JPS63170803A - Manufacture of non-reducing dielectric ceramic - Google Patents

Manufacture of non-reducing dielectric ceramic

Info

Publication number
JPS63170803A
JPS63170803A JP62002996A JP299687A JPS63170803A JP S63170803 A JPS63170803 A JP S63170803A JP 62002996 A JP62002996 A JP 62002996A JP 299687 A JP299687 A JP 299687A JP S63170803 A JPS63170803 A JP S63170803A
Authority
JP
Japan
Prior art keywords
dielectric constant
dielectric
mol
temperature
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62002996A
Other languages
Japanese (ja)
Inventor
西岡 吾朗
修司 渡部
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP62002996A priority Critical patent/JPS63170803A/en
Priority to US07/141,999 priority patent/US4988468A/en
Priority to DE3800198A priority patent/DE3800198C2/en
Publication of JPS63170803A publication Critical patent/JPS63170803A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は非還元性誘電体磁器の製造方法に関し、特に
たとえば積層コンデンサなどの誘電体材料として用いら
れる非還元性誘電体磁器の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing non-reducible dielectric ceramics, and particularly relates to a method for manufacturing non-reducible dielectric ceramics used as dielectric materials such as multilayer capacitors. .

(従来技術) 従来、積層コンデンサを製造する際には、その上面にた
とえば印刷することによって内部電極となる金属粉末層
が形成された誘電体グリーンシートを、複数枚積み重ね
て圧着、一体化した後、その一体化物を焼成するという
工程が採用されている。
(Prior art) Conventionally, when manufacturing a multilayer capacitor, a plurality of dielectric green sheets, each of which has a metal powder layer that will become an internal electrode by printing on its top surface, are stacked, crimped, and integrated. , a process of firing the integrated product is adopted.

(発明が解決しようとする問題点) 従来の誘電体磁器は、低酸素分圧下で焼成すると還元さ
れ、その比抵°抗が著しく劣化するという性質を有して
いた。このため、その焼成は空気中等の高酸素分圧下で
、たとえば1,300℃以上の高い温度で行われていた
。したがって、このような熱処理条件に耐え得る内部電
極の材料として、たとえばパラジウム、白金などの貴金
属を用いなければならなく、そのため、製造される積層
コンデンサの大容量化および低価格化の大きな妨げとな
っていた。
(Problems to be Solved by the Invention) Conventional dielectric ceramics have the property that when fired under low oxygen partial pressure, they are reduced and their specific resistance deteriorates significantly. For this reason, the firing was performed under high oxygen partial pressure in air or the like at a high temperature of, for example, 1,300° C. or higher. Therefore, noble metals such as palladium and platinum must be used as materials for the internal electrodes that can withstand such heat treatment conditions, which is a major hindrance to increasing the capacity and lowering the price of manufactured multilayer capacitors. was.

そこで、本発明者らは、上述の問題を解決するために、
たとえばニッケルなどの卑金属を内部電極の材料として
使用することができるように、低酸素分圧下で焼成して
も還元されず高い比抵抗を有する誘電体磁器を創作した
。この誘電体磁器として、特公昭56−46641号公
報には、((Ba、 Ca)01 m  ・(Ti、 
Zr)02よりなる固溶体が開示されている。しかしな
がら、この公報に開示されている製造方法で製造された
誘電体磁器では、その磁器組成物が焼結過程で一様な固
溶体をなすため、そのキュリ一点が単一となり、そのた
め、その誘電率の温度変化率が大きかった。
Therefore, in order to solve the above-mentioned problem, the present inventors
For example, we created dielectric porcelain that does not reduce even when fired under low oxygen partial pressure and has a high specific resistance so that base metals such as nickel can be used as materials for internal electrodes. As this dielectric porcelain, Japanese Patent Publication No. 56-46641 describes ((Ba, Ca)01 m ・(Ti,
A solid solution consisting of Zr)02 is disclosed. However, in the dielectric porcelain manufactured by the manufacturing method disclosed in this publication, since the porcelain composition forms a uniform solid solution during the sintering process, the Curie point is single, and therefore the dielectric constant The rate of temperature change was large.

そこで、本発明者は、鋭意努力の結果、BaTiO3に
Zr0zおよびCaO等を焼結過程で完全には固溶させ
ないことによって、誘電率の温度変化率を小さくするこ
とができることを見出した。
As a result of diligent efforts, the inventors of the present invention have found that the temperature change rate of the dielectric constant can be reduced by not completely dissolving Zr0z, CaO, etc. in BaTiO3 during the sintering process.

それゆえに、この発明の主たる目的は、非酸化性雰囲気
中で焼成しても、還元されて半導体化することなく高い
比抵抗を示し、かつ、高い誘電率を有し、しかも、誘電
率の温度変化率が小さい非還元性誘電体磁器を製造する
ことができる、非還元性誘電体磁器の製造方法を提供す
ることである。
Therefore, the main object of the present invention is to exhibit a high resistivity without being reduced and turned into a semiconductor even when fired in a non-oxidizing atmosphere, and to have a high dielectric constant, and also to It is an object of the present invention to provide a method for manufacturing non-reducible dielectric ceramics that can manufacture non-reducible dielectric ceramics with a small rate of change.

(問題点を解決するための手段) この発明は、BaOとTiO□とのモル比がBaO/T
iO2比で1.002〜1.05の範囲にある仮焼され
たBaTxOz、仮焼された等モル比のCaTi0.お
よび仮焼された等モル比のCaZrOsを、BaTiO
3が82゜0〜93.0モル%、CaTiOxが6.0
〜14.0モル%、およびCaZr0iが1.0〜8.
0モル%の範囲で配合したものを主成分として準備し、
主成分100モル部に、副成分としてマンガン酸化物お
よび二酸化けい素を、それぞれ、MnO□および5iO
7に換算して、MnO,が0.1〜4.0モル部、およ
びSin、が0.1〜3.0モル部の範囲で添加し、さ
らに、主成分に副成分を添加したものを焼成する、非還
元性誘電体磁器の製造方法である。
(Means for solving the problem) This invention provides that the molar ratio of BaO and TiO□ is BaO/T
Calcined BaTxOz with iO2 ratio in the range of 1.002-1.05, calcined CaTi0. and calcined CaZrOs in equimolar ratios, BaTiO
3 is 82°0 to 93.0 mol%, CaTiOx is 6.0
~14.0 mol%, and CaZr0i is 1.0~8.
Prepared as the main ingredient in a range of 0 mol%,
MnO□ and 5iO
7, MnO is added in a range of 0.1 to 4.0 mol parts, and Sin is added in a range of 0.1 to 3.0 mol parts, and a subcomponent is added to the main component. This is a method for producing non-reducible dielectric ceramics by firing.

(発明の効果) この発明によれば、非酸化性雰囲気中でたとえば1,2
70〜1,360℃の温度で焼成しても、還元されて半
導体化することなく10”9口以上の高い比抵抗を示し
、3,000以上の高い誘電率をもち、しかも、−55
℃〜+125℃の広い温度範囲において誘電率の温度変
化率が一15%〜+15%の範囲と小さい、非還元性誘
電磁器を製造することができる。
(Effect of the invention) According to the invention, for example, 1,2
Even when fired at a temperature of 70 to 1,360°C, it does not reduce and become a semiconductor, exhibiting a high specific resistance of 10"9 or more, and a high dielectric constant of 3,000 or more, and -55
It is possible to produce a non-reducible dielectric ceramic whose temperature change rate of dielectric constant is as small as 115% to +15% over a wide temperature range of 125°C to 125°C.

また、この発明の実施例によれば、さらに、誘電損失が
1.00%未満と小さく、かつ、+20℃の温度におけ
る誘電率を基準とした一25℃〜+85℃の温度範囲に
おける誘電率の温度変化率が±10%未満と小さい、優
れた特性が得られた。
Further, according to the embodiment of the present invention, the dielectric loss is as small as less than 1.00%, and the dielectric constant in the temperature range of -25°C to +85°C is based on the dielectric constant at +20°C. Excellent characteristics were obtained with a small temperature change rate of less than ±10%.

したがって、高い誘電率、低い誘電損失および良好な誘
電率温度特性をすべて満足し、かつ、小型で大容量のコ
ンデンサの誘電体材料などとして極めて有用な非還元性
誘電体磁器を製造することができる。しかも、この非還
元性誘電体磁器をたとえば積層セラミックコンデンサの
誘電体材料として用いれば、たとえばニッケルなどの卑
金属を内部電極とした安価な積層セラミックコンデンサ
を得ることができる。
Therefore, it is possible to produce a non-reducible dielectric ceramic that satisfies all of high permittivity, low dielectric loss, and good permittivity-temperature characteristics, and is extremely useful as a dielectric material for small, large-capacity capacitors. . Moreover, if this non-reducible dielectric ceramic is used as a dielectric material for a multilayer ceramic capacitor, for example, an inexpensive multilayer ceramic capacitor can be obtained in which internal electrodes are made of a base metal such as nickel.

この発明の上述の目的、その他の目的、特徴および利点
は、以下の実施例の詳細な説明から一層明らかとなろう
The above objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments.

(実施例) まず、BaCO3とTi0zとを、BaCO3/TiO
2が1゜002〜1.05の範囲になるように秤量し、
それらをボールミルで十分に混合して、この混合物を1
200℃で1時間仮焼した後微粉砕して、BaTiO3
を得た。
(Example) First, BaCO3 and TiOz were mixed into BaCO3/TiO
Weigh so that 2 is in the range of 1°002 to 1.05,
Mix them thoroughly with a ball mill and make 1
After calcining at 200℃ for 1 hour, finely pulverized to form BaTiO3
I got it.

これと同様にして、等モルのCaC0,およびTi0z
から仮焼、微粉砕されたCaTtOsの粉末と、等モル
のCaC0,およびZr0zから仮焼、微粉砕されたC
aZr(hの粉末とを、それぞれ得た。
Similarly, equimolar amounts of CaC0 and Ti0z
CaTtOs powder calcined and finely pulverized from CaTtOs and equimolar CaC0, and calcined and finely pulverized C from Zr0z.
aZr (h powder) was obtained.

これらの粉末のX−ray回折像により、これらの粉末
が均一な結晶性を有することを確認した。
The X-ray diffraction images of these powders confirmed that these powders had uniform crystallinity.

このようにして得られたBaTi0=、 CaTiO3
およびCaZrO3の各粉末と、MnO,および5iO
tとを、別表1に示した組成比率の誘電体が得られるよ
うに秤量した。なお、表1では、この発明の範囲外の組
成比の数値に下線を付した。
BaTi0=, CaTiO3 thus obtained
and each powder of CaZrO3, MnO, and 5iO
t and were weighed so as to obtain a dielectric having the composition ratio shown in Attached Table 1. In Table 1, numerical values of composition ratios outside the scope of the present invention are underlined.

さらに、この秤量原料に酢酸ビニル系有機バインダ5重
量%を加えて湿式混合してから、蒸発。
Furthermore, 5% by weight of a vinyl acetate organic binder was added to this weighed raw material, wet mixed, and then evaporated.

乾燥および整粒の工程を経て粉末を得た。そして、この
粉末を2000 kg/cdの圧力で直径10鶴。
A powder was obtained through drying and sizing steps. This powder was then compressed into a diameter of 10 pieces under a pressure of 2000 kg/cd.

厚さ111に成形して成形物を得た。A molded product was obtained by molding to a thickness of 111 mm.

この成、彫物を、ジルコニア粉末を敷粉としてアルミナ
質の匣に入れて、H,/Nアの体積比率が3/100の
還元性ガス雰囲気中において、l。
This completed carving was placed in an alumina box with zirconia powder as a dusting powder, and placed in a reducing gas atmosphere with a volume ratio of H,/NA of 3/100.

270℃〜1,360℃の温度で焼成して、素子を得た
A device was obtained by firing at a temperature of 270° C. to 1,360° C.

得られた素子の両面に、In −Ga合金を塗布して、
電極を形成し、各試料を得た。
Applying In-Ga alloy to both sides of the obtained element,
Electrodes were formed and each sample was obtained.

そして、各試料の誘電率ε、誘電損失tan δ。Then, the dielectric constant ε and dielectric loss tan δ of each sample.

誘電率の温度変化率および比抵抗の電気的特性を次の条
件で測定した。
The electrical characteristics of the temperature change rate of dielectric constant and specific resistance were measured under the following conditions.

誘電率εおよび誘電損失tan δは、1kHzの周波
数で25℃の温度で測定した。
The dielectric constant ε and the dielectric loss tan δ were measured at a frequency of 1 kHz and a temperature of 25°C.

誘電率の温度変化率は、+25℃の温度における誘電率
を基準とした一55℃〜+125℃の温度範囲の誘電率
の温度変化率(Δc / C25)と、+20℃の温度
における誘電率を基準とした一25℃〜+85℃の温度
範囲の誘電率の温度変化率(ΔC/ C2゜)とを、そ
れぞれ測定した。
The temperature change rate of the dielectric constant is the temperature change rate of the dielectric constant (Δc/C25) in the temperature range of -55℃ to +125℃ based on the dielectric constant at a temperature of +25℃, and the dielectric constant at a temperature of +20℃. The temperature change rate (ΔC/C2°) of the dielectric constant was measured in a temperature range of −25° C. to +85° C. as a reference.

比抵抗は、25℃の温度において、DC,500Vを2
分間印加した後測定した。
Specific resistance is DC, 500V at 25°C.
Measurements were taken after applying the voltage for a minute.

上述の測定結果を別表2に示した。なお、表2では、特
性の悪い数値に下線を付した。この場合、誘電率εにつ
いては3,000未満のものを、誘電損失tan δに
ついては1%以上のものを、誘電率の温度変化率(ΔC
/Czs)については−15〜+15%の範囲外のもの
を、誘電率の温度変化率(ΔC/C26)については−
10〜+10%の範囲外のものを、比抵抗については1
012Ω・cm未満のものを、それぞれ、特性の悪いも
のとして示した。
The above measurement results are shown in Attached Table 2. In Table 2, numerical values with poor characteristics are underlined. In this case, the dielectric constant ε is less than 3,000, the dielectric loss tan δ is 1% or more, and the temperature change rate of the dielectric constant (ΔC
/Czs) outside the range of -15 to +15%, and temperature change rate of dielectric constant (ΔC/C26) -
Those outside the range of 10 to +10%, 1 for specific resistance
Those with a value of less than 0.012 Ω·cm were respectively shown as having poor characteristics.

つまり、試料番号1のように、主成分として使用したB
aTiO3において、BaO/TiO□のモル比カ月、
002未満であると、還元焼成により比抵抗が小さくな
りまた誘電率の温度変化率が大きくなる。
In other words, as in sample number 1, B used as the main component
In aTiO3, the molar ratio of BaO/TiO□ is
If it is less than 002, the specific resistance becomes small due to reduction firing and the temperature change rate of the dielectric constant becomes large.

一方、試料番号4のように、BaO/Hotのモル比が
1.05をを超えると、誘電率が小さくなりかつ焼結性
が悪くなる。
On the other hand, when the BaO/Hot molar ratio exceeds 1.05, as in Sample No. 4, the dielectric constant becomes small and the sinterability deteriorates.

また、試料番号8のようにBaTi0.が82モル%未
満では誘電率が小さくなり、試料番号10のようにBa
Ti0iA’ 93モル%を超えると誘電率の温度特性
が悪(なる。
In addition, as in sample number 8, BaTi0. When Ba is less than 82 mol%, the dielectric constant becomes small, and Ba
If TiOiA' exceeds 93 mol%, the temperature characteristics of the dielectric constant will be poor.

試料番号5およびlOのようにCaTiO3が6モル%
未満であると誘電率の温度変化率が一15%を超え、試
料番号7のようにCaTi0.が14モル%を超えると
誘電率が小さくなる。
CaTiO3 is 6 mol% like sample number 5 and lO
If it is less than 1, the temperature change rate of dielectric constant exceeds 115%, and as in sample number 7, CaTi0. If it exceeds 14 mol%, the dielectric constant becomes small.

また、試料番号6のようにCaZr0aが1モル%未満
であると誘電率の温度変化率が一15%を超え、試料番
号9のようにCaZr0iが8モル%を超えると誘電率
が小さくなる。
Further, when CaZr0a is less than 1 mol% as in Sample No. 6, the temperature change rate of the dielectric constant exceeds 115%, and when CaZr0i exceeds 8 mol% as in Sample No. 9, the dielectric constant becomes small.

一方、試料番号19のようにMnO,が0.1モル部未
満であると誘電率が小さくなりかつ誘電率の温度特性が
悪くなり、試料番号22のようにMnO□が4モル部を
超えると誘電率が小さくなる。
On the other hand, when MnO is less than 0.1 mol part as in sample number 19, the dielectric constant becomes small and the temperature characteristics of the dielectric constant become poor, and when MnO□ exceeds 4 mol parts as in sample number 22. Dielectric constant decreases.

試料番号23のようにSiO□が0.1モル部未満であ
ると、焼結性が低下しかつ誘電率の温度変化率が大きく
なり、試料番号26のようにSiO□が3モル部を超え
ると、誘電率が小さくなりかつ誘電率の温度変化率が大
きくなる。
When SiO □ is less than 0.1 mol part as in sample number 23, the sinterability decreases and the temperature change rate of the dielectric constant increases, and as in sample number 26, SiO □ exceeds 3 mol parts. Then, the dielectric constant becomes small and the rate of change of the dielectric constant with temperature becomes large.

また、参照例として特公昭56−46641号公報に開
示されているように、BaTiO3,CaTiO3およ
びCaZr0iの各成分を経ることなく作成した((B
a、 Ca)0) m  ・(Ti、 Zr)Ozより
なる固溶体の組成と、その誘電率、誘電損失、誘電率の
温度変化率および比抵抗とを、それぞれ、別表1と別表
2とに試料番号28として示した。この試料番号28に
対応する本発明の実施例の組成およびその電気的特性を
、別表1および別表2に、試料番号27として示した。
In addition, as a reference example, as disclosed in Japanese Patent Publication No. 56-46641, BaTiO3, CaTiO3, and CaZr0i were prepared without passing through each component ((B
a, Ca)0) The composition of the solid solution consisting of m ・(Ti, Zr)Oz, its dielectric constant, dielectric loss, temperature change rate of dielectric constant, and specific resistance are shown in Attached Table 1 and Attached Table 2, respectively. It is shown as number 28. The composition and electrical characteristics of an example of the present invention corresponding to sample number 28 are shown as sample number 27 in Attached Tables 1 and 2.

なお、特公昭56−46641号公報においては副成分
を含有していないが、試料番号28については副成分と
してMnO2,5tQzをそれぞれ1モル部、2モル部
添加含有させた。
In addition, although no subcomponent was contained in Japanese Patent Publication No. 56-46641, sample No. 28 contained 1 mol part and 2 mol part of MnO2, 5tQz as a subcomponent, respectively.

試料番号27および28の結果を比較して明らかなよう
に、試料番号28では、単一固溶体をなし誘電率が低く
、単一のキュリ一点をもつため誘電率の温度変化率が大
きいという欠点を有しているが、それに対して、本発明
の範囲内の試料番号27では、高い誘電率と平坦な誘電
率の温度変化率を示すことがわかる。
As is clear from comparing the results of sample numbers 27 and 28, sample number 28 is a single solid solution, has a low dielectric constant, and has a single Curie point, so it has the disadvantage that the rate of change in dielectric constant with temperature is large. However, in contrast, it can be seen that sample number 27 within the scope of the present invention exhibits a high dielectric constant and a flat temperature change rate of the dielectric constant.

さらに、別表2から明らかなように、本発明に−よれば
、誘電率が3.000以上で、誘電損失が1.00%未
満で、しかも、+25℃の温度における誘電率を基準と
した一55℃〜+125℃の温度範囲の誘電率の温度変
化率が±15%未満であり、かつ、+20℃の温度にお
ける誘電率を基準とした一25℃〜+85℃の温度範囲
の誘電率の温度変化率が±10%未満である、優れた特
性が得られることがわかる。
Further, as is clear from Attached Table 2, according to the present invention, the dielectric constant is 3.000 or more, the dielectric loss is less than 1.00%, and the dielectric constant at a temperature of +25°C is The temperature change rate of the dielectric constant in the temperature range of 55°C to +125°C is less than ±15%, and the temperature of the dielectric constant in the temperature range of -25°C to +85°C based on the dielectric constant at a temperature of +20°C. It can be seen that excellent characteristics with a change rate of less than ±10% can be obtained.

特許出願人 株式会社 村田製作所 代理人 弁理士 岡 1) 全 啓 (ほか1名)Patent applicant Murata Manufacturing Co., Ltd. Agent: Patent Attorney Oka 1) Zenhiro (1 other person)

Claims (1)

【特許請求の範囲】 BaOとTiO_2とのモル比がBaO/TiO_2比
で1.002〜1.05の範囲にある仮焼されたBaT
iO_3、仮焼された等モル比のCaTiO_3および
仮焼された等モル比のCaZrO_3を、 BaTiO_3が82.0〜93.0モル%、CaTi
O_3が6.0〜14.0モル%、およびCaZrO_
3が1.0〜8.0モル% の範囲で配合したものを主成分として準備し、前記主成
分100モル部に、副成分としてマンガン酸化物および
二酸化けい素を、それぞれ、MnO_2およびSiO_
2に換算して、 MnO_2が0.1〜4.0モル部、およびSiO_2
が0.1〜3.0モル部 の範囲で添加し、さらに 前記主成分に前記副成分を添加したものを焼成する、非
還元性誘電体磁器の製造方法。
[Claims] Calcined BaT in which the molar ratio of BaO and TiO_2 is in the range of 1.002 to 1.05 in terms of BaO/TiO_2 ratio.
iO_3, calcined CaTiO_3 in an equimolar ratio and calcined CaZrO_3 in an equimolar ratio, BaTiO_3 is 82.0-93.0 mol%, CaTi
O_3 is 6.0 to 14.0 mol%, and CaZrO_
MnO_2 and SiO_
2, MnO_2 is 0.1 to 4.0 mol parts, and SiO_2
A method for producing non-reducible dielectric porcelain, which comprises adding 0.1 to 3.0 mole parts of the main component and firing the subcomponent added to the main component.
JP62002996A 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic Pending JPS63170803A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62002996A JPS63170803A (en) 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic
US07/141,999 US4988468A (en) 1987-01-08 1988-01-06 Method for producing non-reducible dielectric ceramic composition
DE3800198A DE3800198C2 (en) 1987-01-08 1988-01-07 Process for making a non-reducible dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002996A JPS63170803A (en) 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic

Publications (1)

Publication Number Publication Date
JPS63170803A true JPS63170803A (en) 1988-07-14

Family

ID=11544989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002996A Pending JPS63170803A (en) 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic

Country Status (1)

Country Link
JP (1) JPS63170803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022064A1 (en) * 2011-08-11 2013-02-14 株式会社村田製作所 Dielectric ceramic, layered ceramic electronic part, layered ceramic capacitor, and method for producing layered ceramic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022064A1 (en) * 2011-08-11 2013-02-14 株式会社村田製作所 Dielectric ceramic, layered ceramic electronic part, layered ceramic capacitor, and method for producing layered ceramic capacitor
JPWO2013022064A1 (en) * 2011-08-11 2015-03-05 株式会社村田製作所 Dielectric ceramic, multilayer ceramic electronic component, multilayer ceramic capacitor, and multilayer ceramic capacitor manufacturing method
US9522847B2 (en) 2011-08-11 2016-12-20 Murata Manufacturing Co., Ltd. Dielectric ceramic, laminated ceramic electronic component, laminated ceramic capacitor, and method for producing laminated ceramic capacitor

Similar Documents

Publication Publication Date Title
JPS61250905A (en) Dielectric ceramic composition and manufacture thereof
JPS62138360A (en) Dielectric ceramic composition
JPH0283256A (en) Dielectric material porcelain composition
JPS63289707A (en) Nonreducible dielectric ceramic constituent
JPS63170803A (en) Manufacture of non-reducing dielectric ceramic
JPH0244609A (en) Dielectric porcelain composition
JPS6128619B2 (en)
JPS6128621B2 (en)
JPS63170807A (en) Manufacture of non-reducing dielectric ceramic
JP2789110B2 (en) High dielectric constant porcelain composition
JPS63218102A (en) Manufacture of non-reduction dielectric ceramic
JP2869900B2 (en) Non-reducing dielectric porcelain composition
JPS63170804A (en) Manufacture of non-reducing dielectric ceramic
JPH04188504A (en) Dielectric porcelain composition
JPS63170805A (en) Manufacture of non-reducing dielectric ceramic
JPS6116132B2 (en)
JPS6136170A (en) Dielectric ceramic composition and manufacture
JPS63170806A (en) Manufacture of non-reducing dielectric ceramic
JPH0637322B2 (en) Dielectric porcelain composition
JP3106371B2 (en) Dielectric porcelain composition
JPS61203506A (en) High dielectric ceramic composition
JPS6211443B2 (en)
JPH0845343A (en) Dielectric porcelain composition
JPH037621B2 (en)
JPS6346925B2 (en)