JP4325900B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition Download PDF

Info

Publication number
JP4325900B2
JP4325900B2 JP2001097716A JP2001097716A JP4325900B2 JP 4325900 B2 JP4325900 B2 JP 4325900B2 JP 2001097716 A JP2001097716 A JP 2001097716A JP 2001097716 A JP2001097716 A JP 2001097716A JP 4325900 B2 JP4325900 B2 JP 4325900B2
Authority
JP
Japan
Prior art keywords
value
less
temperature
dielectric
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001097716A
Other languages
Japanese (ja)
Other versions
JP2002293621A (en
Inventor
貴夫 温品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001097716A priority Critical patent/JP4325900B2/en
Publication of JP2002293621A publication Critical patent/JP2002293621A/en
Application granted granted Critical
Publication of JP4325900B2 publication Critical patent/JP4325900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル等の卑金属を内部電極とする温度補償用(TC系)積層磁器コンデンサ等に用いられる誘電体の好適な誘電体磁器組成物に関する。
【0002】
【従来の技術】
図1は、一般的な積層磁器コンデンサの外観斜視図であり、図2は、その断面図である。
【0003】
従来、積層磁器コンデンサを製造する際には、誘電体磁器原料粉末からなるグリーンシート(未焼結磁器シート)にパラジウム又は銀/パラジウム等の貴金属の導電性ペーストを所望パターンに印刷し、これを複数枚積層してプレス圧着し、1200〜1300℃の酸化性雰囲気中で焼成し、銀外部電極を塗布後、600〜800℃で焼成後、ニッケル及びスズの2層構造よりなるメッキを施して、積層磁器コンデンサを構成していた。
【0004】
しかし、近年になってパラジウム価格は驚異的な高騰が続いているため、比較的パラジウム使用量の少ないTC系コンデンサにおいても、原価に影響を及ぼし始めている。このため、内部電極3の卑金属化は、従来では内部電極3枚数が多いB・F特性のような大容量型に限られていたが、TC系コンデンサにおいても求められてきている。
【0005】
しかし、誘電体層2と内部電極3を交互に積層した積層磁器コンデンサ構造では、Ni内部電極3と誘電体層2の一体焼成となることから、Ni等の酸化を防止するために、中性(雰囲気:N2100%)又は還元性雰囲気(雰囲気:N2+H2数%)にて同時焼成しても誘電体が還元されることなく、電気的な特性及び電圧負荷寿命等の信頼性に関して、十分満足される誘電体材料の開発が必要となる。
【0006】
そこで、CaZrO3とCaTiO3とから成る基本成分に、Si−Li−アルカリ土類金属で構成されるガラス成分(焼結助剤)を添加した非還元性温度補償用誘電体磁器組成物が特公平5−52604に開示されている。
【0007】
上記発明の誘電体磁器組成物は、非酸化性雰囲気、且つ1100〜1300℃の焼成で得られるので、ニッケル等の卑金属を内部電極3とする温度補償用積層磁器コンデンサの誘電体として好適なものである。
【0008】
【発明が解決しようとする課題】
ところで、上記誘電体磁器組成物によれば、1350℃〜1380℃と高温での焼成処理を行わなければ焼結不足となり、電気的に満足な特性を得られない。しかし積層磁器コンデンサでは、誘電体層2と内部電極3のモノリシック構造のため、このような高温下での焼成処理を施すと、Ni等で構成される内部電極3に溶融・凝集が生じ、Ni等の金属が玉状に分布する。また、高温焼成のために、Ni等の金属が誘電体磁器中に拡散し、誘電体層2の絶縁抵抗劣化を引き起こす。この結果、所望の静電容量、及び絶縁抵抗を有する積層磁器コンデンサを得ることが困難であった。このような問題点を解決するために、特公平5−52604の材料系では、Si−Li2O−アルカリ土類で構成される焼結助剤の組成系で、1200℃以下での焼成温度域迄の低温焼成化を図り、所望の特性を満足する温度補償用ニッケル積層磁器コンデンサとしていた。
【0009】
しかし、この組成系で構成される焼結助剤では、低融点元素であるリチウムの蒸発が著しく、焼成時に発生する磁器組成の斑が顕著に発生する事により、結果として個々の電気特性にバラツキが生じる他、図3に示すように、リチウム元素の蒸発開始温度とほぼ同じくして誘電体磁器内部に、ガラス成分の凝集20が発生し、結果的には湿中雰囲気での作動試験において、Q値の劣化を引き起こす問題がある。
【0010】
更に詳しく説明すると、中性又は還元雰囲気状況下での1000℃以上の温度域になるとリチウムの蒸発が発生し始めると同時に、ガラス成分の凝集体20が磁器中に存在し始める。この現象は、特にJIS規格3216型以下の小型形状なるバルク体になると顕著であり、そのため磁器中の組成変動に対する安定な焼成を行うことが非常に困難であった。
【0011】
本発明は上記の事情に鑑みてなされたものであり、その目的は、1100℃〜1300℃の還元性雰囲気中でも安定な焼成が可能で、静電容量Cap、比誘電率εs、温度特性TC、Q値、比抵抗ρなどの特性ばらつきが小さく、且つガラス成分の凝集を防ぐことが可能な非還元性温度補償用の誘電体磁器組成物を提供することにある。
【0012】
【課題を解決するための手段】
本発明の誘電体磁器組成物は、一般式(CaO)x(Zr1-y・Tiy)O2(但し、0.95≦x≦1.05、0.01≦y≦0.10の範囲の数値)で表される基本成分100重量部に対して、
MnCO3を1〜5重量部(以下、添加量をzとする)と、
ガラス成分を0.5〜5重量部含有する。
【0013】
即ち、基本成分のxが0.95未満ではQ値が著しく低下し、1.05を越える場合は、1100〜1300℃で十分に焼結しない。また、yが0.01未満では誘電率が25以下となり目標を満足しなくなる。更に、yが0.10を越える場合でも誘電率の温度特性の絶対値が30ppmより大きくなる。
【0014】
そして、本発明のガラス成分は、その組成を一般式(1)
aSiO2−bLi2O−cB23―dCaO・・・・・・・・・・(1)
(式中、a+b+c+d=100)
で表した時、0.45≦a≦0.70、0.05≦b≦0.15、0.075≦c≦0.225、0.05≦d≦0.20、0.5≦b/c≦0.9、a+b+c+d=1の範囲にある組成から構成される。
【0015】
即ち、ガラスのaが0.45未満では十分に焼結しない。更に、0.7を超えると、Q値が著しく低下する。また、bが0.05未満となると十分に焼結しない。更に0.15を超えるとQ値が著しく低下する。また、cが0.075未満では1100〜1300℃で十分に焼結しない。更に0.225を超えるとQ値が著しく低下する。また、dが0.05未満では1100〜1300℃で十分に焼結しない。更に0.20を超えるとQ値が著しく低下する。また、b/cが0.5未満ではQ値が著しく低下する。更に0.9を超えるとガラス成分の凝集が起こり、耐湿信頼性が低下する。
【0016】
ここで、ガラス成分の凝集の組成式は、Li2SiO3であることが確認されており、b/cが0.9を越えた場合、すなわちLiとBの共晶点となる組成(b/c=2/3)に対し、Liの割合が多くなると、ガラス成分の凝集が起こりやすくなると考えられる。したがって、b/cを0.9以下にすることにより、ガラス成分の凝集を防ぎ、さらには、湿中雰囲気での作動試験における、Q値の劣化を防ぐことができる。
【0017】
また、最も望ましい範囲は0.98≦x≦1.00、0.02≦y≦0.03、2.0≦z≦4.0、0.55≦a≦0.60、0.08≦b≦0.12、0.12≦c≦0.18、0.10≦d≦0.15の範囲である。
【0018】
【実施例】
次に、本発明の実施例(比較例も含む)について説明する。
【0019】
炭酸カルシウム(CaCO3)、二酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、炭酸マンガン(MnCO3)を出発原料として用意し、表1に示すような比率になるようにそれぞれ秤量した。なお、この秤量において、不純物は目方に入れないで秤量した。次に、これらの秤量された原料をポットミルに入れ、更にアルミナボールと水2.5リットルとを入れ、15時間湿式撹拌した後、撹拌物をステンレスバットに入れて熱風式乾燥機で150℃×4時間乾燥した。次にこの乾燥物を粗粉砕し、この粗粉砕物をトンネル炉にて大気中で1300℃×2時間の焼成を行い、表1に示す組成式の平均粒径1μm程度の基本成分を得た。
【0020】
一方、ガラス成分を得るために、二酸化珪素(SiO2)、炭酸リチウム(Li2CO3)、酸化硼素(B23)、炭酸カルシウム(CaCO3)を適宜秤量し、これに水を300cc加え、ポリエチレンポットにてアルミナボールを用いて10時間撹拌した後、大気中1300℃で2時間仮焼成し、これを300ccの水と共にアルミナポットに入れ、アルミナボールで15時間粉砕し、しかる後、150℃で4時間乾燥させて、表1に示す平均粒径1μm程度のガラス成分の粉末を得た。
【0021】
次に、上記基本成分の粉末にガラス成分の粉末1.2重量部を加え、更に、アクリル酸エステルポリマー、グリセリン、縮合リン酸塩の水溶液から成る有機バインダを基本成分と添加成分との合計重量に対して15重量%添加し、更に50重量%の水を加え、これらをボールミルに入れて約20時間粉砕及び混合して磁器原料のスラリーを作製した。
【0022】
次に、上記スラリーを真空脱泡機に入れて脱泡し、このスラリーをリバースロールコーターに入れ、これを使用してポリエステルフイルム上にスラリーに基づく薄膜を形成し、この薄膜をフイルム上で100℃に加熱して乾燥させ、厚さ約25μmのグリーンシートを得た。このシートは、長尺なものであるが、これを10cm角の正方形に打ち抜いて使用した。
【0023】
一方、内部電極用の導電ペーストは、粒径平均1.5μmのニッケル粉末10gと、エチルセルローズ0.9gをブチルカルビトール9.1gに溶解させたものとを撹拌機に入れ、10時間撹拌することにより得た。この導電ペーストを長さ14mm、幅7mmのパターンを50個有するスクリーンを介して上記グリーンシートの片面に印刷した後、これを乾燥させた。
【0024】
次に、上記印刷面を上にしてグリーンシートを2枚積層した。この際、隣接する上下のシートにおいて、その印刷面がパターンの長手方向に約半分程ずれるように配置した。更に、この積層物の上下両面にそれぞれ4枚ずつ厚さ60μmのグリーンシートを積層した。次いで、この積層物を約50℃の温度で厚さ方向に約40トンの圧力を加えて圧着させた。しかる後、この積層物を格子状に裁断し、約100個の積層チップを得た。
【0025】
次に、この積層体チップを雰囲気焼成が可能な炉に入れ、大気雰囲気中で100℃/hの速度で300℃まで昇温して2時間保持し、有機バインダを燃焼させた。しかる後、炉の雰囲気を大気からH22体積%+N298体積%の雰囲気に変えた。そして、炉を上述の如き還元性雰囲気とした状態を保って、積層体チップの加熱温度を600℃から焼結温度まで100℃/hの速度で昇温して1100〜1300℃(最高温度)×3時間保持した後、100℃/hの速度で600℃まで降温し、雰囲気を大気雰囲気(酸化性雰囲気)におきかえて、600℃を30分間保持して酸化処理を行い、その後、室温まで冷却して焼結体チップを作製した。
【0026】
次に、電極が露出する焼結体チップの側面にCuとガラスフリットとビヒクルとから成る導電性ペーストを塗布して乾燥し、これを大気中で800〜900℃の温度で15分間焼付け、Cu電極層を形成し、更にこの上に銅を無電解メッキで被着させて、更にこの上に電気メッキ法でSn半田層を設けて、一対の外部電極を形成した。
【0027】
これにより、誘電体磁器層、内部電極と、外部電極から成る積層磁器コンデンサが得られた。なお、このコンデンサの寸法は2.0mm×1.25mmであり、積層仕様は15μm×40層である。また、焼結後の磁器層の組成は、焼結前の基本成分と添加成分との混合組成と実質的に同じである。
【0028】
次に、完成した積層磁器コンデンサの静電容量Cap、比誘電率εs、温度係数TC、Q値、比抵抗ρ、耐湿信頼性を測定した。
【0029】
なお、上記電気的特性は次の要領で測定した。
(1)比誘電率εsは、温度25℃、周波数1MHz、交流電圧〔実効値〕1.0Vの条件で静電容量を測定し、この測定値と一対の内部電極の対向面積1.5mm2と磁器層の厚さ0.01mmから計算で求めた。静電容量Capも同様の方法で求めた。
(2)温度係数(TC)=((C85−C25)×106)/C25×(C85−C25)で算出した。C85は85℃における誘電率であり、C25は25℃における誘電率である。
(3)抵抗率ρ(MΩ・cm)は、温度20℃においてDC50Vを1分間印加した後に一対の外部電極間の抵抗値を測定し、この測定値と寸法とに基づいて計算で求めた。
(4)Q値は温度25℃において、周波数1MHz、電圧〔実効値]0.5Vの交流でQメータにより測定した。
(5)耐湿信頼性は、85℃/85%RHにて96時間放置経過後のQ値の変化率を求めた。そして変化率の判定基準としては、±5%以内ならば丸印とし、±5%以上のものをバツ印とした。尚±5%以内のものを判定OKとした理由は測定誤差を考慮したものある。
【0030】
これらの結果を表1に示す。
【0031】
【表1】

Figure 0004325900
【0032】
表1から明らかな如く、本発明に従う試料(試料No.2〜5、8〜11、14〜17、20〜21、24、27〜28、31〜32)では、静電容量Capが950〜1050pF、容量ばらつきCV値が2.0%以下、比誘電率εsが30〜66、誘電率の温度係数TCが±30ppm以内、Q値が5000以上、比抵抗ρが1×109MΩ・cm以上、耐湿信頼性におけるQ値の変化率が±5%以内となり、所望の特性の温度補償用コンデンサを得ることができた。
【0033】
これに対し、xが0.90の場合(試料No.1)は、Q値が1200と著しく低下した。また、xが1.10の場合(試料No.6)は、Q値が2100、比抵抗ρが4.30×107MΩ・cmとなり、焼結不十分だった。
【0034】
また、yが0の場合(試料No.7)は、静電容量Capが870、比誘電率εsが22となった。更にyが0.15の場合(試料No.12)は、静電容量Capが1320、誘電率の温度特性TCの絶対値が55ppmとなった。
【0035】
zが0.5の場合(試料No.13)は、Q値が1150と著しく低下した。更に5.5重量部の場合(試料No.18)においても、Q値が2210と著しく低下した。
【0036】
すなわち、基本成分を、一般式(CaO)x(Zr1-y・Tiy)O2としたとき、xが0.95未満の場合、Q値が5000未満となり、xが1.05より大きい場合、Q値が5000未満、比抵抗ρが1×109MΩ・cm未満となることがわかる。また、yが0.01未満の場合、静電容量Capが950pF未満、比誘電率εsが30未満となり、yが0.10より大きい場合、静電容量Capが1050pFより大きく、誘電率の温度係数TCが−30ppmより小さくなることがわかる。
【0037】
また、MnCO3の添加量をz重量部とした場合、zが1重量部未満の場合も、5重量部より大きい場合も、Q値が5000未満となることがわかる。
【0038】
また、aが0.4の場合(試料No.19)は、Q値が4000、比抵抗ρが3.66×107MΩ・cmとなり、焼結不十分だった。更に、aが0.75の場合(試料No.22)は、Q値が2210と著しく低下した。
【0039】
また、bが0.04の場合(試料No.23)は、Q値が4600、比抵抗ρが1.81×107MΩ・cmとなり、焼結不十分だった。更に、bが0.2の場合(試料No.25)は、Q値が2130と著しく低下した。
【0040】
また、cが0.05の場合(試料No.26)は、比抵抗ρが3.21×107MΩ・cmとなり、焼結不十分だった。更に、0.35の場合(試料No.30)は、Q値が2210と著しく低下した。
【0041】
また、dが0.10の場合(試料No.30)は、比抵抗ρが3.21×107MΩ・cmとなり、焼結不十分だった。更に、0.25の場合(試料No.33)は、Q値が2159と著しく低下した。
【0042】
すなわち、ガラス成分の組成を、一般式aSiO2−bLi2O−cB23―dCaOで表した場合、aが0.45未満の場合、Q値が5000未満、比抵抗ρが1×109MΩ・cm未満となり、aが0.70より大きい場合、Q値が5000未満となることがわかる。また、bが0.05未満の場合、Q値が5000未満、比抵抗ρが1×109MΩ・cm未満となり、bが0,15より大きい場合、比抵抗ρが1×109MΩ・cm未満となることがわかる。また、cが0.075未満の場合、比抵抗ρが1×109MΩ・cm未満となり、cが0.255より大きい場合、Q値が5000未満となることがわかる。また、dが0.05未満の場合、比抵抗ρが1×109MΩ・cm未満となり、dが0.20より大きい場合、Q値が5000未満となることがわかる。
【0043】
また、b/cが0.43の場合(試料No.34)は、Q値が4500と低下した。更に、b/cが1の場合(試料No.35)は、Q値は5900だったが、耐湿信頼性試験におけるQ値の変化率が±5%以上となった。
【0044】
すなわち、b/cが0.5未満の場合、Q値が5000未満となることがわかる。また、b/cが0.9より大きい場合、耐湿信頼性試験におけるQ値の変化率が±5%以上となることがわかる。
【0045】
また、EPMAにより、焼結体断面における凝集を調べたところ、本発明(試料No.10)の誘電体磁器組成物は、ガラス成分の凝集は見られなかったが、比較例(試料No.35)の誘電体磁器組成物は、組成式Li2SiO3で表されるガラス成分の凝集が見られた。
【0046】
以上、本発明の実施例について述べたが、本発明はこれに限定されるものではなく、例えば次の変形例が可能なものである。
(1)基本成分の中に、本発明の目的を阻害しない範囲で微量(好ましくは0.05〜0.1重量%)の鉱化剤を添加し、焼結性を向上させてもよい。
(2)基本成分を得るための出発原料を、実施例で示したもの以外の例えば、CaO等の酸化物又は水酸化物又はその他の化合物してもよい。また、添加成分の出発原料を酸化物、水酸化物等の他の化合物としてもよい。
(3)酸化温度を600℃以外の焼結温度よりも低い温度(好ましくは500℃〜1000℃の範囲)としてもよい。即ち、ニッケル等の電極と磁器の酸化とを考慮して種々変更するることが可能である。
(4)非酸化性雰囲気中の焼成温度を、電極材料を考慮して種々変えることができる。ニッケルを内部電極とする場合には、1050℃〜1200℃の範囲で溶融凝集がほとんど生じない。
(5)焼結を中性雰囲気で行ってもよい。
(6)積層磁器コンデンサ以外の一般的な磁器コンデンサにも適用可能である。
(7)他の融点が低いガラス成分にも適用可能である。
【0047】
【発明の効果】
以上のように、本発明の誘電体磁器は、CaZrO3とCaTiO3とから成る基本成分に、SiO2−Li2O−B23―CaOで構成されるガラス成分(焼結助剤)を添加することにより、中性又は還元性雰囲気中での焼成時に、容量バラツキの低減を図ることが可能であり、更には、比誘電率εs、温度特性TC、Q値、比抵抗ρなどについても十分に満足なものとなる。
【0048】
また、Li/B比を制御することにより、焼成時のガラス成分の凝集を抑制し、湿中雰囲気での作動試験におけるQ値の劣化を防止できる。
【0049】
従って、本発明における非還元性誘電体磁器組成物を応用することにより、品質的に極めて安定で、且つ静電容量Cap、温度特性TC、Q値、比抵抗ρなどについても十分満足させる温度補償用積層磁器コンデンサを提供することが可能になる。
【図面の簡単な説明】
【図1】一般的な積層磁器コンデンサの外観斜視図である。
【図2】図1の積層磁器コンデンサの断面図である。
【図3】従来の誘電体磁器組成物の問題点を示す図である。
【符号の説明】
1・・・・誘電体ブロック
2・・・・誘電体磁器層
3・・・・内部電極
4、5・・外部電極
20・・・ガラス成分の凝集部分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition suitable for a dielectric used in a temperature compensation (TC-based) laminated ceramic capacitor having a base metal such as nickel as an internal electrode.
[0002]
[Prior art]
FIG. 1 is an external perspective view of a general multilayer ceramic capacitor, and FIG. 2 is a cross-sectional view thereof.
[0003]
Conventionally, when manufacturing a multilayer ceramic capacitor, a conductive paste of noble metal such as palladium or silver / palladium is printed in a desired pattern on a green sheet (unsintered ceramic sheet) made of dielectric ceramic raw material powder, Multiple sheets are stacked and press-bonded, fired in an oxidizing atmosphere of 1200 to 1300 ° C., coated with a silver external electrode, fired at 600 to 800 ° C., and then plated with a two-layer structure of nickel and tin. The laminated ceramic capacitor was constituted.
[0004]
However, since the price of palladium has been rising dramatically in recent years, even TC capacitors that use relatively little palladium have begun to affect the cost. For this reason, the formation of a base metal in the internal electrode 3 is conventionally limited to a large-capacity type such as a B / F characteristic in which the number of internal electrodes 3 is large, but is also required for a TC capacitor.
[0005]
However, in the laminated ceramic capacitor structure in which the dielectric layers 2 and the internal electrodes 3 are alternately laminated, since the Ni internal electrodes 3 and the dielectric layers 2 are integrally fired, neutrality is prevented in order to prevent oxidation of Ni and the like. (Atmosphere: N 2 100%) or reducing atmosphere (atmosphere: N 2 + H 2 several%), even if co-fired, the dielectric is not reduced, and electrical characteristics and reliability such as voltage load life Therefore, it is necessary to develop a sufficiently satisfactory dielectric material.
[0006]
Therefore, a non-reducing temperature compensating dielectric ceramic composition in which a glass component (sintering aid) composed of Si—Li-alkaline earth metal is added to a basic component composed of CaZrO 3 and CaTiO 3 is special. No. 5-52604.
[0007]
Since the dielectric ceramic composition of the present invention is obtained by firing at 1100 to 1300 ° C. in a non-oxidizing atmosphere, the dielectric ceramic composition is suitable as a dielectric for a temperature compensation multilayer ceramic capacitor having a base metal such as nickel as the internal electrode 3. It is.
[0008]
[Problems to be solved by the invention]
By the way, according to the said dielectric ceramic composition, if it does not perform a baking process at 1350 degreeC-1380 degreeC and high temperature, it will be insufficiently sintered and an electrically satisfactory characteristic cannot be acquired. However, in the multilayer ceramic capacitor, the dielectric layer 2 and the internal electrode 3 have a monolithic structure. Therefore, when such a firing process is performed at a high temperature, the internal electrode 3 made of Ni or the like is melted and agglomerated. Etc. are distributed in a ball shape. Further, due to the high temperature firing, a metal such as Ni diffuses into the dielectric ceramic and causes the insulation resistance of the dielectric layer 2 to deteriorate. As a result, it has been difficult to obtain a laminated ceramic capacitor having a desired capacitance and insulation resistance. In order to solve such problems, the material system of Japanese Patent Publication No. 5-52604 is a composition system of a sintering aid composed of Si—Li 2 O—alkaline earth, and a firing temperature of 1200 ° C. or less. The temperature-compensated nickel laminated ceramic capacitor satisfies the desired characteristics by firing at a low temperature up to the region.
[0009]
However, in the sintering aid composed of this composition system, the evaporation of lithium, which is an element having a low melting point, remarkably occurs, and unevenness in the porcelain composition that occurs during firing occurs, resulting in variations in individual electrical characteristics. In addition, as shown in FIG. 3, agglomeration 20 of the glass component occurs in the dielectric ceramic almost the same as the evaporation start temperature of the lithium element. As a result, in an operation test in a humid atmosphere, There is a problem that causes deterioration of the Q value.
[0010]
More specifically, when a temperature range of 1000 ° C. or higher in a neutral or reducing atmosphere condition is reached, lithium evaporation begins to occur, and at the same time, glass component aggregates 20 begin to exist in the porcelain. This phenomenon is particularly remarkable when a bulk body having a small size of JIS standard 3216 type or less is used, and therefore it is very difficult to perform stable firing against composition fluctuations in the porcelain.
[0011]
The present invention has been made in view of the above circumstances, and the object thereof is to enable stable firing even in a reducing atmosphere of 1100 ° C. to 1300 ° C., capacitance Cap, relative dielectric constant ε s , temperature characteristics TC. An object of the present invention is to provide a dielectric ceramic composition for non-reducing temperature compensation that has small variations in characteristics such as Q value and specific resistance ρ, and can prevent aggregation of glass components.
[0012]
[Means for Solving the Problems]
The dielectric ceramic composition of the present invention has a general formula (CaO) x (Zr 1 -y · Ti y ) O 2 (provided that 0.95 ≦ x ≦ 1.05 and 0.01 ≦ y ≦ 0.10). With respect to 100 parts by weight of the basic component represented by
1-5 parts by weight of MnCO 3 (hereinafter, the addition amount is z),
Contains 0.5 to 5 parts by weight of glass component.
[0013]
That is, when the basic component x is less than 0.95, the Q value is remarkably lowered, and when it exceeds 1.05, the sintering is not sufficiently performed at 1100 to 1300 ° C. On the other hand, if y is less than 0.01, the dielectric constant becomes 25 or less and the target is not satisfied. Furthermore, even when y exceeds 0.10, the absolute value of the temperature characteristic of the dielectric constant becomes larger than 30 ppm.
[0014]
And the glass component of this invention has the composition in General formula (1).
aSiO 2 -bLi 2 O-cB 2 O 3 -dCaO ·········· (1)
(Where, a + b + c + d = 100)
0.45 ≦ a ≦ 0.70, 0.05 ≦ b ≦ 0.15, 0.075 ≦ c ≦ 0.225, 0.05 ≦ d ≦ 0.20, 0.5 ≦ b /C≦0.9 and a composition in the range of a + b + c + d = 1.
[0015]
That is, when the glass a is less than 0.45, the glass is not sufficiently sintered. Furthermore, when it exceeds 0.7, the Q value is significantly reduced. Moreover, when b is less than 0.05, it is not sufficiently sintered. Further, when it exceeds 0.15, the Q value is remarkably lowered. Moreover, when c is less than 0.075, it does not sinter enough at 1100-1300 degreeC. Further, when it exceeds 0.225, the Q value is remarkably lowered. Moreover, when d is less than 0.05, it does not sinter enough at 1100-1300 degreeC. Further, when it exceeds 0.20, the Q value is remarkably lowered. Further, when b / c is less than 0.5, the Q value is remarkably lowered. Further, if it exceeds 0.9, the glass components are aggregated and the moisture resistance reliability is lowered.
[0016]
Here, it is confirmed that the composition formula of the aggregation of the glass component is Li 2 SiO 3 , and when b / c exceeds 0.9, that is, a composition (b which is the eutectic point of Li and B) (b / C = 2/3), it is considered that when the proportion of Li increases, aggregation of glass components tends to occur. Therefore, by setting b / c to 0.9 or less, aggregation of glass components can be prevented, and further, deterioration of the Q value in an operation test in a humid atmosphere can be prevented.
[0017]
The most desirable ranges are 0.98 ≦ x ≦ 1.00, 0.02 ≦ y ≦ 0.03, 2.0 ≦ z ≦ 4.0, 0.55 ≦ a ≦ 0.60, 0.08 ≦ The ranges are b ≦ 0.12, 0.12 ≦ c ≦ 0.18, and 0.10 ≦ d ≦ 0.15.
[0018]
【Example】
Next, examples (including comparative examples) of the present invention will be described.
[0019]
Calcium carbonate (CaCO 3 ), titanium dioxide (TiO 2 ), zirconium oxide (ZrO 2 ), and manganese carbonate (MnCO 3 ) were prepared as starting materials and weighed so that the ratios shown in Table 1 were obtained. In this weighing, the impurities were weighed without entering the eyes. Next, these weighed raw materials are put in a pot mill, and further, alumina balls and 2.5 liters of water are added and wet-stirred for 15 hours. Then, the stirrer is put in a stainless steel vat and heated at 150 ° C. with a hot air dryer. Dried for 4 hours. Next, this dried product was coarsely pulverized, and this coarsely pulverized product was fired at 1300 ° C. for 2 hours in the atmosphere in a tunnel furnace to obtain a basic component having an average particle size of about 1 μm of the composition formula shown in Table 1. .
[0020]
On the other hand, in order to obtain a glass component, silicon dioxide (SiO 2 ), lithium carbonate (Li 2 CO 3 ), boron oxide (B 2 O 3 ), calcium carbonate (CaCO 3 ) are appropriately weighed, and 300 cc of water is added thereto. In addition, after stirring for 10 hours using alumina balls in a polyethylene pot, pre-baked in the atmosphere at 1300 ° C. for 2 hours, put this in an alumina pot with 300 cc of water, pulverize with alumina balls for 15 hours, and then The glass component powder having an average particle size of about 1 μm shown in Table 1 was obtained by drying at 150 ° C. for 4 hours.
[0021]
Next, 1.2 parts by weight of the glass component powder is added to the above basic component powder, and an organic binder composed of an aqueous solution of an acrylate polymer, glycerin and condensed phosphate is added to the total weight of the basic component and the additive component. 15% by weight, and 50% by weight of water were added, and these were placed in a ball mill and pulverized and mixed for about 20 hours to prepare a slurry of a porcelain material.
[0022]
Next, the slurry is put into a vacuum defoamer and defoamed, and the slurry is put into a reverse roll coater, which is used to form a slurry-based thin film on a polyester film. A green sheet having a thickness of about 25 μm was obtained by heating to ° C. and drying. Although this sheet is long, it was punched into a 10 cm square and used.
[0023]
On the other hand, for the conductive paste for internal electrodes, 10 g of nickel powder having an average particle diameter of 1.5 μm and 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol are placed in a stirrer and stirred for 10 hours. Was obtained. The conductive paste was printed on one side of the green sheet through a screen having 50 patterns having a length of 14 mm and a width of 7 mm, and then dried.
[0024]
Next, two green sheets were laminated with the printing surface facing up. At this time, the upper and lower sheets adjacent to each other were arranged so that their printing surfaces were shifted by about half in the longitudinal direction of the pattern. Further, four green sheets each having a thickness of 60 μm were laminated on the upper and lower surfaces of the laminate. Next, this laminate was pressure-bonded by applying a pressure of about 40 tons in the thickness direction at a temperature of about 50 ° C. Thereafter, the laminate was cut into a lattice shape to obtain about 100 laminated chips.
[0025]
Next, this laminate chip was placed in a furnace capable of atmospheric firing, heated to 300 ° C. at a rate of 100 ° C./h in the air atmosphere, and held for 2 hours to burn the organic binder. Thereafter, the atmosphere of the furnace was changed from air to an atmosphere of 2% by volume of H 2 + 98% by volume of N 2 . Then, keeping the furnace in a reducing atmosphere as described above, the heating temperature of the laminated chip was increased from 600 ° C. to the sintering temperature at a rate of 100 ° C./h to 1100 to 1300 ° C. (maximum temperature). After holding for 3 hours, the temperature is lowered to 600 ° C. at a rate of 100 ° C./h, the atmosphere is changed to an air atmosphere (oxidizing atmosphere), and the oxidation treatment is performed by holding 600 ° C. for 30 minutes, and then to room temperature. It cooled and produced the sintered compact chip | tip.
[0026]
Next, a conductive paste composed of Cu, glass frit and vehicle is applied to the side surface of the sintered body chip where the electrode is exposed and dried, and this is baked in the atmosphere at a temperature of 800 to 900 ° C. for 15 minutes. An electrode layer was formed, copper was further deposited thereon by electroless plating, and an Sn solder layer was further formed thereon by electroplating to form a pair of external electrodes.
[0027]
As a result, a multilayer ceramic capacitor composed of a dielectric ceramic layer, internal electrodes, and external electrodes was obtained. In addition, the dimension of this capacitor is 2.0 mm × 1.25 mm, and the laminated specification is 15 μm × 40 layers. The composition of the ceramic layer after sintering is substantially the same as the mixed composition of the basic component and the additive component before sintering.
[0028]
Next, the capacitance Cap, the relative dielectric constant ε s , the temperature coefficient TC, the Q value, the specific resistance ρ, and the moisture resistance reliability of the completed multilayer ceramic capacitor were measured.
[0029]
The electrical characteristics were measured as follows.
(1) The relative dielectric constant ε s is a capacitance measured under conditions of a temperature of 25 ° C., a frequency of 1 MHz, and an AC voltage [effective value] of 1.0 V, and the measured area and the opposed area of the pair of internal electrodes are 1.5 mm. 2 and the thickness of the porcelain layer were determined by calculation. Capacitance Cap was also determined by the same method.
(2) Temperature coefficient (TC) = ((C 85 −C 25 ) × 10 6 ) / C 25 × (C 85 −C 25 ) C 85 is a dielectric constant at 85 ° C., and C 25 is a dielectric constant at 25 ° C.
(3) The resistivity ρ (MΩ · cm) was calculated by measuring the resistance value between a pair of external electrodes after applying DC 50 V for 1 minute at a temperature of 20 ° C., and calculating the resistivity.
(4) The Q value was measured with a Q meter at a temperature of 25 ° C. and an alternating current with a frequency of 1 MHz and a voltage [effective value] of 0.5 V.
(5) For the moisture resistance reliability, the change rate of the Q value after 96 hours at 85 ° C./85% RH was determined. As a criterion for judging the rate of change, a circle is used if it is within ± 5%, and a cross mark is used if it is ± 5% or more. The reason why the determination OK is within ± 5% is due to measurement error.
[0030]
These results are shown in Table 1.
[0031]
[Table 1]
Figure 0004325900
[0032]
As is clear from Table 1, the samples according to the present invention (Sample Nos. 2 to 5, 8 to 11, 14 to 17, 20 to 21, 24, 27 to 28, 31 to 32) have a capacitance Cap of 950 to 950. 1050 pF, capacitance variation CV value is 2.0% or less, relative dielectric constant ε s is 30 to 66, temperature coefficient TC of dielectric constant is within ± 30 ppm, Q value is 5000 or more, specific resistance ρ is 1 × 10 9 MΩ · The change rate of the Q value in the humidity resistance reliability was within ± 5%, and a temperature compensating capacitor with desired characteristics could be obtained.
[0033]
On the other hand, when x was 0.90 (sample No. 1), the Q value was significantly reduced to 1200. When x was 1.10 (sample No. 6), the Q value was 2100 and the specific resistance ρ was 4.30 × 10 7 MΩ · cm, which was insufficiently sintered.
[0034]
When y was 0 (sample No. 7), the capacitance Cap was 870 and the relative dielectric constant ε s was 22. Furthermore, when y was 0.15 (sample No. 12), the capacitance Cap was 1320, and the absolute value of the temperature characteristic TC of the dielectric constant was 55 ppm.
[0035]
When z was 0.5 (sample No. 13), the Q value was significantly reduced to 1150. Furthermore, in the case of 5.5 parts by weight (sample No. 18), the Q value was remarkably lowered to 2210.
[0036]
That is, when the basic component is the general formula (CaO) x (Zr 1 -y · Ti y ) O 2 , when x is less than 0.95, the Q value is less than 5000 and x is greater than 1.05. In this case, the Q value is less than 5000 and the specific resistance ρ is less than 1 × 10 9 MΩ · cm. When y is less than 0.01, the capacitance Cap is less than 950 pF and the relative dielectric constant ε s is less than 30, and when y is greater than 0.10, the capacitance Cap is greater than 1050 pF, It can be seen that the temperature coefficient TC is smaller than −30 ppm.
[0037]
In addition, when the amount of MnCO 3 added is z parts by weight, it can be seen that the Q value is less than 5000 regardless of whether z is less than 1 part by weight or greater than 5 parts by weight.
[0038]
When a was 0.4 (sample No. 19), the Q value was 4000 and the specific resistance ρ was 3.66 × 10 7 MΩ · cm, which was insufficiently sintered. Furthermore, when a was 0.75 (sample No. 22), the Q value was significantly reduced to 2210.
[0039]
When b was 0.04 (sample No. 23), the Q value was 4600 and the specific resistance ρ was 1.81 × 10 7 MΩ · cm, which was insufficiently sintered. Furthermore, when b was 0.2 (sample No. 25), the Q value was significantly reduced to 2130.
[0040]
When c was 0.05 (sample No. 26), the specific resistance ρ was 3.21 × 10 7 MΩ · cm, and the sintering was insufficient. Furthermore, in the case of 0.35 (sample No. 30), the Q value was remarkably lowered to 2210.
[0041]
When d was 0.10 (sample No. 30), the specific resistance ρ was 3.21 × 10 7 MΩ · cm, and the sintering was insufficient. Furthermore, in the case of 0.25 (sample No. 33), the Q value was significantly reduced to 2159.
[0042]
That is, when the composition of the glass component is represented by the general formula aSiO 2 —bLi 2 O—cB 2 O 3 —dCaO, when a is less than 0.45, the Q value is less than 5000, and the specific resistance ρ is 1 × 10. It can be seen that when Q is less than 9 MΩ · cm and a is greater than 0.70, the Q value is less than 5000. Also, if b is less than 0.05, less than the Q value is 5000, the specific resistance ρ is less than 1 × 10 9 MΩ · cm, when b is greater than 0,15, the resistivity ρ is 1 × 10 9 MΩ · It turns out that it becomes less than cm. Further, it is understood that when c is less than 0.075, the specific resistance ρ is less than 1 × 10 9 MΩ · cm, and when c is greater than 0.255, the Q value is less than 5000. Further, it is understood that when d is less than 0.05, the specific resistance ρ is less than 1 × 10 9 MΩ · cm, and when d is greater than 0.20, the Q value is less than 5000.
[0043]
When b / c was 0.43 (sample No. 34), the Q value decreased to 4500. Furthermore, when b / c was 1 (sample No. 35), the Q value was 5900, but the change rate of the Q value in the moisture resistance reliability test was ± 5% or more.
[0044]
That is, it can be seen that when b / c is less than 0.5, the Q value is less than 5000. Moreover, when b / c is larger than 0.9, it can be seen that the change rate of the Q value in the moisture resistance reliability test is ± 5% or more.
[0045]
Further, when the aggregation in the cross section of the sintered body was examined by EPMA, the dielectric ceramic composition of the present invention (sample No. 10) did not show aggregation of the glass component, but the comparative example (sample No. 35). In the dielectric ceramic composition of), aggregation of glass components represented by the composition formula Li 2 SiO 3 was observed.
[0046]
As mentioned above, although the Example of this invention was described, this invention is not limited to this, For example, the following modification is possible.
(1) A slight amount (preferably 0.05 to 0.1% by weight) of a mineralizer may be added to the basic component within a range not impairing the object of the present invention to improve the sinterability.
(2) The starting material for obtaining the basic component may be, for example, an oxide such as CaO, hydroxide or other compounds other than those shown in the examples. The starting material of the additive component may be another compound such as an oxide or a hydroxide.
(3) The oxidation temperature may be lower than the sintering temperature other than 600 ° C (preferably in the range of 500 ° C to 1000 ° C). That is, various changes can be made in consideration of the electrode of nickel or the like and the oxidation of the porcelain.
(4) The firing temperature in the non-oxidizing atmosphere can be variously changed in consideration of the electrode material. When nickel is used as the internal electrode, melt aggregation hardly occurs in the range of 1050 ° C to 1200 ° C.
(5) Sintering may be performed in a neutral atmosphere.
(6) The present invention can also be applied to general porcelain capacitors other than laminated porcelain capacitors.
(7) It is applicable to other glass components having a low melting point.
[0047]
【The invention's effect】
As described above, the dielectric ceramic according to the present invention has a glass component (sintering aid) composed of SiO 2 —Li 2 O—B 2 O 3 —CaO as a basic component composed of CaZrO 3 and CaTiO 3. Can be reduced at the time of firing in a neutral or reducing atmosphere, and further, the dielectric constant ε s , temperature characteristics TC, Q value, specific resistance ρ, etc. It will be satisfactory enough.
[0048]
Further, by controlling the Li / B ratio, it is possible to suppress aggregation of glass components during firing and to prevent deterioration of the Q value in an operation test in a humid atmosphere.
[0049]
Therefore, by applying the non-reducing dielectric ceramic composition of the present invention, temperature compensation that is extremely stable in quality and sufficiently satisfies the capacitance Cap, the temperature characteristics TC, the Q value, the specific resistance ρ, and the like. It becomes possible to provide a laminated ceramic capacitor for use.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a general laminated ceramic capacitor.
2 is a cross-sectional view of the multilayer ceramic capacitor of FIG.
FIG. 3 is a diagram showing problems of a conventional dielectric ceramic composition.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dielectric block 2 ... Dielectric porcelain layer 3 ... Internal electrode 4, 5 ... External electrode 20 ... Aggregation part of glass component

Claims (1)

一般式(CaO)x(Zr1-y・Tiy)O2(但し、0.95≦x≦1.05、0.01≦y≦0.10の範囲の数値)で表される基本成分100重量部に対して、
MnCO3を1〜5重量部と、
一般式aSiO2−bLi2O−cB23―dCaO(但し、0.45≦a≦0.70、0.05≦b≦0.15、0.075≦c≦0.225、0.05≦d≦0.20、0.5≦b/c≦0.9、a+b+c+d=1の範囲の数値)で表されるガラス成分を0.5〜5重量部とを含有することを特徴とする誘電体磁器組成物。
Basic component represented by the general formula (CaO) x (Zr 1−y · Ti y ) O 2 (in the range of 0.95 ≦ x ≦ 1.05 and 0.01 ≦ y ≦ 0.10) For 100 parts by weight
1 to 5 parts by weight of MnCO 3 ,
General formula aSiO 2 —bLi 2 O—cB 2 O 3 —dCaO (provided that 0.45 ≦ a ≦ 0.70, 0.05 ≦ b ≦ 0.15, 0.075 ≦ c ≦ 0.225,. 0.5 ≦ d ≦ 0.20, 0.5 ≦ b / c ≦ 0.9, a numerical value in the range of a + b + c + d = 1) and 0.5 to 5 parts by weight. A dielectric ceramic composition.
JP2001097716A 2001-03-29 2001-03-29 Dielectric porcelain composition Expired - Lifetime JP4325900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001097716A JP4325900B2 (en) 2001-03-29 2001-03-29 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097716A JP4325900B2 (en) 2001-03-29 2001-03-29 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JP2002293621A JP2002293621A (en) 2002-10-09
JP4325900B2 true JP4325900B2 (en) 2009-09-02

Family

ID=18951460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097716A Expired - Lifetime JP4325900B2 (en) 2001-03-29 2001-03-29 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP4325900B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545982B2 (en) 2010-09-27 2013-10-01 Tdk Corporation Hexagonal type barium titanate powder, producing method thereof, dielectric ceramic composition and electronic component

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601438B2 (en) * 2005-01-28 2010-12-22 京セラ株式会社 Green sheet manufacturing method
JP4782551B2 (en) * 2005-11-28 2011-09-28 京セラ株式会社 Dielectric porcelain
JP5883217B2 (en) 2009-11-06 2016-03-09 Tdk株式会社 Hexagonal barium titanate powder, method for producing the same, dielectric ceramic composition, and electronic component
JP5779860B2 (en) 2009-11-06 2015-09-16 Tdk株式会社 Hexagonal barium titanate powder, method for producing the same, dielectric ceramic composition, and electronic component
JP5978553B2 (en) 2010-09-30 2016-08-24 Tdk株式会社 Hexagonal barium titanate powder, method for producing the same, dielectric ceramic composition, electronic component and method for producing electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545982B2 (en) 2010-09-27 2013-10-01 Tdk Corporation Hexagonal type barium titanate powder, producing method thereof, dielectric ceramic composition and electronic component

Also Published As

Publication number Publication date
JP2002293621A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP3269910B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0552604B2 (en)
JP4325900B2 (en) Dielectric porcelain composition
JP3323801B2 (en) Porcelain capacitors
JPS6224388B2 (en)
JPH0552602B2 (en)
JP4400860B2 (en) Dielectric porcelain composition
JP2736397B2 (en) Porcelain capacitor and method of manufacturing the same
JP2843736B2 (en) Porcelain capacitor and method of manufacturing the same
JP2736396B2 (en) Porcelain capacitor and method of manufacturing the same
JP2843733B2 (en) Porcelain capacitor and method of manufacturing the same
JP2831894B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269908B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269902B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269907B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269909B2 (en) Porcelain capacitor and method of manufacturing the same
JP2779293B2 (en) Porcelain capacitor and method of manufacturing the same
JP2879867B2 (en) Porcelain capacitor and method of manufacturing the same
JP3029502B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0552603B2 (en)
JPH0551127B2 (en)
JPH04359811A (en) Ceramic capacitor and its manufacture
JP2938672B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269989B2 (en) Porcelain capacitor and method of manufacturing the same
JP2779294B2 (en) Porcelain capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4325900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

EXPY Cancellation because of completion of term