided through the optical waveguide 5 and then output from the output end face 4 .

第7図に示す半導体レーザ増幅器は、上記構造をGa1
nAsP系埋込みへテロ型半導体レーザ発振器に適用し
、これを半導体レーザ増幅器としたものである。
The semiconductor laser amplifier shown in FIG. 7 has the above structure of Ga1
The present invention is applied to an nAsP-based buried hetero type semiconductor laser oscillator, and is used as a semiconductor laser amplifier.

このレーザ素子は、通常の埋込みへテロ型半導体レーザ
と同一の製造工程によりウエノ\を作製し、へき開によ
り端面を形成した後、単層あるいは多層の誘電体の反射
防止膜を施して構成されている。
This laser element is constructed by fabricating a Ueno film using the same manufacturing process as a normal buried hetero semiconductor laser, forming an end face by cleavage, and then applying a single-layer or multi-layer dielectric anti-reflection coating. There is.

即ち、n−1nP基板11上に、光導波路となるGa1
nAsP活性層12、p−InPクラッド層13、p−
Ga1nAsPオ一ミツクコンタクト層14を結晶成長
により順次積層形成する。そして、活性層12の下まで
逆メサ・ストライプ状にエツチングを施し、電流ブロッ
キング層をつくるためのp−1nP埋込み層15および
n−1nP埋込み層16をメサ・ストライブ側面に沿っ
て順次結晶成長させ、いわゆる埋込みへテロ(BH)構
造が形成されている。
That is, on the n-1nP substrate 11, Ga1, which becomes an optical waveguide, is
nAsP active layer 12, p-InP cladding layer 13, p-
A Ga1nAsP atomic contact layer 14 is sequentially laminated by crystal growth. Then, etching is performed in a reverse mesa stripe shape to the bottom of the active layer 12, and crystal growth is performed sequentially along the sides of the mesa stripe to form a p-1nP buried layer 15 and an n-1nP buried layer 16 to form a current blocking layer. Thus, a so-called buried hetero (BH) structure is formed.

しかる後、素子上面にn側電極17、素子下面にn側電
極18を夫々形成して、両端面をへき開し、このへき開
面に反射防止膜19を形成して完成する。
Thereafter, an n-side electrode 17 is formed on the upper surface of the element, and an n-side electrode 18 is formed on the lower surface of the element, both end surfaces are cleaved, and an antireflection film 19 is formed on the cleaved surfaces to complete the process.

このような半導体レーザ増幅器においては、入射端面お
よび出射端面の実効的なエネルギー反射率は、1%以下
であることが要求され、より良好な動作を行なうために
は0.1%以下とすることが望まれている。
In such a semiconductor laser amplifier, the effective energy reflectance of the input end face and the output end face is required to be 1% or less, and for better operation it should be 0.1% or less. is desired.

反射防止膜19によりこのエネルギー反射率を実現する
ためには、屈折率1〜3の誘電体を用いて所定の屈折率
、膜厚に対し、屈折率の精度を0.1以下、膜厚の精度
を数10人まで一致させなければならない。一般に半導
体レーザの端面は横数100μm1縦数lOμ■と微小
であり1、上記条件を満足するような反射防止膜を再現
性よく形成するのは非常に困難であるという問題があっ
た。
In order to achieve this energy reflectance with the anti-reflection film 19, it is necessary to use a dielectric material with a refractive index of 1 to 3 and set the accuracy of the refractive index to 0.1 or less and the film thickness for a given refractive index and film thickness. You have to match up to 10 people with accuracy. In general, the end face of a semiconductor laser is minute, measuring 100 .mu.m horizontally and 10 .mu.m vertically, 1 and there has been a problem in that it is extremely difficult to form an antireflection film that satisfies the above conditions with good reproducibility.

また、他の従来装置として、第8図および第9図に示す
ような、光導波路5と入射端面3および出射端面4との
交差角を相対的に垂直より数度から20数度傾斜するよ
うに形成して反射防止膜1.2を施した半導体レーザ増
幅器も考えられている。
In addition, as another conventional device, as shown in FIGS. 8 and 9, the intersection angle between the optical waveguide 5, the input end surface 3, and the output end surface 4 is inclined from several degrees to 20 degrees relative to the vertical. Semiconductor laser amplifiers are also being considered in which the anti-reflection coating 1.2 is applied.

即ち、第8図に示した半導体レーザ増幅器は、光導波路
5を結晶のへき開方向に対して斜めに形成した半導体レ
ーザ増幅器であり、C,E、Zahらによって促案され
ているものである( ElectronicsLett
ers 23巻19号990−991頁、  1987
年)。
That is, the semiconductor laser amplifier shown in FIG. 8 is a semiconductor laser amplifier in which the optical waveguide 5 is formed obliquely with respect to the cleavage direction of the crystal, and is proposed by C. E. Zah et al. ElectronicsLett
ers Vol. 23, No. 19, pp. 990-991, 1987
Year).

また、第9図に示す半導体レーザ増幅器は、光導波路5
を結晶のへき開方向に形成し、端面3.4を研磨あるい
はドライエツチングにより斜めに形成したものである。
Further, the semiconductor laser amplifier shown in FIG. 9 has an optical waveguide 5
is formed in the cleavage direction of the crystal, and the end faces 3.4 are formed obliquely by polishing or dry etching.

上記第8図および第9図に示したいずれの半導体レーザ
増幅器においても、端面3.4のエネルギー反射率が低
下し、反射防止膜1.2の反射率が数%程度のものであ
っても、実効的な反射率は0.1%となる。
In both of the semiconductor laser amplifiers shown in FIGS. 8 and 9 above, the energy reflectance of the end facet 3.4 decreases, and even if the reflectance of the antireflection film 1.2 is on the order of several percent, , the effective reflectance is 0.1%.

このような構造の半導体レーザ増幅器では、傾きの角度
が増加するにつれ、光ファイバとの結合効率が低下し、
光増幅器として十分な利得が得られなくなるという問題
があった。また、特に上述第7図の構造では、結晶の軸
方向と光導波路5の長手方向がずれているため、結晶成
長が難しく、再現性よく作製するのが困難であるという
問題があった。
In a semiconductor laser amplifier with such a structure, as the angle of inclination increases, the coupling efficiency with the optical fiber decreases.
There was a problem that sufficient gain could not be obtained as an optical amplifier. In addition, particularly in the structure shown in FIG. 7, since the axial direction of the crystal and the longitudinal direction of the optical waveguide 5 are misaligned, there is a problem that crystal growth is difficult and it is difficult to manufacture with good reproducibility.

第10図および第11図は、従来のいわゆる窓領域付き
の埋込みへテロ型半導体レーザ増幅器を示す図で、第1
0図は平面、第、11は斜視断面を夫々示している。
10 and 11 are diagrams showing a conventional buried hetero type semiconductor laser amplifier with a so-called window region.
Figure 0 shows a plan view, and Figures 11 and 11 show a perspective cross section.

この埋込みへテロ型半導体レーザ増幅器は、活性層より
禁制帯幅が大きくかつ、屈折率が大きい化合物半導体に
より電流および光狭窄層となる埋込み層6を光導波路5
の入射端面3および出射端面4に隣接して結晶成長させ
たものである(車日溶他、第35回応用物理学関係連合
講演会講演予稿集、862頁、 29a−2P−5,1
9a年)。
This buried hetero-type semiconductor laser amplifier has a buried layer 6 which serves as a current and light confinement layer made of a compound semiconductor having a larger forbidden band width and a higher refractive index than an active layer, and an optical waveguide 5.
Crystals are grown adjacent to the entrance end face 3 and exit end face 4 of
9a).

このような埋込みへテロ型半導体レーザ増幅器では、窓
領域即ち、化合物半導体6に埋設される光導波路5の長
手方向長さを30μ−以上にした場合、理論的な実効的
なエネルキー反射率は06吋%以下となる。また、この
半導体レーザ素子の構造は前述第6図に示した埋込みへ
テロ型半導体レーザ増幅器と構造が似ていることから、
その製造工程もほとんど同様でよく、また比較的容易に
低反射率が得られるという利点がある。
In such a buried hetero-type semiconductor laser amplifier, when the window region, that is, the length in the longitudinal direction of the optical waveguide 5 buried in the compound semiconductor 6 is set to 30 μ- or more, the theoretical effective energy reflectance is 0.6 μm. % or less. Furthermore, since the structure of this semiconductor laser element is similar to that of the buried hetero type semiconductor laser amplifier shown in FIG. 6,
The manufacturing process can be almost the same, and it has the advantage that low reflectance can be obtained relatively easily.

(発明が解決しようとする課題) しかしながら、上述した窓領域付きの埋込みへテロ型半
導体レーザ増幅器では、前述第10図に示すように、出
射端面4から出射されたレーザ光7が窓領域で拡散する
ため、光ファイバとの光学的結合率が低下し、光増幅器
として十分な利得が得られないという問題があった。
(Problem to be Solved by the Invention) However, in the above-mentioned buried hetero type semiconductor laser amplifier with a window region, as shown in FIG. Therefore, there was a problem in that the optical coupling rate with the optical fiber was reduced and sufficient gain could not be obtained as an optical amplifier.

このように、従来の半導体レーザ増幅器では、誘電体に
よる反射防止膜の屈折率および膜厚の作製条件が非常に
厳しいため製造が容品でなく、また、反射防止膜の作製
条件を緩和するために、窓領域付き構造の半導体レーザ
増幅器を用いると、光ファイバとの結合率が低下し、光
増幅器として十分な利得が得られないという問題があっ
た。
In this way, in conventional semiconductor laser amplifiers, the manufacturing conditions for the refractive index and film thickness of the dielectric anti-reflection film are extremely strict, making it difficult to manufacture. Another problem is that when a semiconductor laser amplifier having a structure with a window region is used, the coupling rate with an optical fiber decreases, and a sufficient gain cannot be obtained as an optical amplifier.

本発明は、上述した従来の問題点を解決するためになさ
れたもので、製造が容易で、かつ、光ファイバとの結合
効率が高い半導体レーザ装置を提供することを目的とす
るものである。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a semiconductor laser device that is easy to manufacture and has a high coupling efficiency with an optical fiber.

[発明の構成] (課題を解決するための手段) 本発明の半導体レーザ増幅器は、光共振方向に沿って形
成された光導波路を有する発光結晶層と、この光導波路
の両端面の少なくとも一方の端面に形成された光出射ま
たは入射端面と、前記光導波路の光出射または入射端面
側の少なくとも一方端側に形成された半導体化合物層か
らなる窓領域とを有し、上記発光結晶層を電極層により
挟持してなる半導体レーザ装置において、前記窓領域を
前記発光結晶層よりも禁制帯幅が大きくかつ屈折率が大
きい化合物半導体で構成し、この窓領域の前記光導波路
方向の長さを30μm以上とするとともに、前記窓領域
の外縁部を集光レンズの一弧面形状に形成したことを特
徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) A semiconductor laser amplifier of the present invention includes a light-emitting crystal layer having an optical waveguide formed along an optical resonance direction, and at least one of both end faces of the optical waveguide. It has a light emitting or light incident end face formed on the end face, and a window region made of a semiconductor compound layer formed on at least one end side of the light emitting or light incident face of the optical waveguide, and the light emitting crystal layer is used as an electrode layer. In the semiconductor laser device, the window region is made of a compound semiconductor having a larger forbidden band width and a larger refractive index than the light emitting crystal layer, and the length of the window region in the direction of the optical waveguide is 30 μm or more. In addition, the outer edge of the window area is formed in the shape of an arcuate surface of a condensing lens.

(作 用) 本発明は、発光結晶層中の少なくとも光導波路端面に結
晶成長により活性層よりも禁制帯幅および屈折率が大き
い化合物半導体を、光導波路方向に対して長さ30μ−
以上となるように形成し、また上記化合物半導体の外縁
部を、素子に入射する光または素子から出射する光を集
光するような集光レンズの一円弧面に形成し、さらにこ
の外縁部の側面に単層あるいは多層の誘電体膜を施して
反射防止膜を形成して構成することで、光ファイバとの
結合効率が増大し、光増幅器としての利得が増大する。
(Function) The present invention provides a compound semiconductor having a larger forbidden band width and larger refractive index than the active layer by crystal growth on at least the end face of the optical waveguide in the light emitting crystal layer, with a length of 30 μm in the optical waveguide direction.
The outer edge of the compound semiconductor is formed into an arcuate surface of a condensing lens that condenses the light incident on the element or the light emitted from the element, and the outer edge of the compound semiconductor is By applying a single layer or multilayer dielectric film to the side surface to form an antireflection film, the coupling efficiency with the optical fiber increases and the gain as an optical amplifier increases.

また、同一利得における光学系の設計条件が緩和され、
信頼性を向上させることが可能となる。
In addition, the design conditions for the optical system at the same gain are relaxed,
It becomes possible to improve reliability.

(実施例) 以下、本発明の実施例について図を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明をGa1nAsP系の埋込みへテロ型半
導体し7ザ増幅器に適用した実施例の構成を示す図で、
第2図は第1図を平面方向から見た概念図である。
FIG. 1 is a diagram showing the configuration of an embodiment in which the present invention is applied to a Ga1nAsP-based buried hetero-type semiconductor amplifier.
FIG. 2 is a conceptual diagram of FIG. 1 viewed from the plane.

本実施例の製造では、通常の埋込みへテロ型半導体レー
ザと同一の製造工程にょリウエハを作製し、へき開によ
り端面を形成した後、単層あるいは多層の誘電体の反射
防止膜を施す。
In the manufacturing of this embodiment, a wafer is manufactured using the same manufacturing process as a normal buried hetero type semiconductor laser, and after the end face is formed by cleavage, a single-layer or multi-layer dielectric anti-reflection film is applied.

即ち、n−1nP基板21上に、光導波路31となるG
a1nAsP活性層22、p−1nPクラッド層23、
p−Ga1nAsPオ一ミツクコンタクト層24を結晶
成長により順次積層形成する。そして、上記基板21上
に形成された各層22.23.24からなるダブルへテ
ロ構造部を、活性層22の下まで逆メサ・ストライブ状
にエツチングを施すとともに、入射端面32および出射
端面33側もエッチングする。
That is, on the n-1nP substrate 21, G
a1nAsP active layer 22, p-1nP cladding layer 23,
A p-Ga1nAsP omic contact layer 24 is sequentially formed by crystal growth. Then, the double heterostructure consisting of the layers 22, 23, and 24 formed on the substrate 21 is etched to the bottom of the active layer 22 in the form of an inverted mesa stripe. The sides are also etched.

この後、電流ブロッキング層をつくるためのp−1nP
埋込み層25およびn−1nP埋込み層26をメサ拳ス
トライブ側面および端面32.33側に沿って順次結晶
成長させ、いわゆる窓領域付き埋込みへテロ(BH)構
造を構成する。
After this, p-1nP to create a current blocking layer
The buried layer 25 and the n-1nP buried layer 26 are sequentially crystal-grown along the side surfaces of the mesa fist stripes and the end surfaces 32 and 33, forming a so-called buried hetero (BH) structure with a window region.

上記メサ・ストライプ端面32.33に沿って結晶成長
させる化合物半導体即ち埋込み層25.26の長さ即ち
窓領域のメサ・ストライプ方向の長さは30μm以上と
し、さらに基板21および埋込み層25.26の両端面
は、凸状の円弧部27に形成する。また、化合物半導体
は活性層22より禁制帯幅が大きくかつ屈折率が大きい
部材により形成されている。
The length of the compound semiconductor, that is, the buried layer 25.26, which is crystal-grown along the mesa stripe end face 32.33, that is, the length of the window region in the mesa stripe direction, is 30 μm or more, and the substrate 21 and the buried layer 25.26 are made to have a length of 30 μm or more. Both end surfaces of are formed into convex circular arc portions 27. Further, the compound semiconductor is formed of a member having a larger forbidden band width and a larger refractive index than the active layer 22.

この円弧部27の形成は、例えば、円形または楕円形の
形状を有するマスクを用い、イオンミリング、リアクテ
ィブ・イオンエツチング等のドライプロセスを用いるこ
とで容易に作製することができる。
The arcuate portion 27 can be easily formed, for example, by using a mask having a circular or elliptical shape and using a dry process such as ion milling or reactive ion etching.

また、上述実施例では、円弧部27がlnP基板21の
下面まで形成されているが、該円弧部27は活性層22
近傍の50μ■程度まで形成すれば十分であり、またこ
うして形成されたウェハ上の個々のチップのダイシング
は、へき開、スクライブ等により行えばよい。
Further, in the above embodiment, the arcuate portion 27 is formed up to the lower surface of the lnP substrate 21, but the arcuate portion 27 is not connected to the active layer 22.
It is sufficient to form up to about 50 μι in the vicinity, and dicing of individual chips on the wafer thus formed may be performed by cleaving, scribing, or the like.

このような円弧部27は、その曲率半径を小さくする程
、光ファイバとの結合効率が増加し、例えば曲率半径を
10μ悶とすれば結合効率は2倍程度増加する。
The smaller the radius of curvature of the arcuate portion 27, the more the coupling efficiency with the optical fiber increases. For example, if the radius of curvature is set to 10 μm, the coupling efficiency increases by about twice.

さらに、光増幅利得を発生させる活性層22としては、
Ga1nAsP   結晶層を用いておx  t−x 
 y  t−y す、増幅する光の波長に合わせてXsYの組成比を決定
する。また、活性層22より禁制帯幅および屈折率の大
きい化合物半導体としては、n型およびn型のlnP結
晶層を用いればよい。
Furthermore, as the active layer 22 that generates optical amplification gain,
x t-x using a Ga1nAsP crystal layer
yt-y The composition ratio of XsY is determined according to the wavelength of the light to be amplified. Further, as a compound semiconductor having a larger forbidden band width and refractive index than the active layer 22, n-type and n-type lnP crystal layers may be used.

こうして素子端面に円弧部27を形成した後、素子上面
にp側電極28、素子下面にn側電極29を夫々形成し
、端面に反射防止膜30を形成して完成する。
After forming the arcuate portion 27 on the end face of the element in this manner, a p-side electrode 28 is formed on the upper face of the element, an n-side electrode 29 is formed on the lower face of the element, and an antireflection film 30 is formed on the end face to complete the process.

尚、上記実施例では、Ga1nAsP活性層22を含む
ダブルへテロ構造をlnP結晶層、Ga1nAsP結晶
層の2種のみにより構成しているが、結晶基板の歪みを
減少させるためのInPバッファ層や、組成により活性
層22のメルトバックを防止するための遷移的な組成を
有するGalnAsP層を活性層22とlnP層23と
の間に形成する場合もある。
In the above embodiment, the double heterostructure including the Ga1nAsP active layer 22 is composed of only two types, an InP crystal layer and a Ga1nAsP crystal layer, but an InP buffer layer for reducing distortion of the crystal substrate, A GalnAsP layer having a transitional composition to prevent meltback of the active layer 22 may be formed between the active layer 22 and the InP layer 23.

このような構造の窓領域付き埋込みへテロ型半導体レー
ザ増幅器では、活性層22よりも禁制帯幅および屈折率
が大きい化合物半導体を光導波路31両両端面隣接形成
して窓領域とし、さらにこの窓領域の長さを30μ■と
したので、従来の窓領域付き埋込みへテロ型半導体レー
ザ増幅器の特性と同様に、反射防止膜を用いて実効的な
エネルギー反射率を0.1%にする場合の反射膜形成条
件を緩和でき、容易に生産することができる。
In a buried hetero-type semiconductor laser amplifier with a window region having such a structure, a compound semiconductor having a larger forbidden band width and refractive index than the active layer 22 is formed adjacent to both end faces of the optical waveguide 31 to form the window region, and Since the length of the region is 30μ■, similar to the characteristics of a conventional buried hetero semiconductor laser amplifier with a window region, when using an antireflection film to reduce the effective energy reflectance to 0.1%, The reflective film formation conditions can be relaxed and production can be facilitated.

さらに、窓領域の外縁部を凸状の円弧部27に形成した
ので、入射光は円弧部27のレンズ効果により集光され
て入射光の結合効率が増加し、−力光導波路31の出射
端面33からの出射光34は窓領域で一度広がるものの
円弧部27のレンズ効果により再び集光されるため、ビ
ームの広がりによる結合効率の低下を防止することがで
きる。
Furthermore, since the outer edge of the window area is formed into a convex circular arc part 27, the incident light is condensed by the lens effect of the circular arc part 27, and the coupling efficiency of the incident light increases. Although the emitted light 34 from the beam 33 spreads once in the window area, it is condensed again by the lens effect of the circular arc portion 27, so that it is possible to prevent the coupling efficiency from decreasing due to the spread of the beam.

このように、本実施例では、光ファイバとの結合効率が
増大し、光増幅器としての利得が増大する。また、同一
利得における光学系の設計条件が緩和されるので、信頼
性および生産性の向上が図れる。
In this way, in this embodiment, the coupling efficiency with the optical fiber increases, and the gain as an optical amplifier increases. Furthermore, since the design conditions for the optical system for the same gain are relaxed, reliability and productivity can be improved.

ところで、上述実施例では、本発明を埋込みへテロ型半
導体、レーザに適用した例について説明したが、本発明
は他の埋込み構造にも適用可能である。
Incidentally, in the above-mentioned embodiments, an example in which the present invention is applied to a buried hetero-type semiconductor and a laser has been described, but the present invention can also be applied to other buried structures.

例えば第3図に示すように、p−1nP層25およびn
−InP層41により活性層22を埋込み、さらに平坦
化のためp−1nP層25をこれらの上に形成した後、
p−Ga1nAsPオーミツクコンタク!・層43とス
トライプ状の絶縁膜42をp−1nP層25上に形成し
た表面平坦化埋込みへテロ構造の半導体レーザ増幅器に
適用することもできる。
For example, as shown in FIG.
- After burying the active layer 22 with an InP layer 41 and forming a p-1nP layer 25 thereon for planarization,
p-Ga1nAsP contact! - It can also be applied to a semiconductor laser amplifier with a surface flattened buried heterostructure in which the layer 43 and the striped insulating film 42 are formed on the p-1nP layer 25.

また、第4図に示すように、母体となるダブルへテロ構
造を1回成長させた後、エツチングで溝を形成し、続い
て2回目の結晶成長で三日月形の活性層51を埋め込ん
だいわゆる埋込みクレッセント構造の半導体レーザ増幅
器に適用することもできる。
In addition, as shown in FIG. 4, after growing the double heterostructure that serves as the base once, a groove is formed by etching, and then a crescent-shaped active layer 51 is buried in the second crystal growth. It can also be applied to a semiconductor laser amplifier with a buried crescent structure.

さらに、第5図に示すように、結晶成長に先だって、接
近した2本のチャンネル状の溝61をlnP基板21上
に形成し、1回の結晶成長で、該2本の溝61に挟まれ
た領域に活性層62を埋め込んだいわゆる二重チャネル
ブレーナ埋込みへテロ構造の半導体レーザ増幅器にも適
用することが可能である。
Furthermore, as shown in FIG. 5, prior to crystal growth, two channel-shaped grooves 61 that are close to each other are formed on the lnP substrate 21. The present invention can also be applied to a so-called double channel brainer buried heterostructure semiconductor laser amplifier in which the active layer 62 is buried in the region.

尚、本発明は、上述各実施例のような増幅器として使用
する半導体レーザ素子に限らず、一般の半導体レーザ発
振器にも勿論適用できる。
The present invention is of course applicable not only to semiconductor laser devices used as amplifiers as in the above embodiments, but also to general semiconductor laser oscillators.

[発明の効果] 以上説明したように、本発明によれば、製造が容易で、
かつ、光ファイバとの結合効率が高い半導体レーザ装置
を実現することができる。
[Effects of the Invention] As explained above, according to the present invention, manufacturing is easy;
Moreover, it is possible to realize a semiconductor laser device with high coupling efficiency with an optical fiber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を埋込みへテロ構造の半導体レーザ増幅
器に適用した実施例の構成を示す斜視図、第2図は第1
図の半導体レーザ増幅器を上面から見た概念図、 第3図は本発明を表面平坦化埋込みへテロ構造の半導体
レーザ増幅器に適用した実施例の構成を示す斜視図、 第4図は本発明をp基板埋込みクレッセント構造の半導
体レーザ増幅器に適用した実施例の構成を示す斜視図、 第5図は本発明を二重チャネルプレーナ埋込みへテロ構
造の半導体レーザ増幅器に適用した実施例の構成を示す
斜視図、 第6図は従来の半導体レーザ増幅器を素子上面から見た
概念図、 第7図は従来の半導体レーザ増幅器の構成を示す斜視図
、 第8図は光導波路を結晶のへき開方向より傾けて形成し
た従来の半導体レーザ増幅器を素子上面から見た概念図
、 第9図は光導波路端面を結晶のへき開面より傾けて形成
した従来の半導体レーザ増幅器を素子上面から見た概念
図、 第10図は窓領域を形成した従来の半導体レーザ増幅器
を素子上面から見た概念図、 第11図は窓領域を形成した従来の半導体レーザ増幅器
の構成を示す斜視図である。 21・・・・・・・・・n−1nP基板22・・・・・
・・・・Ga1nAsP活性層23・・・・・・・・・
p−1nPクラッド層24・・・・・・・・・p−Ga
1nAsPオ一ミツクコンタクト層25・・・・・・・
・・p−1nP埋込み層26・・・・・・・・・n−1
nP埋込み層27・・・・・・・・・円弧部 28・・・・・・・・・p側電極 29・・・・・・・・・n側電極 30・・・・・・・・・反射防止膜 31・・・・・・・・・光導波路 弓2図 出願人      株式会社 東芝
FIG. 1 is a perspective view showing the configuration of an embodiment in which the present invention is applied to a buried heterostructure semiconductor laser amplifier, and FIG.
3 is a perspective view showing the configuration of an embodiment in which the present invention is applied to a surface flattened buried heterostructure semiconductor laser amplifier; FIG. 4 is a conceptual diagram of the semiconductor laser amplifier shown in FIG. FIG. 5 is a perspective view showing the configuration of an embodiment in which the present invention is applied to a semiconductor laser amplifier with a p-substrate buried crescent structure; FIG. Figure 6 is a conceptual diagram of a conventional semiconductor laser amplifier viewed from the top of the device, Figure 7 is a perspective view showing the configuration of a conventional semiconductor laser amplifier, and Figure 8 is an optical waveguide tilted from the crystal cleavage direction. Fig. 9 is a conceptual diagram of a conventional semiconductor laser amplifier formed as seen from the top surface of the device. Fig. 9 is a conceptual diagram of a conventional semiconductor laser amplifier formed with the optical waveguide end face tilted from the cleavage plane of the crystal, as seen from the top surface of the device. 11 is a conceptual diagram of a conventional semiconductor laser amplifier in which a window region is formed, viewed from the top surface of the element, and FIG. 11 is a perspective view showing the structure of a conventional semiconductor laser amplifier in which a window region is formed. 21......n-1nP substrate 22...
...Ga1nAsP active layer 23...
p-1nP cladding layer 24...p-Ga
1nAsP omic contact layer 25...
...p-1nP buried layer 26...n-1
nP buried layer 27...... Arc portion 28... P-side electrode 29... N-side electrode 30...・Anti-reflection film 31... Optical waveguide bow 2 Applicant: Toshiba Corporation

Claims (1)

【特許請求の範囲】 光共振方向に沿って形成された光導波路を有する発光結
晶層と、 この光導波路の両端面の少なくとも一方の端面に形成さ
れた光出射または入射端面と、 前記光導波路の光出射または入射端面側の少なくとも一
方端側に形成された半導体化合物層からなる窓領域とを
有し、上記発光結晶層を電極層により挟持してなる半導
体レーザ装置において、前記窓領域を前記発光結晶層よ
りも禁制帯幅が大きくかつ屈折率が大きい化合物半導体
で構成し、この窓領域の前記光導波路方向の長さを30
μm以上とするとともに、前記窓領域の外縁部を集光レ
ンズの一弧面形状に形成したことを特徴とする半導体レ
ーザ装置。
[Scope of Claims] A light-emitting crystal layer having an optical waveguide formed along an optical resonance direction; a light output or input end face formed on at least one of both end faces of the optical waveguide; A semiconductor laser device having a window region made of a semiconductor compound layer formed on at least one end side of the light emitting or light incident end face, and the light emitting crystal layer being sandwiched between electrode layers, the window region is used as the light emitting crystal layer. It is made of a compound semiconductor having a larger forbidden band width and a larger refractive index than the crystal layer, and the length of this window region in the optical waveguide direction is 30°.
.mu.m or more, and the outer edge of the window region is formed in the shape of an arcuate surface of a condenser lens.
JP8194889A 1989-03-31 1989-03-31 Semiconductor laser device Pending JPH02260679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8194889A JPH02260679A (en) 1989-03-31 1989-03-31 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8194889A JPH02260679A (en) 1989-03-31 1989-03-31 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH02260679A true JPH02260679A (en) 1990-10-23

Family

ID=13760723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8194889A Pending JPH02260679A (en) 1989-03-31 1989-03-31 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH02260679A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243216A (en) * 1991-01-17 1992-08-31 Nec Corp Production of optical waveguide and optical integrated element and production thereof
EP0613222A1 (en) * 1993-02-22 1994-08-31 Koninklijke Philips Electronics N.V. Semiconductor diode laser and method of manufacturing such a diode
JP2017092321A (en) * 2015-11-12 2017-05-25 キヤノン株式会社 Amplifier element, light source device, and imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243216A (en) * 1991-01-17 1992-08-31 Nec Corp Production of optical waveguide and optical integrated element and production thereof
EP0613222A1 (en) * 1993-02-22 1994-08-31 Koninklijke Philips Electronics N.V. Semiconductor diode laser and method of manufacturing such a diode
JP2017092321A (en) * 2015-11-12 2017-05-25 キヤノン株式会社 Amplifier element, light source device, and imaging apparatus

Similar Documents

Publication Publication Date Title
JP2008113041A (en) Waveguide
US20010014109A1 (en) Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same
JPH0497206A (en) Semiconductor optical element
US5572616A (en) Waveguide device
US6678302B2 (en) Semiconductor device and manufacturing method thereof
CN111129945B (en) Method for integrally manufacturing isolator-saving edge-emitting laser chip
US20060166386A1 (en) Optical semiconductor device and its manufacturing method
US7756180B2 (en) Semiconductor laser
US20080159347A1 (en) Method and apparatus for a low parasitic capacitance butt-joined passive waveguide connected to an active structure
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
JP3061169B2 (en) Semiconductor laser
JPH01164077A (en) Light-emitting diode and its manufacture
JP2000269600A (en) High-power broad-band optical source and optical amplifier device
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JPH02260679A (en) Semiconductor laser device
JP2002076510A (en) Semiconductor laser and production method therefor
JPS6328520B2 (en)
JPH05175611A (en) Semiconductor light amplifier
JP2000244059A (en) Semiconductor laser device
JPH11204773A (en) Waveguide type semiconductor optical integrated element and its manufacture
JPH11145558A (en) Semiconductor optical element, transmitting-receiving module, and optical communication system
JPH11307867A (en) Semiconductor optical integrated element and manufacture thereof
JP3067702B2 (en) Semiconductor optical integrated device and method of manufacturing the same
JPH0837344A (en) Semiconductor laser type optical amplifier
US20220021187A1 (en) Laser element and method for producing same