JPH0244609A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH0244609A
JPH0244609A JP63193068A JP19306888A JPH0244609A JP H0244609 A JPH0244609 A JP H0244609A JP 63193068 A JP63193068 A JP 63193068A JP 19306888 A JP19306888 A JP 19306888A JP H0244609 A JPH0244609 A JP H0244609A
Authority
JP
Japan
Prior art keywords
weight
temperature
insulation resistance
zno
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63193068A
Other languages
Japanese (ja)
Other versions
JP2691181B2 (en
Inventor
Yoshio Yokoe
横江 宣雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63193068A priority Critical patent/JP2691181B2/en
Publication of JPH0244609A publication Critical patent/JPH0244609A/en
Application granted granted Critical
Publication of JP2691181B2 publication Critical patent/JP2691181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To prevent dispersion from occurring due to lowered insulation resistance or low breakdown voltage by using 2CaO.3B2O3 as one component of additive. CONSTITUTION:This is constituted by adding SiO2 by 1.0-3.0weight%, and ZnO by 0.5-3.0weight% to the main components in the range of compositions which contains BaTiO3 by 18.0-27.0weight%, Nd2O3 by 31.6-36.3weight%, TiO3 by 27.6-35.5weight%, Bi2O3 by 2.5-8.1weight%, and Pb3O4 by 5.6-9.0weight%, 2CaO.3 B2O3 by 0.15-2.0weight%. With this, the dielectric porcelain composition is capable of being baked in the low temperature range of 1000-1050 deg.C, hereby even in the case that it is used as a laminated type porcelain capacitor using Ag-Pd for an internal electrode, the reaction between the internal electrode and Bi2O3 is reduced, and inductive characteristics can be stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、容量の温度係数が一55〜+125℃の温度
範囲において±30ppm/’Cの範囲にあり、且つA
g−Pd合金を内部電極とする温度補償用磁器コンデン
サ用の誘電体磁器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention has a temperature coefficient of capacity in the range of ±30 ppm/'C in the temperature range of -155 to +125 °C, and
The present invention relates to a dielectric ceramic composition for a temperature-compensating ceramic capacitor that uses a g-Pd alloy as an internal electrode.

(背景技術) 一般に、高誘電率・温度補償用磁器コンデンサ、とりわ
け市販の積層型磁器コンデンサは、薄層の誘電体の表面
に内部電極を形成したものを複数枚積層し、内部電極を
交互に外部接続用電極に並列に接続するようにして同時
一体焼成している。この種の積層型コンデンサは高誘電
率を有するように充分緻密化させるため比較的高い焼成
温度(1240℃)を必要としている。
(Background Art) In general, high dielectric constant/temperature compensation ceramic capacitors, especially commercially available multilayer ceramic capacitors, are made by laminating multiple layers of thin dielectrics with internal electrodes formed on the surface, and alternating the internal electrodes. They are simultaneously fired in parallel to external connection electrodes. This type of multilayer capacitor requires a relatively high firing temperature (1240° C.) in order to sufficiently densify the capacitor to have a high dielectric constant.

したがって、この電極に使用される金属は誘電体の焼成
温度よりも融点の高い高価な貴金属(白金やパラジウム
)を使用しなければならず、このような金属材料費はこ
の種のコンデンサのトータルコストを高くしている。
Therefore, the metal used for this electrode must be an expensive noble metal (platinum or palladium) whose melting point is higher than the firing temperature of the dielectric, and the cost of such metal materials increases the total cost of this type of capacitor. is increasing.

そこで、上記誘電体と内部電極との焼成温度を低くして
内部電極として上記高価な貴金属に代え安価なAg−P
d合金、特にA−gの含有量を多くして安価な積層型磁
器コンデンサを得ることが試みられている。ところが、
一般的に誘電体の焼成温度を低くすると結晶性が低下す
るためその比誘電率が低下することが知られ、上記焼成
温度より低い温度で焼成した場合、高誘電率の磁器コン
デンサとして充分な電気的特性及び温度特性を得ること
ができない。
Therefore, the firing temperature of the dielectric and the internal electrodes was lowered, and the cheap Ag--P was used instead of the expensive noble metals as the internal electrodes.
Attempts have been made to increase the content of d-alloy, particularly A-g, to obtain inexpensive multilayer ceramic capacitors. However,
It is generally known that lowering the firing temperature of a dielectric material lowers its crystallinity and therefore its relative dielectric constant. physical and temperature characteristics cannot be obtained.

〔従来技術の説明〕[Description of prior art]

従来技術として特開昭57−170405号公報にはN
d2Tie、、BaTiO3、Tie2、Bi2O,及
びpb3o。
As a prior art, Japanese Patent Application Laid-Open No. 57-170405 describes N
d2Tie, , BaTiO3, Tie2, Bi2O, and pb3o.

から成る組成物の主成分に対しZnO及びSiO2を適
量添加することにより、焼成温度を1050〜1100
°Cの範囲で焼結体を得ることができ、内部電極の焼付
けを磁器の焼成と同時に行なう必要のある積層コンデン
サを製造するに当たって、内部電極として低融点で安価
なAg−Pd合金を用いることができることが記載され
ている。
By adding appropriate amounts of ZnO and SiO2 to the main components of the composition, the firing temperature can be adjusted to 1050-1100.
To use an inexpensive Ag-Pd alloy with a low melting point as the internal electrode in manufacturing a multilayer capacitor that can obtain a sintered body in the temperature range of °C and requires firing of the internal electrode at the same time as the firing of the porcelain. It is stated that this can be done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、本発明者等は先に誘電体中にBi、 03を
含む系に対し、Ag−Pd合金を内部電極として用いる
と、高温焼成(1100℃以上)によりAg−PdとB
i、 O,とが直接反応し、Biを固溶するPdO固溶
体が生成し、Ag−Pd内部電極の電気抵抗の急激な増
加及び誘電体の誘電的特性、特にQ値及び絶縁抵抗等を
急激に低下させるという結果を得た。そのため、Bi、
O,を同時に接触状態で焼成する場合は1050℃以下
で焼成する必要があるという結論に達した。
However, the present inventors previously discovered that when an Ag-Pd alloy was used as an internal electrode for a system containing Bi, 03 in the dielectric, Ag-Pd and B
i, O, react directly with each other to form a PdO solid solution containing Bi as a solid solution, resulting in a rapid increase in the electrical resistance of the Ag-Pd internal electrode and rapid changes in the dielectric properties of the dielectric, especially the Q value and insulation resistance. The result was that it decreased to . Therefore, Bi,
It was concluded that when sintering O and O in contact with each other at the same time, it is necessary to sinter at a temperature of 1050° C. or lower.

これに対し、前述の従来技術によれば、その焼成温度は
1050〜1100℃であって前述のAg−PdとBi
2O,との反応抑制について実質的に解決されておらず
、特性上も静電容量温度係数が+30〜−300ppm
/’Cと比較的広い範囲に適用され、また絶縁抵抗が低
下したり、破壊電圧が低く、そのバラツキが大きいとい
う実用化に対して致命的欠点を有していた。
On the other hand, according to the above-mentioned conventional technology, the firing temperature is 1050 to 1100°C, and the above-mentioned Ag-Pd and Bi
The suppression of the reaction with 2O has not been substantially solved, and the capacitance temperature coefficient is +30 to -300 ppm in terms of characteristics.
/'C, it has been applied to a relatively wide range, and has fatal drawbacks for practical use, such as a decrease in insulation resistance, a low breakdown voltage, and large variations.

そこで、本出願人は特願昭58−231180号(特開
昭60−124306号公報)に於いて、特定割合のB
aTiO3、Nd2O3、Tie、、Bi2O3、Pb
3O4組成系の主成分に対して添加物、としてSiO□
、ZnO及びB3O□を特定割合で配合すると、100
0〜1050°Cの温度での焼成が可能となり、それに
よりAg−PdとBi2O,との反応が抑制されるとと
もに、静電容量温度係数が±30ppm/’Cの範囲で
安定した温度特性を得ることができ、また絶縁抵抗が低
下したり、破壊電圧が低くそのバラツキが生じたりする
ことが少なく、Ag−Pdを内部電極とする温度補償用
磁器コンデンサ用として極めて優れた誘電体磁器組成物
を提案した。
Therefore, in Japanese Patent Application No. 58-231180 (Japanese Unexamined Patent Publication No. 60-124306), the applicant proposed
aTiO3, Nd2O3, Tie, , Bi2O3, Pb
SiO□ as an additive to the main component of the 3O4 composition system
, ZnO and B3O□ in a specific ratio, 100
It is possible to perform firing at a temperature of 0 to 1050°C, which suppresses the reaction between Ag-Pd and Bi2O, and provides stable temperature characteristics with a capacitance temperature coefficient in the range of ±30ppm/'C. A dielectric ceramic composition that is extremely excellent for use in temperature-compensating ceramic capacitors having Ag-Pd as internal electrodes, which has low insulation resistance, low breakdown voltage, and little variation. proposed.

而して、本発明者は、この優れた特性を有する誘電体磁
器組成物を実用化するに於いて新たな問題点を知見した
。即ち、斯かる誘電体磁器組成物をコンデンサに供する
場合、先ず、原料粉末を薄いシート状成形体に加工する
が、この成形工程において、組成物中の82O3は水に
可溶であるためスラリーの分散媒として水以外の分散媒
、即ちトルエン等の有機溶媒を用いる必要がある。これ
は、B2O3が水に溶解すると硼酸となってスラリーの
水素イオン濃度を低下させ、スラリーの粘性を変化させ
るため、安定な厚さのシート状成形体を得ることが出来
ない為である。
The inventors of the present invention have discovered a new problem in putting this dielectric ceramic composition having excellent properties into practical use. That is, when such a dielectric ceramic composition is used in a capacitor, the raw material powder is first processed into a thin sheet-shaped compact, but in this forming process, the 82O3 in the composition is soluble in water, As a dispersion medium, it is necessary to use a dispersion medium other than water, that is, an organic solvent such as toluene. This is because when B2O3 dissolves in water, it becomes boric acid, which lowers the hydrogen ion concentration of the slurry and changes the viscosity of the slurry, making it impossible to obtain a sheet-like molded product with a stable thickness.

しかしながら、トルエン等の有機溶媒の使用は、それ自
体が起爆性であり、人体にも影響があることから、現実
的量産時には成形・乾燥工程において完全な防爆措置が
とられる必要があるため、これが製品コストの高騰を来
す大きな原因となっていた。
However, the use of organic solvents such as toluene is explosive in itself and has an impact on the human body, so for practical mass production, it is necessary to take complete explosion-proof measures in the molding and drying processes. This was a major cause of soaring product costs.

〔発明の目的〕[Purpose of the invention]

本発明者は、前記優れた特性を維持しながら上記問題点
を解消し得る誘電体磁器組成物について鋭意研究した結
果、B2O3に代え2C,aO・3B。
As a result of intensive research into dielectric ceramic compositions that can solve the above problems while maintaining the above-mentioned excellent properties, the inventors of the present invention found that 2C, aO.3B was used instead of B2O3.

0□を用いることにより、分散媒として水の使用が可能
であることを知見し、ここにこれを提案せんとするもの
である。
We have found that water can be used as a dispersion medium by using 0□, and we would like to propose this here.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は、B a T i O3を18.0〜27.0
重量%、Nd2O3を31.6〜36.3重量%、Ti
O2を27.6〜35.5重量%、Bi3O3を2.5
〜8.1重量%及びpb3O4を5.6〜9.0重量%
を含む組成範囲の主成分に対して、2Ca0・3B2O
3を0.15〜2.0重量%、SiO2を1゜0〜3.
0重量%及びZnOを 0.5〜3.0重量%添加して
成り、これにより1000〜1050℃で焼成可能な優
れた特性を有する誘電体磁器組成物が得られる。
In the present invention, B a T i O3 is 18.0 to 27.0
wt%, 31.6-36.3 wt% Nd2O3, Ti
27.6-35.5% by weight of O2, 2.5% of Bi3O3
~8.1 wt% and 5.6-9.0 wt% pb3O4
For the main components in the composition range including 2Ca0.3B2O
0.15 to 2.0% by weight of SiO2 and 1°0 to 3.0% of SiO2.
0% by weight and 0.5 to 3.0% by weight of ZnO, thereby obtaining a dielectric ceramic composition having excellent properties that can be fired at 1000 to 1050°C.

本発明における1つの大きな特徴は1.添加剤の一成分
として2Ca0・3B203を選択した点にある。即ち
、2Ca0・3B、○、は水に不溶性であり、従って、
スラリーの分散媒として水が使用でき、エマルジョン有
機バインダー、水溶性分散剤、界面活性剤とともに各原
料粉末を均一に分散させ、厚さが安定した均質なグリー
ンシートを特殊な設備等を何等必要とせず、安価に作業
性良く生産できる。
One major feature of the present invention is 1. The point is that 2Ca0.3B203 was selected as one of the additive components. That is, 2Ca0.3B, ○, is insoluble in water, and therefore,
Water can be used as a dispersion medium for slurry, and each raw material powder can be uniformly dispersed together with the emulsion organic binder, water-soluble dispersant, and surfactant, and a homogeneous green sheet with a stable thickness can be produced without the need for any special equipment. It can be produced at low cost and with good workability.

一方、焼成時には2Ca0・3B203はZnOと共存
下において、B2O3が単独で存在する場合と同様、1
000〜1050℃で緻密な磁器を焼結させることがで
きる。
On the other hand, during calcination, 2Ca0.3B203 coexists with ZnO, and 1
Dense porcelain can be sintered at 000-1050°C.

第1図は、本発明の組成物中の一成分であるZnoと8
2O3との二元状態図を示すが、本図によればZnOと
の共存下で82O3が30モル%程度で液相線が960
℃程度にまで低くなり、ZnO及びB2O3を適当な組
成で用いることによって焼結促進剤フラックスとして有
効に作用することを示している。
FIG. 1 shows Zno and 8, which are one of the components in the composition of the present invention.
A binary phase diagram with 2O3 is shown. According to this diagram, in the coexistence with ZnO, when 82O3 is about 30 mol%, the liquidus line is 960.
℃, indicating that ZnO and B2O3 can effectively act as a sintering accelerator flux by using them in an appropriate composition.

従って、前述の主成分に対し添加成分としてZnO及び
2Ca0・3B、○、を同時添加して焼成すると、2C
aO・3B2O3が900℃以下の低温で反応し、B2
O3が低温でより安定なZnOとの化合物を形成し、C
aOは高温において主成分であるBaTiO3と反応す
ると考えられる。
Therefore, when ZnO and 2Ca0.3B, ○ are simultaneously added as additive components to the above-mentioned main component and fired, 2C
aO・3B2O3 reacts at a low temperature below 900℃, and B2
O3 forms a more stable compound with ZnO at low temperatures, and C
It is believed that aO reacts with BaTiO3, the main component, at high temperatures.

よって、B2O3に代えて2Ca0・3B2O3を用い
ても、焼結過程に於ける液相成分は同様に作用し、10
00〜1050℃で焼結する効果を有する。なお、Ca
OはBaTi0.と反応する性質を有するが、CaO量
が微量であるため、系全体に対しては何等影響を及ぼさ
ない。
Therefore, even if 2Ca0.3B2O3 is used instead of B2O3, the liquid phase component in the sintering process acts in the same way, and 10
It has the effect of sintering at 00 to 1050°C. In addition, Ca
O is BaTi0. However, since the amount of CaO is very small, it does not have any effect on the entire system.

しかも、2Ca0・3B203の添加効果は、焼結温度
を低下させることに限られず、B2O3を単独で添加し
た場合と同様、実施例2にて示すようにコンデンサとし
て用いた場合にQ値を向上させるとともに、絶縁抵抗値
のバラツキを低減させ、破壊電圧を高くすることができ
るという多大な効果を奏するのである。
Moreover, the effect of adding 2Ca0.3B203 is not limited to lowering the sintering temperature, but also improves the Q value when used as a capacitor as shown in Example 2, similar to when B2O3 is added alone. At the same time, it has the great effect of reducing variations in insulation resistance and increasing breakdown voltage.

上記各組成物を上記組成範囲とした理由について説明す
る。B a T i 03が18.0重量%未満である
と、焼成温度を比較的高くしないと充分m密化した磁器
が得られず、一方27.0重量2を超えると、同様に焼
成温度が高くないと充分緻密化しない°と共に、この場
合絶縁抵抗(I R)が小さくなる。Nd2O,が31
.6重量%未満であると、焼成温度が高くないと充分緻
密化しないと共に、絶縁抵抗(I R)が小さく、また
品質係数(Q)が小さくなる傾向があり、36.3重量
%を超えると容量温度係数(ppm/”C)が(+)側
へ大きく移行するが、B aTi○、が少ないとこの傾
向は少なくなり。
The reason why each of the above compositions is set in the above composition range will be explained. If B a T i 03 is less than 18.0% by weight, a sufficiently dense porcelain cannot be obtained unless the firing temperature is relatively high; on the other hand, if it exceeds 27.0% by weight, the firing temperature will be similarly low. If it is not high, it will not be sufficiently dense, and in this case, the insulation resistance (IR) will become small. Nd2O, is 31
.. If it is less than 6% by weight, it will not be sufficiently densified unless the firing temperature is high, and the insulation resistance (IR) will tend to be low, and the quality factor (Q) will tend to be small; if it exceeds 36.3% by weight, The capacity temperature coefficient (ppm/''C) largely shifts to the (+) side, but this tendency decreases when BaTi○ is small.

一方焼成温度を高くしなければ充分緻密化しない。On the other hand, if the firing temperature is not high, it will not become sufficiently dense.

T i O,が27.6重量%未満であると焼成温度を
高くしないと充分緻密化せず、35.5重量%を超える
と容量温度係数(ppm/’C)が(−)側へ大きくな
る傾向がある。Bi、Olが2.5重量%未満であると
容量温度係数(ppm/”C)が(−)側へ移行すると
共に、焼成温度を高くしないと充分緻密化せず、かつ絶
縁抵抗(I R)及び品質係数(Q値)が小さくなり、
8.1重量%を超えると容量温度係数(ppm/”C)
が(−)側へ大きく移行すると共に絶縁抵抗(I R)
が小さくなる。pb3O4が5.6重量%未満であると
容量温度係数(pρm/℃)が(−)側へ大きく移行す
ると共に焼成温度を高くしなければ充分緻密化せず、9
.0重量%を超えると容量温度係数(ρpm/”C)が
(+)側へ移行する。
If T i O, is less than 27.6% by weight, it will not be sufficiently densified unless the firing temperature is raised, and if it exceeds 35.5% by weight, the temperature coefficient of capacity (ppm/'C) will increase toward the (-) side. There is a tendency to If Bi and Ol are less than 2.5% by weight, the capacity temperature coefficient (ppm/"C) shifts to the (-) side, and sufficient densification cannot be achieved unless the firing temperature is raised, and the insulation resistance (I R ) and quality coefficient (Q value) become smaller,
If it exceeds 8.1% by weight, the capacity temperature coefficient (ppm/”C)
As the insulation resistance (I R) largely shifts to the (-) side,
becomes smaller. If pb3O4 is less than 5.6% by weight, the capacity temperature coefficient (pρm/℃) will largely shift to the (-) side, and the sintering temperature will not be sufficiently densified unless the firing temperature is increased.
.. When it exceeds 0% by weight, the capacity temperature coefficient (ρpm/''C) shifts to the (+) side.

また、添加成分たる2Ca○−38203が0.15重
量%未満では前述の添加効果が得られず、焼成温度を高
くしなければ充分緻密化せず、かつ絶縁抵抗(I R)
のバラツキの増大及び破壊電圧の増大を招く。一方2.
0重量2を超えると焼成時アルミナ等のセッターとの融
着を生じ易くなる。更に、SiO2が1.0重量%未満
又は3.0重量%を超えると焼成温度を高くしないと充
分緻密化せず、絶縁抵抗(I R)及び品質係数(Q値
)が小さくなる。
In addition, if the additive component 2Ca○-38203 is less than 0.15% by weight, the above-mentioned addition effect cannot be obtained, and sufficient densification cannot be obtained unless the firing temperature is high, and the insulation resistance (I R)
This results in an increase in the variation in the voltage and an increase in the breakdown voltage. On the other hand 2.
If the weight exceeds 0.2, fusion with a setter such as alumina is likely to occur during firing. Furthermore, if SiO2 is less than 1.0% by weight or more than 3.0% by weight, sufficient densification will not occur unless the firing temperature is increased, and the insulation resistance (IR) and quality factor (Q value) will decrease.

最後にZnOが0.5重量%未満であると焼成温度が高
くないと充分緻密化せず、絶縁抵抗(I R)及び品質
係数(Q値)が小さくなり、3.0 重量%を超えると
品質係数(Q値)が小さくなると共に容量温度係数(p
pm/”C)が(+)側へ大きくなる。
Finally, if ZnO is less than 0.5% by weight, it will not be sufficiently densified unless the firing temperature is high, and the insulation resistance (IR) and quality factor (Q value) will be small; if it exceeds 3.0% by weight, As the quality factor (Q value) decreases, the capacity temperature coefficient (p
pm/”C) increases toward the (+) side.

以上の如く、B a T i O,、Nd2O,、Ti
O2、Bi2O,、Pb、O,,2Ca()3B203
、SIO及びZnOが本発明の範囲外の場合は夫々品質
係数(Q値)、絶縁抵抗(I R)及び破壊電圧が低す
ぎるか、低温(toso℃以下)での焼結が不充分で本
発明の目的に合致しない。好ましくは2Ca0・3B3
O3が0.45〜1.35重量%、S i O2が1゜
0〜3.0重量%及びZnOが1.0〜2.5重量%の
範囲で前記主成分に添加するのが良い。
As mentioned above, B a T i O,, Nd2O,, Ti
O2, Bi2O,, Pb, O,, 2Ca()3B203
, SIO, and ZnO are outside the scope of the present invention, the quality factor (Q value), insulation resistance (IR), and breakdown voltage are too low, or the sintering at low temperature (toso℃ or below) is insufficient, resulting in failure of the present invention. It does not meet the purpose of the invention. Preferably 2Ca0・3B3
It is preferable that 0.45 to 1.35% by weight of O3, 1.0 to 3.0% by weight of SiO2, and 1.0 to 2.5% by weight of ZnO are added to the main components.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

(実施例1) 予め、BaC0,とTiO2の等モルから1200℃で
合成した純度99.8%以上のB a T i O3と
、純度98%以上のNd2O,と、純度99.5%以上
の二酸化チタン(アナターゼ)と、純度95%以上のB
i2O,及び純度95%以上のPb3O4を第1表の主
成分組成槽に記載した各資料の組成になるよう秤量し、
合計重量が夫々500gとなるようにした。さらに、純
度95%以上の2Ca0・3 B2O3、 S i O
2及びZnOを第1表の副成分槽に記載した各試料の組
成になるように夫々秤量して主成分に加え、内容11.
6111の磁器ポット中に嵩容積0.8Q(1,5kg
)のアルミナボール(17+nmφ)とともに入れ、更
に1分散剤、界面活性剤とともにエマルジョンアクリル
樹脂並びに分散媒としてイオン交換水を加えて、回転数
72ppmで24時間回転して得られた原料スリップを
ドクターブレード法によって肉厚25μmのグリーンシ
ートを成形した。このグリーンシー1−を25枚重ねて
ホットプレスしてグリーン成形板を作成し、約10nn
+角、厚さ0.50nnのグリーン角板に切断した。グ
リーンの角板を1000〜1100℃の温度で2時間焼
成し得られた約8m角、厚さ0.4mlの角板の上下全
面に銀電極を付与して単層の角板型コンデンサとし評価
試料とした。
(Example 1) B a T i O3 with a purity of 99.8% or more synthesized in advance from equimoles of BaC0 and TiO2 at 1200°C, Nd2O with a purity of 98% or more, and Nd2O with a purity of 99.5% or more. Titanium dioxide (anatase) and B with a purity of over 95%
Weigh i2O and Pb3O4 with a purity of 95% or more so that it has the composition of each material listed in the main component composition tank in Table 1,
The total weight was 500g each. Furthermore, 2Ca0.3 B2O3, S i O with a purity of 95% or more
2 and ZnO were weighed and added to the main component so as to have the composition of each sample listed in the subcomponent tank in Table 1. Content 11.
Bulk volume 0.8Q (1.5kg) in 6111 porcelain pot
) with alumina balls (17+nmφ), and further added emulsion acrylic resin and ion-exchanged water as a dispersion medium along with one dispersant and a surfactant, and rotated at a rotational speed of 72 ppm for 24 hours. A green sheet with a wall thickness of 25 μm was molded by the method. 25 sheets of this Green Sea 1- were stacked and hot pressed to create a green molded plate, approximately 10nn thick.
It was cut into a green square plate with a + corner and a thickness of 0.50 nn. A green square plate was baked at a temperature of 1000 to 1100°C for 2 hours, and silver electrodes were applied to the top and bottom surfaces of a square plate approximately 8 m square and 0.4 ml thick, and evaluated as a single-layer square plate capacitor. It was used as a sample.

こうして得られた各試料を周波数I M Hz 、及び
入力電力レベルIVrmsにて静電容量及び品質係数(
Q値)を測定し、また直流電圧50Vを1分間印加して
絶縁抵抗(I R)を測定した後、周波数IMHzにお
いて一55℃、及び+125℃での静電容量温度係数を
測定した。また、試料のたて(L)よこ(W)の寸法を
±5μmの精度で厚さ(1)を±1μmの精度で夫々測
定し、 6r:一り一、夏二上 εOLIW (i o =8.865 X 10−’PF/n++n
)から比誘電率を計算した。
The capacitance and quality factor (
After measuring the insulation resistance (IR) by applying a DC voltage of 50 V for 1 minute, the temperature coefficient of capacitance at -55°C and +125°C was measured at a frequency of IMHz. In addition, the vertical (L) and horizontal (W) dimensions of the sample were measured with an accuracy of ±5 μm, and the thickness (1) was measured with an accuracy of ±1 μm, respectively. 8.865 X 10-'PF/n++n
) was used to calculate the relative dielectric constant.

こうして得た電気的特性の測定結果又は計算結果を各々
の試料の化学組成及び焼成温度と共に第1表に示した。
The measurement or calculation results of the electrical properties thus obtained are shown in Table 1 along with the chemical composition and firing temperature of each sample.

(以下余白) 第1表の試料番号1.2.3.7.9,11.12、1
5、16、17、21、22. 25、26及び29は
、いずれも組成物のうちどれかが本発明の組成範囲に合
致しないものであり、焼成温度が1100℃以上必要と
なり、本発明の目的に合わない。また、試料番号11.
12.21.25゜26及び29は品質係数(Q値)が
1000未満と小さ過ぎ本発明の目的に合わない。また
、試料番号7.11.15.16.17.21.22.
25及び26は絶縁抵抗(I R)が小さ過ぎ本発明の
目的に合わない。
(Left below) Sample numbers 1.2.3.7.9, 11.12, 1 in Table 1
5, 16, 17, 21, 22. In Nos. 25, 26, and 29, any of the compositions does not meet the composition range of the present invention, and requires a firing temperature of 1100° C. or more, which does not meet the purpose of the present invention. Also, sample number 11.
12.21.25°26 and 29 have quality coefficients (Q values) of less than 1000, which are too small and do not meet the purpose of the present invention. Also, sample number 7.11.15.16.17.21.22.
25 and 26 have too low insulation resistance (IR) and are not suitable for the purpose of the present invention.

更に、試料番°号7.9.11.12.15.16.2
1.25及び29は容量温度係数(ppm/℃)が±3
0ppm/ ℃の範囲を逸脱するものであり本発明の目
的に合わない。尚、この実施例では単板の焼成磁器に銀
電極を付与した単板型コンデンサを評価試料としている
。しかしながら実際にこれらを積層型として焼成した場
合、焼成温度が更に20℃程度低くなる。そのため容量
温度係数(ppm/℃)の特に(−)側が大きいと、こ
れが15ppm/’C程度(+)側に移行することが確
認されている。
Furthermore, sample number 7.9.11.12.15.16.2
1.25 and 29 have a capacity temperature coefficient (ppm/℃) of ±3
It deviates from the range of 0 ppm/°C and does not meet the purpose of the present invention. In this example, the evaluation sample was a single-plate type capacitor in which a silver electrode was provided on a single plate of fired porcelain. However, when these are actually fired as a laminate type, the firing temperature is further lowered by about 20°C. Therefore, it has been confirmed that when the capacity temperature coefficient (ppm/°C) is especially large on the (-) side, it shifts to the (+) side of about 15 ppm/'C.

一方、上記以外の各試料はいずれも1050℃以下の温
度で充分焼結しており、10’MΩ以上絶縁抵抗(I 
R)を示し、また比誘電率(εr)は50以上(実質的
に最低である試料番号10の場合でもεr=67)と高
く、品質係数(Q値)も10゜00以上であり優れた電
気的特性を示し、更に静電容量温度係数(ppm/℃)
も±30ppm/’Cの範囲内で一定の温度特性を有し
ていることが理解できる。
On the other hand, all of the samples other than those mentioned above were sufficiently sintered at a temperature of 1050°C or lower, and had an insulation resistance of 10'MΩ or higher (I
R), and the relative dielectric constant (εr) is as high as 50 or more (εr=67 even in the case of sample number 10, which is the lowest), and the quality factor (Q value) is also excellent, being 10°00 or more. Indicates electrical characteristics and also capacitance temperature coefficient (ppm/℃)
It can be seen that the temperature characteristics are constant within the range of ±30 ppm/'C.

(実施例2) 第1表における本発明の範囲内試料番号14のものと、
2 Ca 0・3B2O3を添加しない本発明範囲外試
料番号17のものとの誘電体グリーンシート上に、Ag
70重量%とPd30重量%との合金に有機結合剤及び
その溶剤を加えて成るペーストを各々印刷した。この金
属印刷膜を付与した各グリーンシートを58枚積層し、
上下8枚ずつ印刷膜をもたないグリーンシートを加えて
ホットプレスした。
(Example 2) Sample number 14 within the scope of the present invention in Table 1,
2 Ca 0.3 B2 O
Each paste was printed by adding an organic binder and its solvent to an alloy of 70% by weight and 30% by weight of Pd. 58 of each green sheet provided with this metal printing film were laminated,
Eight green sheets without a printing film were added to the top and bottom and hot pressed.

さらに、たて5.2mmよと4mの寸法の個々のピース
に切断し、積層型磁器コンデンサのグリーンチップを各
々作成し、これら第1表に示す夫々の温度で2時間焼成
した。焼成した両チップの両端にAg−Pd合金電極を
付与して積層型磁器コンデンサを作成した。
Furthermore, it was cut into individual pieces with vertical dimensions of 5.2 mm and 4 m, respectively, to produce green chips of multilayer ceramic capacitors, and baked at the respective temperatures shown in Table 1 for 2 hours. Ag-Pd alloy electrodes were applied to both ends of both fired chips to create a multilayer ceramic capacitor.

こうして得た積層型磁器コンデンサの静電容量(nF)
及び品質係数(Q値)を周波数I M Hz、入力電圧
IVrmsで測定し、直流電圧50Vを1分間印加して
絶縁抵抗(I R)を測定し、さらに直流電圧を印加し
、徐々に昇圧して破壊したときの電圧(破壊電圧)を測
定した。それぞれの測定結果を第2表に示した。但し、
測定試料個数は各20個であり、静電容量(nF)及び
品質係数(Q値)は平均値を、破壊電圧は平均値x (
V)及びバラツキ指数σ/x(%)を、絶縁抵抗(I 
R)については106MΩ、105及び104MΩのオ
ーダの個数を夫々示した。
Capacitance (nF) of the multilayer ceramic capacitor thus obtained
and the quality factor (Q value) were measured at a frequency of I MHz and an input voltage of IVrms, a DC voltage of 50 V was applied for 1 minute to measure the insulation resistance (IR), and then a DC voltage was applied and the voltage was gradually increased. The voltage at the time of breakdown (breakdown voltage) was measured. The results of each measurement are shown in Table 2. however,
The number of measurement samples was 20 each, and the capacitance (nF) and quality factor (Q value) were the average values, and the breakdown voltage was the average value x (
V) and the variation index σ/x (%), the insulation resistance (I
For R), numbers on the order of 106 MΩ, 105 and 104 MΩ are shown, respectively.

(以下余白) 第2表に示すように2Ca0・3B、O,を含まない試
料番号17の積層型磁器コンデンサーは破Il電圧の平
均値が321 x (V)で、またそのバラツキ指数が
22.4σ/x(%)であり、絶縁抵抗(I R)につ
いて104MΩオーダが20個個中個、105MΩオー
ダが20個個中個存在していて絶縁抵抗が不充分である
。これに対し2Ca0・3B20゜を含む試料番号14
の積層型磁器コンデンサは破壊電圧の平均値が760x
(V)と前者の2倍以上と高く、またそのバラツキ指数
が9.6σ八(%)と小さく、その上絶縁抵抗(I R
)は20個中2o個とも106MΩ以上であり充分であ
る。
(Leaving space below) As shown in Table 2, the multilayer ceramic capacitor of sample number 17 that does not contain 2Ca0.3B, O, has an average breakdown voltage of 321 x (V) and a dispersion index of 22. 4σ/x (%), and the insulation resistance (IR) is on the order of 104 MΩ out of 20 and on the order of 105 MΩ out of 20, indicating that the insulation resistance is insufficient. On the other hand, sample number 14 containing 2Ca0・3B20°
The average breakdown voltage of the multilayer ceramic capacitor is 760x.
(V) is more than double that of the former, its dispersion index is small at 9.6σ8 (%), and the insulation resistance (I R
) is 106 MΩ or more for all 20 out of 20, which is sufficient.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明の誘電体磁器組成物は、10
00〜1050℃の低温域での焼成が可能であり、それ
によりAg−Pdを内部電極とした積層型磁器コンデン
サ用として用いた場合でも内部電極とBi2O,との反
応が低減され、誘電的特性を安定化させることができる
。また、容量の温度係数を一55℃〜125℃の温度範
囲において±30ppm/’Cの範囲にすることができ
るとともに絶縁抵抗、破壊電圧の低下やバラツキが低減
され、温度補償型積層コンデンサ用として充分に実用可
能な特性を有するものである。更に、内部電極として比
較的低融点を有するAgの含有量の多いAg−Pd合金
を使用できるので安価な積層コンデンサを得ることが出
来る。
As detailed above, the dielectric ceramic composition of the present invention has a
It is possible to sinter in the low temperature range of 00 to 1050℃, which reduces the reaction between the internal electrodes and Bi2O even when used for multilayer ceramic capacitors with Ag-Pd internal electrodes, improving dielectric properties. can be stabilized. In addition, the temperature coefficient of capacitance can be made within the range of ±30 ppm/'C in the temperature range of -55°C to 125°C, and the drop and variation in insulation resistance and breakdown voltage are reduced, making it suitable for temperature-compensated multilayer capacitors. It has sufficient practical characteristics. Furthermore, since an Ag-Pd alloy with a relatively low melting point and a high content of Ag can be used as the internal electrode, an inexpensive multilayer capacitor can be obtained.

上記の優れた効果は、添加成分としてB2O3を用いた
本出願人に係る前記先行出願の効果を維持するものであ
るが、本発明は、B2O3に代えて2Ca0・3B2O
3を用いることにより、焼成時のバインダーとして水の
使用が可能となり、これにより脱水・乾燥工程にフィル
タープレスを用いることが出来、量産性が飛羅的に向上
し生産コストの大幅な低減化が図られると云う特筆すべ
き利点が付加される。
The above-mentioned excellent effects maintain the effects of the prior application filed by the present applicant, which used B2O3 as an additive component, but the present invention provides 2Ca0.3B2O in place of B2O3.
By using 3, it is possible to use water as a binder during firing, which allows the use of a filter press in the dehydration and drying processes, dramatically improving mass productivity and significantly reducing production costs. It has the added advantage of being able to achieve

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はZnOと8203との二元状態図である。 −以上一 FIG. 1 is a binary phase diagram of ZnO and 8203. −1 or more

Claims (1)

【特許請求の範囲】[Claims] 1.BaTiO_3を18.0〜27.0重量%、Nd
_2O_3を31.6〜36.3重量%、TiO_2を
27.6〜35.5重量%、Bi_2O_3を2.5〜
8.1重量%及びPb_3O_4を5.6〜9.0重量
%を含む組成範囲の主成分に対して、 2CaO・3B_2O_3を0.15〜2.0重量%、
SiO_2を1.0〜3.0重量%及びZnOを0.5
〜3.0重量%添加して成ることを特徴とする誘電体磁
器組成物。
1. 18.0-27.0% by weight of BaTiO_3, Nd
_2O_3 31.6-36.3% by weight, TiO_2 27.6-35.5% by weight, Bi_2O_3 2.5-36.3% by weight
8.1% by weight and 5.6-9.0% by weight of Pb_3O_4, 0.15-2.0% by weight of 2CaO・3B_2O_3,
1.0 to 3.0% by weight of SiO_2 and 0.5% of ZnO
A dielectric ceramic composition characterized in that it contains ~3.0% by weight.
JP63193068A 1988-08-01 1988-08-01 Dielectric porcelain composition Expired - Fee Related JP2691181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193068A JP2691181B2 (en) 1988-08-01 1988-08-01 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193068A JP2691181B2 (en) 1988-08-01 1988-08-01 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH0244609A true JPH0244609A (en) 1990-02-14
JP2691181B2 JP2691181B2 (en) 1997-12-17

Family

ID=16301673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193068A Expired - Fee Related JP2691181B2 (en) 1988-08-01 1988-08-01 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP2691181B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264403A (en) * 1991-09-27 1993-11-23 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass
US5292694A (en) * 1991-09-27 1994-03-08 Ngk Insulators, Ltd. Method of producing low temperature firing dielectric ceramic composition containing B2 O3
US5479140A (en) * 1991-09-27 1995-12-26 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
WO1996008057A1 (en) * 1994-09-07 1996-03-14 Nippon Carbide Kogyo Kabushiki Kaisha Electric filter adapter
US6267528B1 (en) 1998-07-13 2001-07-31 Nsk Ltd. Coupling structure of variable length shaft
US6340649B1 (en) 1999-03-16 2002-01-22 Tdk Corporation Composition of dielectric ceramics and producing method thereof
WO2009001690A1 (en) * 2007-06-27 2008-12-31 Murata Manufacturing Co., Ltd. Semiconductor ceramic powder, semiconductor ceramic, and laminated semiconductor capacitor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264403A (en) * 1991-09-27 1993-11-23 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass
US5292694A (en) * 1991-09-27 1994-03-08 Ngk Insulators, Ltd. Method of producing low temperature firing dielectric ceramic composition containing B2 O3
US5304521A (en) * 1991-09-27 1994-04-19 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5350721A (en) * 1991-09-27 1994-09-27 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZNO-B203-SI02 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5458981A (en) * 1991-09-27 1995-10-17 Ngk Insulators, Ltd. Method of producing low temperature firing dielectric ceramic composition containing B2 O3
US5479140A (en) * 1991-09-27 1995-12-26 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5485132A (en) * 1991-09-27 1996-01-16 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5488019A (en) * 1991-09-27 1996-01-30 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5493262A (en) * 1991-09-27 1996-02-20 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
WO1996008057A1 (en) * 1994-09-07 1996-03-14 Nippon Carbide Kogyo Kabushiki Kaisha Electric filter adapter
US6267528B1 (en) 1998-07-13 2001-07-31 Nsk Ltd. Coupling structure of variable length shaft
US6340649B1 (en) 1999-03-16 2002-01-22 Tdk Corporation Composition of dielectric ceramics and producing method thereof
WO2009001690A1 (en) * 2007-06-27 2008-12-31 Murata Manufacturing Co., Ltd. Semiconductor ceramic powder, semiconductor ceramic, and laminated semiconductor capacitor
US8040658B2 (en) 2007-06-27 2011-10-18 Murata Manufacturing Co., Ltd. Semiconductor ceramic powder, semiconductor ceramic, and monolithic semiconductor ceramic capacitor
JP5347961B2 (en) * 2007-06-27 2013-11-20 株式会社村田製作所 Semiconductor ceramic powder, semiconductor ceramic, and multilayer semiconductor ceramic capacitor

Also Published As

Publication number Publication date
JP2691181B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
EP0893419B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using same
KR980011543A (en) Multilayer Ceramic Capacitors
JPH0518201B2 (en)
JPH0552604B2 (en)
JPH0244609A (en) Dielectric porcelain composition
KR101504583B1 (en) Layered ceramic capacitor and method for producing layered ceramic capacitor
JPH0552602B2 (en)
US4628404A (en) Dielectric composition and laminated capacitor
JP3305272B2 (en) Dielectric porcelain material
JP2821768B2 (en) Multilayer ceramic capacitors
JP2789110B2 (en) High dielectric constant porcelain composition
US5439857A (en) Dielectric ceramic composition
JPH04264305A (en) Dielectric ceramic composition
US4704657A (en) Multilayer ceramic capacitor and process for preparation thereof
JPS6234707B2 (en)
JP3522559B2 (en) Dielectric porcelain material
JPS6156407A (en) Laminated porcelain capacitor
JPH0552603B2 (en)
JPH0420246B2 (en)
JP2002037667A (en) Dielectric ceramic composition
JPS6227025B2 (en)
JP2023069307A (en) Dielectric composition and electronic component
JPH0574883B2 (en)
JPH0536308A (en) High permittivity dielectric ceramic composition
JPS6234708B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees