JPS6317247B2 - - Google Patents

Info

Publication number
JPS6317247B2
JPS6317247B2 JP18732280A JP18732280A JPS6317247B2 JP S6317247 B2 JPS6317247 B2 JP S6317247B2 JP 18732280 A JP18732280 A JP 18732280A JP 18732280 A JP18732280 A JP 18732280A JP S6317247 B2 JPS6317247 B2 JP S6317247B2
Authority
JP
Japan
Prior art keywords
piezoelectric vibrator
crystal resonator
support frame
support
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18732280A
Other languages
Japanese (ja)
Other versions
JPS57112118A (en
Inventor
Yoshihiko Kasai
Mikihiko Yamashina
Taku Gonji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18732280A priority Critical patent/JPS57112118A/en
Publication of JPS57112118A publication Critical patent/JPS57112118A/en
Publication of JPS6317247B2 publication Critical patent/JPS6317247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0533Holders; Supports for bulk acoustic wave devices consisting of wire

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は縦振動モード、屈曲振動モード、輪郭
すべり振動モードで振動する圧電振動子、特に線
支持された圧電振動子の支持構造の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the support structure of a piezoelectric vibrator vibrating in a longitudinal vibration mode, a bending vibration mode, and a contour-sliding vibration mode, particularly a line-supported piezoelectric vibrator.

水晶振動子、圧電セラミツク振動子等の圧電振
動子は機械振動子の有する高Q、高安定の特長を
生かし、各種通信装置の基準周波数発振用素子や
波器素子として多く用いられている。特に水晶
振動子は共振周波数の安定性とあいまつて、人工
水晶の出現により近年時計用の発振素子としても
広く用いられ、通信装置のみならず民生用各種機
器の高性能化、経済化に寄与している。
Piezoelectric resonators such as crystal resonators and piezoelectric ceramic resonators take advantage of the high Q and high stability characteristics of mechanical resonators, and are often used as reference frequency oscillation elements and wave transmitter elements in various communication devices. In particular, crystal oscillators have been widely used as oscillating elements for watches in recent years due to the advent of artificial quartz, coupled with the stability of their resonant frequencies, contributing to the high performance and economicalization of not only communication devices but also various consumer devices. ing.

従来の圧電振動子、特に線支持されたXカツト
縦振動形水晶振動子の概略構造図を第1図に示
す。同図において、水晶振動子片1は水晶振動子
片の両面に形成された電極2とそれぞれに半田等
によつて接合された支持線3′によつて支持され、
さらに支持線3′は基板4に設けられた端子5に
接続されて水晶振動子片の支持がなされている。
FIG. 1 shows a schematic structural diagram of a conventional piezoelectric resonator, particularly a line-supported X-cut longitudinal vibrating type crystal resonator. In the figure, a crystal oscillator piece 1 is supported by electrodes 2 formed on both sides of the crystal oscillator piece and support wires 3' connected to each by soldering or the like.
Further, the support wire 3' is connected to a terminal 5 provided on the substrate 4 to support the crystal resonator piece.

第1図のXカツト縦振動形水晶振動子におい
て、水晶振動子の特長である高Q、高安定特性を
得るため、水晶振動子片の支持線には図中6で示
す半田球等をつけて特性の安定化を計つている。
しかしながらこの半田球6の取付位置の設定は非
常に難かしく、設定が適切でない場合には水晶振
動子の周囲温度が変化すると特定の温度において
共振抵抗が大幅に増大するとともに、共振周波数
もこの温度で異常変化を起す。これは支持線3′
の電極2との取付部から半田球6の位置迄の距離
が長いために支持線の屈曲系共振周波数が特定の
温度において水晶振動子片の共振周波数とほぼ一
致するため水晶振動子の振動エネルギーの一部が
支持線に伝達されるために発生する。
In the X-cut longitudinal oscillation type crystal resonator shown in Figure 1, in order to obtain the high Q and high stability characteristics that are the characteristics of a crystal resonator, solder balls, etc., shown as 6 in the figure, are attached to the support wires of the crystal resonator pieces. We are trying to stabilize the characteristics.
However, it is very difficult to set the mounting position of the solder ball 6, and if the setting is not appropriate, the resonance resistance will increase significantly at a certain temperature when the ambient temperature of the crystal resonator changes, and the resonance frequency will also change at this temperature. causes abnormal changes. This is support line 3'
Since the distance from the attachment point with the electrode 2 to the position of the solder ball 6 is long, the resonant frequency of the bending system of the support wire almost matches the resonant frequency of the crystal resonator piece at a certain temperature, so the vibration energy of the crystal resonator is reduced. This occurs because a portion of this is transmitted to the support line.

このために第1図の水晶振動子の製造において
は、水晶振動子の周囲温度を変化させながら共振
抵抗の調整、すなわち半田球の位置の設定を行い
前述の異常現象が発生しないことを確認しなけれ
ばならず、製造に多くの時間が必要である。
For this reason, in manufacturing the crystal resonator shown in Figure 1, the resonance resistance is adjusted while changing the ambient temperature of the crystal resonator, that is, the position of the solder balls is set, and it is confirmed that the above-mentioned abnormal phenomenon does not occur. It requires a lot of time to manufacture.

一方近年の半導体部品のめざましい発展に伴い
通信装置等はIC化が進み使用する部品の小形化、
特に実装部品の高さは使用するIC及びLSI等と同
等の部品高さが要求され、水晶振動子においても
小形化が強く要望されている。
On the other hand, with the remarkable development of semiconductor components in recent years, the use of ICs in communication devices has progressed, and the parts used have become smaller and smaller.
In particular, the height of mounted components is required to be equivalent to that of the ICs, LSIs, etc. used, and there is also a strong demand for miniaturization of crystal resonators.

第1図に示す従来構造の水晶振動子において、
基板4に対して水晶振動子片1は垂直に配置され
る立体構造のため、図示されていない水晶振動子
のケースを含めた全体を低くするには水晶振動子
片1の幅Wを小さくする必要がある。
In the conventional structured crystal resonator shown in Fig. 1,
Since the crystal resonator piece 1 has a three-dimensional structure arranged perpendicularly to the substrate 4, the width W of the crystal resonator piece 1 is made smaller in order to lower the overall height including the case of the crystal resonator (not shown). There is a need.

一方、縦振動形Xカツト水晶振動子の等価イン
ダクタンスLは1式で示すように水晶振動子の寸
法で決まる。
On the other hand, the equivalent inductance L of a longitudinally vibrating X-cut crystal resonator is determined by the dimensions of the crystal resonator, as shown in equation 1.

L=KLl・t/W〔H〕 ……(1) KL:インダクタンス定数(9.5〜10.1)〔H/mm〕 l:水晶振動子の長さ〔mm〕 W:水晶振動子の幅〔mm〕 t:水晶振動子の厚さ〔mm〕 (1)式で判る様に水晶振動子片の幅Wを小さくす
ると等価インダクタンスLは大きくなる。水晶振
動子の等価インダクタンスは装置の設計等で決ま
るため、幅Wを小さくした場合、厚さtを小さく
して等価インダクタンスを一定にする必要があ
る。なお水晶振動子の長さlは周波数に関係する
ためlを変化させることができない。
L=K L l・t/W [H] ...(1) K L : Inductance constant (9.5 to 10.1) [H/mm] l: Length of crystal resonator [mm] W: Width of crystal resonator [mm] t: Thickness of the crystal resonator [mm] As can be seen from equation (1), the equivalent inductance L increases as the width W of the crystal resonator piece decreases. Since the equivalent inductance of a crystal resonator is determined by the design of the device, etc., when the width W is made small, the thickness t needs to be made small to keep the equivalent inductance constant. Note that the length l of the crystal oscillator is related to the frequency, so it cannot be changed.

上述の手法で水晶振動子のケースを含めた全体
を低くし、小形にすると、水晶振動子片2は幅が
小さく、しかも厚さが薄くなるため、水晶振動子
片の機械的強度が低下し水晶振動子片の研磨・周
波数調整・支持線取付時に破損するなど製造歩留
りの低下が生ずる。
If the entire crystal resonator including the case is lowered and made smaller using the method described above, the crystal resonator piece 2 becomes smaller in width and thinner, which reduces the mechanical strength of the crystal resonator piece. Manufacturing yields decrease due to breakage during polishing, frequency adjustment, and support wire attachment of crystal resonator pieces.

以上説明したように従来構造の線支持形の圧電
振動子は製造が複雑となるほか、小形化を推進す
るには製造歩留の低下が起こる等の欠点がある。
As explained above, the line-support type piezoelectric vibrator having the conventional structure is complicated to manufacture, and has drawbacks such as a reduction in manufacturing yield when miniaturization is promoted.

本発明は前述の欠点に鑑みなされたもので、線
支持形圧電振動子片を中央部に穴を有する矩形状
の支持枠の中央部の穴部分に挿入し、振動子電極
に取り付けられた支持線を支持枠に形成された金
属膜導体部に固定した後、基板に取付けられてい
る外部取り出し端子に前述の支持枠の金属膜導体
部を利用して基板と固定接続するようにしたもの
であつて、支持線の共振を防止するための半田球
を使うことなく特性の安定化を計り、製造を容易
にするとともに、基板と振動子片との互いの面を
対向する如く平行に配置する平面構造を実現し、
従来と同一寸法の圧電振動子を用いて小形でしか
も製造性の良い圧電振動子を提供するものであ
る。
The present invention has been made in view of the above-mentioned drawbacks, and involves inserting a wire-supported piezoelectric vibrator piece into a hole in the center of a rectangular support frame having a hole in the center. After the wire is fixed to the metal film conductor formed on the support frame, the metal film conductor of the support frame mentioned above is used to make a fixed connection to the external output terminal attached to the board. In order to stabilize the characteristics without using solder balls to prevent resonance of the support wire, and to facilitate manufacturing, the substrate and the vibrator piece are arranged in parallel so that their surfaces face each other. Achieves a flat structure,
The present invention provides a piezoelectric vibrator that is small and easy to manufacture using a piezoelectric vibrator having the same dimensions as the conventional piezoelectric vibrator.

以下図面を参照しながら本発明に係る圧電振動
子の実施例について詳細に説明する。
Embodiments of the piezoelectric vibrator according to the present invention will be described in detail below with reference to the drawings.

第2図は本発明を第1図と同様Xカツト縦振動
形水晶振動子に応用した一実施例を示す斜視図で
ある。図において、1は両面に電極2がそれぞれ
形成(図は一方のみ示す)された方形の水晶振動
子片、3は直線状の導電性金属細線からなる支持
線で、この支持線3はそれぞれ一方の端は水晶振
動子片1の長さ方向並びに幅方向の中央部におい
て両面の電極2と半田等の接合材で接合植立さ
れ、他端は本発明のセラミツク材料等から作られ
た支持枠7にその端面に蒸着、スパツタリング等
で導電膜パターンとして形成された金属膜導体8
と半田等で接合固定されている。この場合水晶振
動子片1の一方は支持枠7の内部空間の穴9に非
接触状態で挿入されている。
FIG. 2 is a perspective view showing an embodiment in which the present invention is applied to an X-cut longitudinally vibrating crystal resonator as in FIG. 1. In the figure, 1 is a rectangular crystal resonator piece with electrodes 2 formed on both sides (only one side is shown in the figure), 3 is a support line made of a straight conductive metal thin wire, and each support line 3 is on one side. The ends of the crystal resonator piece 1 are connected to the electrodes 2 on both sides at the center in the longitudinal and width directions using a bonding material such as solder, and the other end is attached to a support frame made of the ceramic material of the present invention. A metal film conductor 8 is formed as a conductive film pattern on the end face of 7 by vapor deposition, sputtering, etc.
It is joined and fixed with solder, etc. In this case, one side of the crystal resonator piece 1 is inserted into the hole 9 in the internal space of the support frame 7 in a non-contact state.

さらに、水晶振動子片1が取り付けられた支持
枠7は、基板4に貫通して設けられている外部取
り出し用端子5と前述の支持枠7の金属膜導体8
の一端とを半田等の導電性接合材で固定取着して
いる。なおこのとき水晶振動子片1の一方の電極
面と基板4の面とが互いに対向する如く、即ちほ
ぼ平行になるように位置せしめられる。
Further, the support frame 7 to which the crystal resonator piece 1 is attached has an external extraction terminal 5 provided through the substrate 4 and a metal film conductor 8 of the support frame 7 described above.
It is fixedly attached to one end using a conductive bonding material such as solder. At this time, one electrode surface of the crystal resonator piece 1 and the surface of the substrate 4 are positioned so as to face each other, that is, to be substantially parallel to each other.

第3図は上記説明を理解しやすくするため、第
2図の矢印A方向から見た正面図である。なお支
持枠7の金属膜導体8は水晶振動子片1の支持線
3の固定と、外部引出し端子5と、支持枠7の固
定の機械的保持の他、水晶振動子片1に外部から
電界を印加するための電気的結線の役割りをして
いるので銀、金等からなる良導体で形成されてい
る。
FIG. 3 is a front view seen from the direction of arrow A in FIG. 2 in order to make the above explanation easier to understand. The metal film conductor 8 of the support frame 7 is used not only to mechanically hold the support wire 3 of the crystal resonator piece 1 and to fix the external lead terminal 5 and the support frame 7, but also to apply an electric field to the crystal resonator piece 1 from the outside. Since it plays the role of electrical connection for applying voltage, it is made of a good conductor made of silver, gold, etc.

第2図の本発明になる水晶振動子においては第
1図にみられるような半田球は使用していない。
これは図からも明確であるように、支持線3が直
線形状をしているために支持線の折り曲げによつ
て生ずる支持線の屈曲振動の発生がなく、さらに
水晶振動子電極2との固定部から支持枠7の金属
膜導体8との固定部間の支持線3の長さを短くす
ることができ、支持線の縦振動、捩り振動等の共
振周波数を輪郭圧電振動子の共振周波数よりも十
分に高くできるためである。
The crystal resonator according to the present invention shown in FIG. 2 does not use solder balls as shown in FIG. 1.
As is clear from the figure, since the support wire 3 has a linear shape, there is no bending vibration of the support wire caused by bending the support wire, and furthermore, the support wire 3 is fixed to the crystal resonator electrode 2. The length of the support wire 3 between the fixed portion and the metal film conductor 8 of the support frame 7 can be shortened, and the resonant frequency of longitudinal vibration, torsional vibration, etc. of the support wire can be made lower than the resonant frequency of the contour piezoelectric vibrator. This is because it can be made sufficiently high.

この結果、従来構造の線支持形圧電振動子に見
られる様な特定温度における共振抵抗の増大、共
振周波数の異常変化の発生を半田球を使用するこ
となく抑圧でき、抵抗調整工程を削除して製造の
簡略化ができる。
As a result, it is possible to suppress the increase in resonant resistance at a certain temperature and the occurrence of abnormal changes in resonant frequency, which are observed in wire-supported piezoelectric vibrators with conventional structures, without using solder balls, and eliminate the resistance adjustment process. Manufacturing can be simplified.

第4図に従来構造の水晶振動子の半田球無しを
曲線イ、同じく半田球付きを曲線ロ、本発明水晶
振動子の曲線をハとして、それぞれについての共
振抵抗および共振周波数の温度特性を示す。図中
のBは支持線の屈曲系共振による共振抵抗、共振
周波数の異常変化を示している。
Figure 4 shows the temperature characteristics of the resonant resistance and resonant frequency for a crystal resonator with a conventional structure, curve A without solder balls, curve B with solder balls, and curve C for the crystal resonator of the present invention. . B in the figure indicates an abnormal change in resonance resistance and resonance frequency due to bending system resonance of the support wire.

さらに本発明の支持枠の使用により基板4と水
晶振動子片1とは平行に配置することができ、通
信装置等のIC化、LSI化等に整合した部品高さを
低く扁平とした小形な圧電振動子が製造性よく容
易に実現できる。
Furthermore, by using the support frame of the present invention, the substrate 4 and the crystal resonator piece 1 can be arranged parallel to each other. A piezoelectric vibrator can be easily realized with good manufacturability.

以上Xカツト縦振動形水晶振動子の実施例につ
いて説明したが、本発明は線支持形のDTカツト
輪郭すべり水晶振動子、CTカツト輪郭すべり水
晶振動子の他、圧電セラミツクを用いた縦振動子
や、バイモルフ形屈曲振動子にも全く同様の構造
で適用ができる。また本発明は上述の実施例に限
らず、例えば支持枠はセラミツク以外に硝子材等
電気絶縁材からなり、基板との接合面を接着剤
で、例えばメタライズして半田等で接着し取着し
てもよく、同様なことは支持枠主体を金属として
端面に絶縁板或いは絶縁層を一体化するとともに
導電膜パターンを形成したことであつてもよい。
このようにすれば基板への取着が確実となる。そ
のほか導電膜パターン等の形成も印刷焼付による
こともできる。なお、本願説明中、説明を理解さ
れ易くするために要部以外の例えば基板に被着さ
れるケース等は省略した。
Although the embodiments of the X-cut longitudinal oscillation type crystal resonator have been described above, the present invention is applicable to line-supported DT cut contour slip crystal resonators, CT cut contour slip crystal resonators, as well as longitudinal resonators using piezoelectric ceramics. The same structure can also be applied to a bimorph bending vibrator. Furthermore, the present invention is not limited to the above-described embodiments; for example, the support frame may be made of an electrically insulating material such as glass material in addition to ceramics, and the surface to be joined to the substrate may be attached with an adhesive, for example, metallized and bonded with solder or the like. Alternatively, the support frame may be made mainly of metal, and an insulating plate or an insulating layer may be integrated on the end face, and a conductive film pattern may be formed thereon.
In this way, attachment to the board can be ensured. In addition, the conductive film pattern etc. can also be formed by printing and baking. In addition, during the description of the present application, in order to make the description easier to understand, parts other than the main parts, such as the case attached to the substrate, are omitted.

以上本発明の圧電振動子は各種装置のIC化、
LSI化に整合した小形の圧電振動子を製造工程の
簡略化等により、経済的にしかも高性能化するこ
とができ、その工業的な価値は絶大なるものであ
る。
As described above, the piezoelectric vibrator of the present invention can be used to integrate various devices into ICs,
By simplifying the manufacturing process, a small piezoelectric vibrator compatible with LSI can be made economically and with high performance, and its industrial value is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の縦振動形水晶振動子の要部概略
斜視図、第2図は本発明に係る縦振動形水晶振動
子の一実施例を要部のみ示す概略斜視図、第3図
は第2図のA矢視図、第4図は従来構造の水晶振
動子の半田球無しと有の場合ならびに本発明の水
晶振動子の共振抵抗および共振周波数の温度変化
特性を示した特性図である。 図中、1は水晶振動子片、2は電極、3,3′
は支持線、4は基板、6は半田球、7は支持枠、
8は金属膜導体、9は穴を示し、全図をとおして
同一部分には同一符号を付して示した。
FIG. 1 is a schematic perspective view of the main parts of a conventional longitudinally vibrating crystal resonator, FIG. 2 is a schematic perspective view showing only the main parts of an embodiment of the longitudinally vibrating crystal resonator according to the present invention, and FIG. A view taken in the direction of arrow A in Fig. 2, and Fig. 4 are characteristic diagrams showing the temperature change characteristics of the resonant resistance and resonant frequency of the crystal resonator of the conventional structure with and without solder balls, and of the crystal resonator of the present invention. be. In the figure, 1 is a crystal resonator piece, 2 is an electrode, 3, 3'
is the support line, 4 is the board, 6 is the solder ball, 7 is the support frame,
Reference numeral 8 indicates a metal film conductor, and reference numeral 9 indicates a hole, and the same parts are given the same reference numerals throughout the figures.

Claims (1)

【特許請求の範囲】 1 両面に電極がそれぞれ形成された方形の圧電
振動子片と、前記圧電振動子片の長さ方向並びに
幅方向の中央部において前記電極にそれぞれ植立
される導電性金属細線からなる支持線と、枠形を
してその内部空間に前記圧電振動子片を挿入する
とともに該枠形端面に形成された導電膜パターン
に前記支持線の端部をそれぞれ接合支持する支持
枠と、前記支持枠を取着する基板とよりなり、前
記圧電振動子片の一方の電極面と前記基板の面と
が対向する如くにしてなることを特徴とする圧電
振動子。 2 前記支持枠が絶縁体でなることを特徴とする
特許請求の範囲第1項に記載の圧電振動子。 3 前記支持枠が該支持枠の導電膜パターンと前
記基板に設けられた端子にそれぞれ接合取着され
ることを特徴とする特許請求の範囲第1項に記載
の圧電振動子。 4 前記支持枠が前記基板と接着剤等により固定
されたことを特徴とする特許請求の範囲第1項お
よび第2項に記載の圧電振動子。
[Scope of Claims] 1. A rectangular piezoelectric vibrator piece with electrodes formed on both sides, and a conductive metal embedded in each of the electrodes at the center of the piezoelectric vibrator piece in the length direction and width direction. A support line made of a thin wire, and a frame-shaped support frame into which the piezoelectric vibrator piece is inserted, and the ends of the support wire are bonded and supported to conductive film patterns formed on the end faces of the frame shape. and a substrate to which the support frame is attached, the piezoelectric vibrator comprising one electrode surface of the piezoelectric vibrator piece and a surface of the substrate facing each other. 2. The piezoelectric vibrator according to claim 1, wherein the support frame is made of an insulator. 3. The piezoelectric vibrator according to claim 1, wherein the support frame is bonded and attached to a conductive film pattern of the support frame and a terminal provided on the substrate, respectively. 4. The piezoelectric vibrator according to claims 1 and 2, wherein the support frame is fixed to the substrate using an adhesive or the like.
JP18732280A 1980-12-29 1980-12-29 Piezooscillator Granted JPS57112118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18732280A JPS57112118A (en) 1980-12-29 1980-12-29 Piezooscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18732280A JPS57112118A (en) 1980-12-29 1980-12-29 Piezooscillator

Publications (2)

Publication Number Publication Date
JPS57112118A JPS57112118A (en) 1982-07-13
JPS6317247B2 true JPS6317247B2 (en) 1988-04-13

Family

ID=16203973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18732280A Granted JPS57112118A (en) 1980-12-29 1980-12-29 Piezooscillator

Country Status (1)

Country Link
JP (1) JPS57112118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352926Y2 (en) * 1987-02-23 1991-11-18
JPH0374750B2 (en) * 1987-03-27 1991-11-27

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352926Y2 (en) * 1987-02-23 1991-11-18
JPH0374750B2 (en) * 1987-03-27 1991-11-27

Also Published As

Publication number Publication date
JPS57112118A (en) 1982-07-13

Similar Documents

Publication Publication Date Title
US9923544B2 (en) Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
JP4221756B2 (en) Piezoelectric oscillator and manufacturing method thereof
US4418299A (en) Face-shear mode quartz crystal vibrators and method of manufacture
JP4665282B2 (en) AT cut crystal unit
US5436523A (en) High frequency crystal resonator
JPS583602B2 (en) Suishiyo Shindoushi
JP2013042440A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP3262007B2 (en) Energy trap type thickness-slip resonator and electronic components using this resonator
JP5824958B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP2002009576A (en) Piezoelectric device and its package structure
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JPS6141215A (en) Crystal resonator
JPS6317247B2 (en)
JP3266031B2 (en) Piezoelectric resonator and electronic component using the same
JPS6144408B2 (en)
JPS59119911A (en) Piezoelectric oscillator
JP2002064356A (en) Piezoelectric vibrator
JP4513150B2 (en) High frequency piezoelectric vibrator
JP4020031B2 (en) Piezoelectric vibrating piece, piezoelectric device using the piezoelectric vibrating piece, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device
JPH08204496A (en) Piezoelectric vibration component
JPH11274889A (en) Holding mechanism for crystal piece
JP5071164B2 (en) Electronic device and method for manufacturing electronic device
WO2023026835A1 (en) Crystal vibration element and crystal device
JPS6016108Y2 (en) Tuning fork crystal oscillator
JPH026657Y2 (en)