JP2691181B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JP2691181B2
JP2691181B2 JP63193068A JP19306888A JP2691181B2 JP 2691181 B2 JP2691181 B2 JP 2691181B2 JP 63193068 A JP63193068 A JP 63193068A JP 19306888 A JP19306888 A JP 19306888A JP 2691181 B2 JP2691181 B2 JP 2691181B2
Authority
JP
Japan
Prior art keywords
temperature
weight
firing
insulation resistance
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63193068A
Other languages
Japanese (ja)
Other versions
JPH0244609A (en
Inventor
宣雄 横江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63193068A priority Critical patent/JP2691181B2/en
Publication of JPH0244609A publication Critical patent/JPH0244609A/en
Application granted granted Critical
Publication of JP2691181B2 publication Critical patent/JP2691181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、容量の温度係数が−55〜+125℃の温度範
囲において±30ppm/℃の範囲にあり、且つAg−Pd合金を
内部電極とする温度補償用磁器コンデンサ用の誘電体磁
器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has a temperature coefficient of capacity of ± 30 ppm / ° C in the temperature range of -55 to + 125 ° C, and an Ag-Pd alloy as an internal electrode. The present invention relates to a dielectric ceramic composition for a temperature compensating ceramic capacitor.

(背景技術) 一般に、高誘電率・温度補償用磁器コンデンサ、とり
わけ市販の積層型磁器コンデンサは、薄層の誘電体の表
面に内部電極を形成したものを複数枚積層し、内部電極
を交互に外部接続用電極に並列に接続するようにして同
時一体焼成している。この種の積層型コンデンサは高誘
電率を有するように充分緻密化させるため比較的高い焼
成温度(1240℃)を必要としている。
(Background Art) In general, a high dielectric constant / temperature compensation porcelain capacitor, especially a commercially available laminated porcelain capacitor, is formed by laminating a plurality of thin-layer dielectrics having internal electrodes formed thereon, and alternately arranging the internal electrodes alternately. Simultaneous integral firing is performed so that the electrodes are connected in parallel to the external connection electrodes. This type of multilayer capacitor requires a relatively high firing temperature (1240 ° C) in order to be sufficiently densified so as to have a high dielectric constant.

したがって、この電極に使用される金属は誘電体の焼
成温度よりも融点の高い高価な貴金属(白金やバラジウ
ム)を使用しなければならず、このような金属材料費は
この種のコンデンサのトータルコストを高くしている。
Therefore, the metal used for this electrode must be an expensive noble metal (platinum or palladium) whose melting point is higher than the firing temperature of the dielectric, and such metal material cost is the total cost of this type of capacitor. Is high.

そこで、上記誘電体と内部電極との焼成温度を低くし
て内部電極として上記高価な貴金属に代え安価なAg−Pd
合金、特にAgの含有量を多くして安価な積層型磁器コン
デンサを得ることが試みられている。ところが、一般的
に誘電体の焼成温度を低くすると結晶性が低下するため
その比誘電率が低下することが知られ、上記焼成温度よ
り低い温度で焼成した場合、高誘電率の磁器コンデンサ
として充分な電気的特性及び温度特性を得ることができ
ない。
Therefore, the firing temperature of the dielectric and the internal electrode is lowered to replace the expensive precious metal as the internal electrode with inexpensive Ag-Pd.
Attempts have been made to obtain inexpensive multilayer ceramic capacitors by increasing the content of alloys, especially Ag. However, it is generally known that when the firing temperature of the dielectric is lowered, the crystallinity is lowered and the relative permittivity thereof is lowered. When firing at a temperature lower than the above firing temperature, a ceramic capacitor having a high permittivity is sufficiently obtained. Electrical characteristics and temperature characteristics cannot be obtained.

〔従来技術の説明〕[Description of Prior Art]

従来技術として特開昭57−170405号公報にはNd2Ti
O7、BaTiO3、TiO2、Bi2O3及びPb3O4から成る組成物の主
成分に対しZnO及びSiO2を適量添加することにより、焼
成温度を1050〜1100℃の範囲で焼結体を得ることがで
き、内部電極の焼付けを磁器の焼成と同時に行なう必要
のある積層コンデンサを製造するに当たって、内部電極
として低融点で安価なAg−Pd合金を用いることができる
ことが記載されている。
As a conventional technique, JP-A-57-170405 discloses Nd 2 Ti.
O 7, BaTiO 3, to the main component of TiO 2, Bi 2 O 3 and Pb 3 O of 4 compositions by adding appropriate amounts of ZnO and SiO 2, sintering the firing temperature in the range of 1,050 to 1,100 ° C. It is described that a low melting point and inexpensive Ag-Pd alloy can be used as an internal electrode in manufacturing a multilayer capacitor that can obtain a body and need to burn the internal electrode at the same time as firing the porcelain. .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、本発明者等は先に誘電体中にBi2O3を含む
系に対し、Ag−Pd合金を内部電極として用いると、高温
焼成(1100℃以上)によりAg−PdとBi2O3とが直接反応
し、Biを固溶するPdO固溶体が生成し、Ag−Pd内部電極
の電気抵抗の急激な増加及び誘電体の誘電的特性、特に
Q値及び絶縁抵抗等を急激に低下させるという結果を得
た。そのため、Bi2O3を同時に接触状態で焼成する場合
は1050℃以下で焼成する必要があるという結論に達し
た。
However, when the present inventors previously used a system containing Bi 2 O 3 in a dielectric and using an Ag-Pd alloy as an internal electrode, Ag-Pd and Bi 2 O 3 were produced by high temperature firing (1100 ° C. or higher). PdO solid solution that forms a solid solution with Bi is formed by reacting directly with, and the electrical resistance of the Ag-Pd internal electrode is rapidly increased and the dielectric properties of the dielectric, especially the Q value and insulation resistance, are rapidly reduced. I got the result. Therefore, it was concluded that when firing Bi 2 O 3 simultaneously in a contact state, it is necessary to fire at 1050 ° C or lower.

これに対し、前述の従来技術によれば、その焼成温度
は1050〜1100℃であって前述のAg−PdとBi2O3との反応
抑制について実質的に解決されておらず、特性上も静電
容量温度係数が+30〜−300ppm/℃と比較的広い範囲に
適用され、また絶縁抵抗が低下したり、破壊電圧が低
く、そのバラツキが大きいという実用化に対して致命的
欠点を有していた。
On the other hand, according to the above-mentioned conventional technique, the firing temperature is 1050-1100 ° C., and the reaction suppression between Ag-Pd and Bi 2 O 3 described above is not substantially solved, and in terms of characteristics. The temperature coefficient of capacitance is applied to a relatively wide range of +30 to -300ppm / ° C, and there are fatal drawbacks for practical use, such as low insulation resistance, low breakdown voltage, and large variations. Was there.

そこで、本出願人は特願昭58−231180号(特開昭60−
124306号公報)に於いて、特定割合のBaTiO3、Nd2O3、T
iO2、Bi2O3、Pb3O4組成系の主成分に対して添加物とし
てSiO2、ZnO及びB2O3を特定割合で配合すると、1000〜1
050℃の温度での焼成が可能となり、それによりAg−Pd
とBi2O3との反応が抑制されるとともに、静電容量温度
係数が±30ppm/℃の範囲で安定した温度特性を得ること
ができ、また絶縁抵抗が低下したり、破壊電圧が低くそ
のバラツキが生じたりすることが少なく、Ag−Pdを内部
電極とする温度補償用磁器コンデンサ用として極めて優
れた誘電体磁器組成物を提案した。
Therefore, the present applicant has filed Japanese Patent Application No. 58-231180 (Japanese Patent Laid-Open No.
124306), a specific ratio of BaTiO 3 , Nd 2 O 3 and T
When iO 2, Bi 2 O 3, Pb 3 O 4 and SiO 2, ZnO and B 2 O 3 is blended at a specific ratio as additives with respect to the main component of the composition system, 1000-1
Baking at a temperature of 050 ℃ is possible, which allows Ag-Pd
And the reaction between Bi 2 O 3 and Bi 2 O 3 are suppressed, stable temperature characteristics can be obtained in the temperature coefficient of capacitance range of ± 30 ppm / ° C, and the insulation resistance decreases and the breakdown voltage is low. We have proposed a dielectric porcelain composition that is extremely excellent in use as a temperature-compensating porcelain capacitor that uses Ag-Pd as an internal electrode, with less variation.

而して、本発明者は、この優れた特性を有する誘電体
磁器組成物を実用化するに於いて新たな問題点を知見し
た。即ち、斯かる誘電体磁器組成物をコンデンサに供す
る場合、先ず、原料粉末を薄いシート状成形体に加工す
るが、この成形工程において、組成物中のB2O3は水に可
溶であるため、スラリーの分散媒として水以外の分散
媒、即ちトルエン等の有機溶媒を用いる必要がある。こ
れは、B2O3が水に溶解すると硼酸となってスラリーの水
素イオン濃度を低下させ、スラリーの粘性を変化させる
ため、安定な厚さのシート状成形体を得ることが出来な
い為である。
Thus, the present inventor has found a new problem in putting the dielectric ceramic composition having this excellent property into practical use. That is, when using such a dielectric ceramic composition for a capacitor, first, the raw material powder is processed into a thin sheet-shaped molded body, and in this molding step, B 2 O 3 in the composition is soluble in water. Therefore, it is necessary to use a dispersion medium other than water, that is, an organic solvent such as toluene as the dispersion medium of the slurry. This is because when B 2 O 3 dissolves in water, it becomes boric acid, which lowers the hydrogen ion concentration of the slurry and changes the viscosity of the slurry, so that it is not possible to obtain a sheet-shaped compact with a stable thickness. is there.

しかしながら、トルエン等の有機溶媒の使用は、それ
自体が起爆性であり、人体にも影響があることから、現
実的量産時には成形・乾燥工程において完全な防爆措置
がとられる必要があるため、これが製品コストの高騰を
来す大きな原因となっていた。
However, the use of an organic solvent such as toluene is explosive in itself and affects the human body.Therefore, it is necessary to take complete explosion-proof measures in the molding / drying process during practical mass production. It was a major cause of rising product costs.

〔発明の目的〕[Object of the invention]

本発明者は、前記優れた特性を維持しながら上記問題
点を解消し得る誘電体磁器組成物について鋭意研究した
結果、B2O3に代え2CaO・3B2O3を用いることにより、分
散媒として水の使用が可能であることを知見し、ここに
これを提案せんとするものである。
The present inventor has intensively studied the excellent characteristics dielectric ceramic composition which can solve the above problems while maintaining, by the use of 2CaO · 3B 2 O 3 instead of B 2 O 3, the dispersion medium As a result, we have found that water can be used, and we propose this here.

〔課題を解決する為の手段〕[Means for solving the problem]

本発明は、BaTiO3を18.0〜27.0重量%、Nd2O3を31.6
〜36.3重量%、TiO2を27.6〜35.5重量%、Bi2O3を2.5〜
8.1重量%及びPb3O4を5.6〜9.0重量%を含む組成範囲の
主成分に対して、2CaO・3B2O3を0.15〜2.0重量%、SiO2
を1.0〜3.0重量%及びZnOを0.5〜3.0重量%添加して成
り、これにより1000〜1050℃で焼成可能な優れた特性を
有する誘電体磁器組成物が得られる。
The present invention, BaTiO 3 and 18.0 to 27.0 wt%, the Nd 2 O 3 31.6
~ 36.3 wt%, TiO 2 27.6-35.5 wt%, Bi 2 O 3 2.5-
8.1 wt% and Pb 3 O 4 with respect to the main component of the composition range containing 5.6 to 9.0 wt%, the 2CaO · 3B 2 O 3 0.15~2.0 wt%, SiO 2
1.0 to 3.0% by weight and 0.5 to 3.0% by weight of ZnO are added, whereby a dielectric porcelain composition having excellent properties that can be fired at 1000 to 1050 ° C. can be obtained.

本発明における1つの大きな特徴は、添加剤の一成分
として2CaO・3B2O3を選択した点にある。即ち、2CaO・3
B2O3は水に不溶性であり、従って、スラリーの分散媒と
して水が使用でき、エマルジョン有機バインダー、水溶
性分散剤、界面活性剤とともに各原料粉末を均一に分散
させ、厚さが安定した均質なグリーンシートを特殊な設
備等を何等必要とせず、安価に作業性良く生産できる。
One of the major features of the present invention is that 2CaO.3B 2 O 3 is selected as one component of the additive. That is, 2CaO ・ 3
Since B 2 O 3 is insoluble in water, water can be used as a dispersion medium for the slurry, and each raw material powder is uniformly dispersed together with the emulsion organic binder, the water-soluble dispersant, and the surfactant to stabilize the thickness. Homogeneous green sheets can be produced inexpensively and with good workability without requiring any special equipment.

一方、焼成時には2CaO・3B2O3はZnOと共存下におい
て、B2O3が単独で存在する場合と同様、1000〜1050℃で
緻密な磁器を焼結させることができる。
On the other hand, at the time of firing, 2CaO.3B 2 O 3 can co-exist with ZnO in the same manner as when B 2 O 3 is present alone to sinter a dense porcelain at 1000 to 1050 ° C.

第1図は、本発明の組成物中の一成分であるZnOとB2O
3との二元状態図を示すが、本図によればZnOとの共存下
でB2O3が30モル%程度で液相線が960℃程度にまで低く
なり、ZnO及びB2O3を適当な組成で用いることによって
焼結促進剤フラックスとして有効に作用することを示し
ている。
FIG. 1 shows ZnO and B 2 O which are one component in the composition of the present invention.
Fig. 3 shows the binary phase diagram with 3 and the figure shows that in the coexistence with ZnO, when B 2 O 3 is about 30 mol%, the liquidus line is lowered to about 960 ° C, and ZnO and B 2 O 3 It has been shown that when used in an appropriate composition, it acts effectively as a sintering accelerator flux.

従って、前述の主成分に対し添加成分としてZnO及び2
CaO・3B2O3を同時添加して焼成すると、2CaO・3B2O3が9
00℃以下の低温で反応し、B2O3が低温でより安定なZnO
との化合物を形成し、CaOは高温において主成分であるB
aTiO3と反応すると考えられる。
Therefore, ZnO and 2
When CaO ・ 3B 2 O 3 is added at the same time and baked, 2CaO ・ 3B 2 O 3 becomes 9
ZnO, which reacts at a low temperature of 00 ℃ or less, is more stable at low temperatures of B 2 O 3
Forms a compound with CaO, which is the main component of B at high temperatures.
It is considered to react with aTiO 3 .

よって、B2O3に代えて2CaO・3B2O3を用いても、焼結
過程に於ける液相成分は同様に作用し、1000〜1050℃で
焼結する効果を有する。なお、CaOはBaTiO3と反応する
性質を有するが、CaO量が微量であるため、系全体に対
しては何等影響を及ぼさない。
Therefore, even if 2CaO.3B 2 O 3 is used instead of B 2 O 3 , the liquid phase component in the sintering process acts in the same manner, and has the effect of sintering at 1000 to 1050 ° C. Although CaO has a property of reacting with BaTiO 3, it has no effect on the entire system because the amount of CaO is very small.

しかも、2CaO・3B2O3の添加効果は、焼結温度を低下
させることに限られず、B2O3を単独で添加した場合と同
様、実施例2にて示すようにコンデンサとして用いた場
合にQ値を向上させるとともに、絶縁抵抗値のバラツキ
を低減させ、破壊電圧を高くすることができるという多
大な効果を奏するのである。
Moreover, the effect of adding 2CaO.3B 2 O 3 is not limited to lowering the sintering temperature, and when used as a capacitor as shown in Example 2, as in the case of adding B 2 O 3 alone. In addition, the Q value can be improved, the variation in the insulation resistance value can be reduced, and the breakdown voltage can be increased, which is a great effect.

上記各組成物を上記組成範囲とした理由について説明
する。BaTiO3が18.0重量%未満であると、焼成温度を比
較的高くしないと充分緻密化した磁器が得られず、一方
27.0重量%を超えると、同様に焼成温度が高くないと充
分緻密化しないと共に、この場合絶縁抵抗(IR)が小さ
くなる。Nd2O3が31.6重量%未満であると、焼成温度が
高くないと充分緻密化しないと共に、絶縁抵抗(IR)が
小さく、また品質係数(Q)が小さくなる傾向があり、
36.3重量%を超えると容量温度係数(ppm/℃)が(+)
側へ大きく移行するが、BaTiO3が少ないとこの傾向は少
なくなり、一方焼成温度を高くしなければ充分緻密化し
ない。TiO2が27.6重量%未満であると焼成温度を高くし
ないと充分緻密化せず、35.5重量%を超えると容量温度
係数(ppm/℃)が(−)側へ大きくなる傾向がある。Bi
2O3が2.5重量%未満であると容量温度係数(ppm/℃)が
(−)側へ移行すると共に、焼成温度を高くしないと充
分緻密化せず、かつ絶縁抵抗(IR)及び品質係数(Q
値)が小さくなり、8.1重量%を超えると容量温度係数
(ppm/℃)が(−)側へ大きく移行すると共に絶縁抵抗
(IR)が小さくなる。Pb3O4が5.6重量%未満であると容
量温度係数(ppm/℃)が(−)側へ大きく移行すると共
に焼成温度を高くしなければ充分緻密化せず、9.0重量
%を超えると容量温度係数(ppm/℃)が(+)側へ移行
する。
The reason for setting each of the above-mentioned compositions to the above-mentioned composition range will be described. When BaTiO 3 is less than 18.0% by weight, a sufficiently densified porcelain cannot be obtained unless the firing temperature is relatively high.
If it exceeds 27.0% by weight, similarly, if the firing temperature is not high, the densification is not sufficient and the insulation resistance (IR) becomes small in this case. If Nd 2 O 3 is less than 31.6% by weight, the densification will not be sufficient unless the firing temperature is high, the insulation resistance (IR) will be small, and the quality factor (Q) will tend to be small.
When it exceeds 36.3% by weight, the temperature coefficient of capacity (ppm / ℃) is (+)
Although there is a large shift to the side, this tendency is diminished when the BaTiO 3 content is low, while the densification is not sufficient unless the firing temperature is raised. If TiO 2 is less than 27.6% by weight, densification will not be sufficient unless the firing temperature is increased, and if it exceeds 35.5% by weight, the temperature coefficient of capacity (ppm / ° C) tends to increase to the (-) side. Bi
When 2 O 3 is less than 2.5% by weight, the capacity temperature coefficient (ppm / ° C) shifts to the (-) side, and unless the firing temperature is raised, it will not be sufficiently densified, and the insulation resistance (IR) and quality factor will be high. (Q
Value becomes smaller, and when it exceeds 8.1% by weight, the temperature coefficient of capacity (ppm / ° C) shifts to the (-) side and the insulation resistance (IR) becomes smaller. When Pb 3 O 4 is less than 5.6% by weight, the temperature coefficient of capacity (ppm / ° C) shifts significantly to the (-) side and the densification is not sufficient unless the firing temperature is raised, and when it exceeds 9.0% by weight Temperature coefficient (ppm / ° C) shifts to the (+) side.

また、添加成分たる2CaO・3B2O3が0.15重量%未満で
は前述の添加効果が得られず、焼成温度を高くしなけれ
ば充分緻密化せず、かつ絶縁抵抗(IR)のバラツキの増
大及び破壊電圧の増大を招く。一方2.0重量%を超える
と焼成時アルミナ等のセッターとの融着を生じ易くな
る。更に、SiO2が1.0重量%未満又は3.0重量%を超える
と焼成温度を高くしないと充分緻密化せず、絶縁抵抗
(IR)及び品質係数(Q値)が小さくなる。最後にZnO
が0.5重量%未満であると焼成温度が高くないと充分緻
密化せず、絶縁抵抗(IR)及び品質係数(Q値)が小さ
くなり、3.0重量%を超えると品質係数(Q値)が小さ
くなると共に容量温度係数(ppm/℃)が(+)側へ大き
くなる。以上の如く、BaTiO3、Nd2O3、TiO2、Bi2O3、Pb
3O4、2CaO・3B2O3、SIO及びZnOが本発明の範囲外の場合
は夫々品質係数(Q値)、絶縁抵抗(IR)及び破壊電圧
が低すぎるか、低温(1050℃以下)での焼結が不充分で
本発明の目的に合致しない。好ましくは2CaO・3B2O3
0.45〜1.35重量%、SiO2が1.0〜3.0重量%及びZnOが1.0
〜2.5重量%の範囲で前記主成分に添加するのが良い。
The addition without component serving 2CaO · 3B 2 O 3 is obtained above effect of the addition of less than 0.15 wt%, the firing temperature has to be higher not sufficiently densified, and increase the variation in insulation resistance (IR) and This causes an increase in breakdown voltage. On the other hand, if it exceeds 2.0 wt%, fusion with a setter such as alumina tends to occur during firing. Further, if the SiO 2 content is less than 1.0% by weight or more than 3.0% by weight, the densification will not be sufficient unless the firing temperature is raised, and the insulation resistance (IR) and quality factor (Q value) will decrease. Finally ZnO
If less than 0.5% by weight, it will not be sufficiently densified unless the firing temperature is high, and the insulation resistance (IR) and quality factor (Q value) will be small, and if it exceeds 3.0% by weight, the quality factor (Q value) will be small. At the same time, the capacity temperature coefficient (ppm / ° C) increases toward the (+) side. As described above, BaTiO 3 , Nd 2 O 3 , TiO 2 , Bi 2 O 3 , Pb
When 3 O 4 , 2 CaO / 3 B 2 O 3 , SIO and ZnO are out of the range of the present invention, quality factor (Q value), insulation resistance (IR) and breakdown voltage are too low, or low temperature (1050 ° C or less) Sintering is not sufficient to meet the purpose of the present invention. 2CaO ・ 3B 2 O 3 is preferable
0.45-1.35 wt%, SiO 2 1.0-3.0 wt% and ZnO 1.0
It is advisable to add to the above main component in the range of up to 2.5% by weight.

以下本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described.

(実施例1) 予め、BaCO3とTiO2の等モルから1200℃で合成した純
度99.8%以上のBaTiO3と、純度98%以上のNd2O3と、純
度99.5%以上の二酸化チタン(アナターゼ)と、純度95
%以上のBi2O3及び純度95%以上のPb3O4を第1表の主成
分組成欄に記載した各資料の組成になるよう秤量し、合
計重量が夫々500gとなるようにした。さらに、純度95%
以上の2CaO・3B2O3、SiO2及びZnOを第1表の副成分欄に
記載した各試料の組成になるように夫々秤量して主成分
に加え、内容積1.6の磁器ポット中に嵩容積0.8(1.
5kg)のアルミナボール(17mmφ)とともに入れ、更
に、分散剤、界面活性剤とともにエマルジョンアクリル
樹脂並びに分散媒としてイオン交換水を加えて、回転数
72ppmで24時間回転して得られた原料スリップをドクタ
ーブレード法によって肉厚25μmのグリーンシートを成
形した。このグリーンシートを25枚重ねてホットプレス
してグリーン成形板を作成し、約10mm角、厚さ0.50mmの
グリーン角板に切断した。グリーンの角板を1000〜1100
℃の温度で2時間焼成し得られた約8mm角、厚さ0.4mmの
角板の上下全面に銀電極を付与して単層の角板型コンデ
ンサとし評価試料とした。こうして得られた各試料を周
波数1MHz、及び入力電力レベル1Vrmsにて静電容量及び
品質係数(Q値)を測定し、また直流電圧50Vを1分間
印加して絶縁抵抗(IR)を測定した後、周波数1MHzにお
いて−55℃、及び+125℃での静電容量温度係数を測定
した。また、試料のたて(L)よこ(W)の寸法を±5
μmの精度で厚さ(t)を±1μmの精度で夫々測定
し、 から比誘電率を計算した。
(Example 1) BaTiO 3 having a purity of 99.8% or more synthesized in advance from equimolar amounts of BaCO 3 and TiO 2 at 1200 ° C., Nd 2 O 3 having a purity of 98% or more, and titanium dioxide (anatase having a purity of 99.5% or more). ) And a purity of 95
% Bi 2 O 3 and Pb 3 O 4 having a purity of 95% or more were weighed so as to have the composition of each material described in the main component composition column of Table 1 so that the total weight was 500 g. Furthermore, 95% purity
The above 2CaO ・ 3B 2 O 3 , SiO 2 and ZnO were weighed and added to the main components so that the composition of each sample described in the sub-components column of Table 1 was obtained, and the bulk was placed in a porcelain pot with an internal volume of 1.6. Volume 0.8 (1.
(5 kg) with alumina balls (17 mmφ), then add emulsion acrylic resin together with dispersant and surfactant, and ion-exchanged water as dispersion medium.
A raw material slip obtained by rotating at 72 ppm for 24 hours was molded into a green sheet having a thickness of 25 μm by the doctor blade method. Twenty-five of these green sheets were stacked and hot pressed to form a green molded plate, which was cut into green square plates of about 10 mm square and 0.50 mm thick. 1000-1100 green square plates
Silver electrodes were provided on the entire upper and lower surfaces of a square plate of about 8 mm square and a thickness of 0.4 mm obtained by firing at a temperature of ° C for 2 hours to obtain a single-layer rectangular plate type capacitor, which was an evaluation sample. After measuring the capacitance and quality factor (Q value) of each sample thus obtained at a frequency of 1 MHz and an input power level of 1 Vrms, and after measuring the insulation resistance (IR) by applying a DC voltage of 50 V for 1 minute. The temperature coefficient of capacitance at −55 ° C. and + 125 ° C. at a frequency of 1 MHz was measured. In addition, the vertical (L) and horizontal (W) dimensions of the sample are ± 5
The thickness (t) is measured with an accuracy of ± 1 μm with an accuracy of μm, The relative permittivity was calculated from

こうして得た電気的特性の測定結果又は計算結果を各
々の試料の化学組成及び焼成温度と共に第1表に示し
た。
The measurement results or calculation results of the electrical characteristics thus obtained are shown in Table 1 together with the chemical composition and firing temperature of each sample.

第1表の試料番号1、2、3、7、9、11、12、15、
16、17、21、22、25、26及び29は、いずれも組成物のう
ちどれかが本発明の組成範囲に合致しないものであり、
焼成温度が1100℃以上必要となり、本発明の目的に合わ
ない。また、試料番号11、12、21、25、26及び29は品質
係数(Q値)が1000未満と小さ過ぎ本発明の目的に合わ
ない。また、試料番号7、11、15、16、17、21、22、25
及び26は絶縁抵抗(IR)が小さ過ぎ本発明の目的に合わ
ない。
Sample Nos. 1, 2, 3, 7, 9, 11, 12, 15, of Table 1
16, 17, 21, 22, 25, 26 and 29 are all those in which any of the compositions does not meet the composition range of the present invention,
A firing temperature of 1100 ° C or higher is required, which is not suitable for the purpose of the present invention. Further, the sample numbers 11, 12, 21, 25, 26 and 29 have a quality factor (Q value) of less than 1000, which is too small to meet the purpose of the present invention. In addition, sample numbers 7, 11, 15, 16, 17, 21, 22, 25
26 and 26 have too small an insulation resistance (IR) to meet the purpose of the present invention.

更に、試料番号7、9、11、12、15、16、21、25及び
29は容量温度係数(ppm/℃)が±30ppm/℃の範囲を逸脱
するものであり本発明の目的に合わない。尚、この実施
例では単板の焼成磁器に銀電極を付与した単板型コンデ
ンサを評価試料としている。しかしながら実際にこれら
を積層型として焼成した場合、焼成温度が更に20℃程度
低くなる。そのため容量温度係数(ppm/℃)の特に
(−)側が大きいと、これが15ppm/℃程度(+)側に移
行することが確認されている。
In addition, sample numbers 7, 9, 11, 12, 15, 16, 21, 25 and
In No. 29, the capacity temperature coefficient (ppm / ° C) deviates from the range of ± 30 ppm / ° C, which does not meet the object of the present invention. In this example, a single plate type capacitor having a silver electrode attached to a single plate firing porcelain is used as an evaluation sample. However, when these are actually fired as a laminated type, the firing temperature is further lowered by about 20 ° C. Therefore, it has been confirmed that the capacitance temperature coefficient (ppm / ° C) shifts to about 15 ppm / ° C (+) side particularly when the (-) side is large.

一方、上記以外の各試料はいずれも1050℃以下の温度
で充分焼結しており、106MΩ以上絶縁抵抗(IR)を示
し、また比誘電率(εr)は50以上(実質的に最低であ
る試料番号10の場合でもεr=67)と高く、品質係数
(Q値)も1000以上であり優れた電気的特性を示し、更
に静電容量温度係数(ppm/℃)も±30ppm/℃の範囲内で
一定の温度特性を有していることが理解できる。
On the other hand, each of the samples other than the above is sufficiently sintered at a temperature of 1050 ° C or less, exhibits an insulation resistance (IR) of 10 6 MΩ or more, and has a relative dielectric constant (εr) of 50 or more (substantially the minimum In the case of Sample No. 10, which is as high as εr = 67), the quality factor (Q value) is 1000 or more, which shows excellent electrical characteristics, and the capacitance temperature coefficient (ppm / ° C) is ± 30 ppm / ° C. It can be understood that it has a constant temperature characteristic within the range of.

(実施例2) 第1表における本発明の範囲内試料番号14のものと、
2CaO・3B2O3を添加しない本発明範囲外試料番号17のも
のとの誘電体グリーンシート上に、Ag70重量%とPd30重
量%との合金に有機結合剤及びその溶材を加えて成るペ
ーストを各々印刷した。この金属印刷膜を付与した各グ
リーンシートを58枚積層し、上下8枚ずつ印刷膜をもた
ないグリーンシートを加えてホットプレスした。
(Example 2) Sample No. 14 within the scope of the present invention in Table 1,
A paste made by adding an organic binder and its melting material to an alloy of 70% by weight of Ag and 30% by weight of Pd on a dielectric green sheet of Sample No. 17 outside the scope of the present invention without adding 2CaO / 3B 2 O 3. Each was printed. Each of the 58 green sheets provided with the metal print film was laminated, and the upper and lower 8 green sheets having no print film were added and hot pressed.

さらに、たて5.2mmよこ4mmの寸法の個々のピースに切
断し、積層型磁器コンデンサのグリーンチップを各々作
成し、これら第1表に示す夫々の温度で2時間焼成し
た。焼成した両チップの両端にAg−Pd合金電極を付与し
て積層型磁器コンデンサを作成した。
Further, each piece was cut into individual pieces each having a size of 5.2 mm by 4 mm, and each green chip of the laminated porcelain capacitor was prepared and fired at each temperature shown in Table 1 for 2 hours. Ag-Pd alloy electrodes were applied to both ends of both fired chips to produce a laminated ceramic capacitor.

こうして得た積層型磁器コンデンサの静電容量(nF)
及び品質係数(Q値)を周波数1MHz、入力電圧1Vrmsで
測定し、直流電圧50Vを1分間印加して絶縁抵抗(IR)
を測定し、さらに直流電圧を印加し、徐々に昇圧して破
壊したときの電圧(破壊電圧)を測定した。それぞれの
測定結果を第2表に示した。但し、測定試料個数は各20
個であり、静電容量(nF)及び品質係数(Q値)は平均
値を、破壊電圧は平均値x(V)及びバラツキ指数σ/x
(%)を、絶縁抵抗(IR)については106MΩ、105及び1
04MΩのオーダの個数を夫々示した。
Capacitance (nF) of multilayer ceramic capacitor thus obtained
And the quality factor (Q value) are measured at a frequency of 1MHz and an input voltage of 1Vrms, and a DC voltage of 50V is applied for 1 minute to insulate resistance (IR)
Was measured, and a DC voltage was applied, and the voltage (breakdown voltage) when the voltage was gradually raised to break down was measured. The respective measurement results are shown in Table 2. However, the number of measurement samples is 20 each
The capacitance (nF) and the quality factor (Q value) are average values, and the breakdown voltage is the average value x (V) and the variation index σ / x.
(%), Insulation resistance (IR) 10 6 MΩ, 10 5 and 1
The numbers on the order of 0 4 MΩ are shown.

第2表に示すように2CaO・3B2O3を含まない試料番号1
7の積層型磁器コンデンサーは破壊電圧の平均値が321x
(V)で、またそのバラツキ指数が22.4σ/x(%)であ
り、絶縁抵抗(IR)について104MΩオーダが20個中1
個、105MΩオーダが20個中7個存在していて絶縁抵抗が
不充分である。これに対し2CaO・3B2O3を含む試料番号1
4の積層型磁器コンデンサは破壊電圧の平均値が760x
(V)と前者の2倍以上と高く、またそのバラツキ指数
が9.6σ/x(%)と小さく、その上絶縁抵抗(IR)は20
個中20個とも106MΩ以上であり充分である。
As shown in Table 2, sample number 1 that does not contain 2CaO / 3B 2 O 3
7 multilayer ceramic capacitors have an average breakdown voltage of 321x
(V) with a variation index of 22.4σ / x (%) and an insulation resistance (IR) of 1 in 20 4 of 10 4 MΩ.
Insulation resistance is insufficient because 7 out of 20 exist in 10 5 MΩ order. On the other hand, sample number 1 containing 2CaO / 3B 2 O 3
4 multilayer ceramic capacitors have an average breakdown voltage of 760x
(V), which is more than twice that of the former, and the variation index is small at 9.6σ / x (%), and the insulation resistance (IR) is 20.
It is sufficient that 20 of them are 10 6 MΩ or more.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明の誘電体磁器組成物は、10
00〜1050℃の低温域での焼成が可能であり、それにより
Ag−Pdを内部電極とした積層型磁器コンデンサ用として
用いた場合でも内部電極とBi2O3との反応が低減され、
誘電的特性を安定化させることができる。また、容量の
温度係数を−55℃〜125℃の温度範囲において±30ppm/
℃の範囲にすることができるとともに絶縁抵抗、破壊電
圧の低下やバラツキが低減され、温度補償型積層コンデ
ンサ用として充分に実用可能な特性を有するものであ
る。更に、内部電極として比較的低融点を有するAgの含
有量の多いAg−Pd合金を使用できるので安価な積層コン
デンサを得ることが出来る。
As described above in detail, the dielectric ceramic composition of the present invention is
Baking at low temperature range of 0 to 1050 ℃ is possible.
Even when used for a laminated porcelain capacitor with Ag-Pd as the internal electrode, the reaction between the internal electrode and Bi 2 O 3 is reduced,
It is possible to stabilize the dielectric properties. In addition, the temperature coefficient of capacity is ± 30ppm / in the temperature range of -55 ℃ to 125 ℃.
It has a characteristic that it can be set in the range of 0 ° C., the insulation resistance and the breakdown voltage are prevented from lowering and variations, and that it is sufficiently practical for a temperature-compensated multilayer capacitor. Furthermore, since an Ag-Pd alloy having a relatively low melting point and a high Ag content can be used as the internal electrodes, an inexpensive multilayer capacitor can be obtained.

上記の優れた効果は、添加成分としてB2O3を用いた本
出願人に係る前記先行出願の効果を維持するものである
が、本発明は、B2O3に代えて2CaO・3B2O3を用いること
により、焼成時のバインダーとして水の使用が可能とな
り、これにより脱水・乾燥工程にフィルタープレスを用
いることが出来、量産性が飛躍的に向上し生産コストの
大幅な低減化が図られると云う特筆すべき利点が付加さ
れる。
The excellent effect described above is to maintain the effect of the prior application of the applicant using B 2 O 3 as an additive component, but the present invention replaces B 2 O 3 with 2CaO / 3B 2 By using O 3 , it becomes possible to use water as a binder during firing, which allows a filter press to be used in the dehydration / drying process, dramatically improving mass productivity and significantly reducing production costs. The remarkable advantage of being achieved is added.

【図面の簡単な説明】[Brief description of the drawings]

第1図はZnOとB2O3との二元状態図である。FIG. 1 is a binary phase diagram of ZnO and B 2 O 3 .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】BaTiO3を18.0〜27.0重量%、Nd2O3を31.6
〜36.3重量%、TiO2を27.6〜35.5重量%、Bi2O3を2.5〜
8.1重量%及びPb3O4を5.6〜9.0重量%を含む組成範囲の
主成分に対して、 2CaO・3B2O3を0.15〜2.0重量%、SiO2を1.0〜3.0重量%
及びZnOを0.5〜3.0重量%添加して成ることを特徴とす
る誘電体磁器組成物。
1. BaTiO 3 is contained in an amount of 18.0 to 27.0% by weight and Nd 2 O 3 is added in an amount of 31.6.
~ 36.3 wt%, TiO 2 27.6-35.5 wt%, Bi 2 O 3 2.5-
8.1 wt% and Pb 3 O 4 with respect to the main component of the composition range containing 5.6 to 9.0 wt%, the 2CaO · 3B 2 O 3 0.15~2.0 wt%, a SiO 2 1.0 to 3.0 wt%
And 0.5 to 3.0% by weight of ZnO, which is a dielectric ceramic composition.
JP63193068A 1988-08-01 1988-08-01 Dielectric porcelain composition Expired - Fee Related JP2691181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193068A JP2691181B2 (en) 1988-08-01 1988-08-01 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193068A JP2691181B2 (en) 1988-08-01 1988-08-01 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH0244609A JPH0244609A (en) 1990-02-14
JP2691181B2 true JP2691181B2 (en) 1997-12-17

Family

ID=16301673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193068A Expired - Fee Related JP2691181B2 (en) 1988-08-01 1988-08-01 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP2691181B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264403A (en) * 1991-09-27 1993-11-23 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass
US5479140A (en) * 1991-09-27 1995-12-26 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
JP2613722B2 (en) * 1991-09-27 1997-05-28 日本碍子株式会社 Method for producing dielectric ceramic composition for low-temperature firing
JPH0878101A (en) * 1994-09-07 1996-03-22 Nippon Carbide Ind Co Inc Electric filter adapter
JP2000087991A (en) 1998-07-13 2000-03-28 Nippon Seiko Kk Coupling structure of expandable shaft
EP1036777B1 (en) 1999-03-16 2003-06-04 TDK Corporation Composition of dielectric ceramics and producing method therefor
CN101687663B (en) 2007-06-27 2012-06-27 株式会社村田制作所 Semiconductor ceramic powder, semiconductor ceramic, and laminated semiconductor capacitor

Also Published As

Publication number Publication date
JPH0244609A (en) 1990-02-14

Similar Documents

Publication Publication Date Title
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3024536B2 (en) Multilayer ceramic capacitors
KR100256199B1 (en) Monolithic ceramic capacitor
US6310761B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor
JPH0355002B2 (en)
KR101432442B1 (en) Dielectic ceramic composition and electronic device
JP2691181B2 (en) Dielectric porcelain composition
JPH0552604B2 (en)
JPH0518201B2 (en)
KR20140002030A (en) Layered ceramic capacitor and method for producing layered ceramic capacitor
JPH0552602B2 (en)
US4628404A (en) Dielectric composition and laminated capacitor
JP4325900B2 (en) Dielectric porcelain composition
JP3605260B2 (en) Non-reducing dielectric ceramic composition
EP0968148B1 (en) Dielectric ceramic composition
JPH0528448B2 (en)
JP4400860B2 (en) Dielectric porcelain composition
JP2789110B2 (en) High dielectric constant porcelain composition
JPH04264305A (en) Dielectric ceramic composition
JPH11340075A (en) Dielectric cermic composition
JP2821768B2 (en) Multilayer ceramic capacitors
JPH0828127B2 (en) Dielectric ceramic composition for temperature compensation
JPH0420246B2 (en)
JPS6234707B2 (en)
JPH0453042B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees