JPS6224388B2 - - Google Patents

Info

Publication number
JPS6224388B2
JPS6224388B2 JP58100681A JP10068183A JPS6224388B2 JP S6224388 B2 JPS6224388 B2 JP S6224388B2 JP 58100681 A JP58100681 A JP 58100681A JP 10068183 A JP10068183 A JP 10068183A JP S6224388 B2 JPS6224388 B2 JP S6224388B2
Authority
JP
Japan
Prior art keywords
mol
composition
sio
temperature
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58100681A
Other languages
Japanese (ja)
Other versions
JPS59227769A (en
Inventor
Masami Fukui
Takeshi Wada
Hiroshi Nakamura
Nobutate Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP58100681A priority Critical patent/JPS59227769A/en
Publication of JPS59227769A publication Critical patent/JPS59227769A/en
Publication of JPS6224388B2 publication Critical patent/JPS6224388B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、卑金属を内部電極とした温度補償用
積層型磁器コンデンサに好適な誘電体磁器組成物
に関し、更に詳細には、非酸化性雰囲気(還元又
は中性雰囲気)中で焼結させた後に酸化性雰囲気
中で焼結温度よりも低い温度で熱処理することに
より得られる誘電体磁器組成物に関する。 従来技術 従来、積層磁器コンデンサを製造する際には、
誘電体生シート(グリーンシート)に白金、パラ
ジウム等の貴金属の導電性ペーストを印刷し、こ
れを複数枚積み重ねて圧着し、酸化性雰囲気中で
高温焼成した。このように貴金属を使用すれば、
酸化性雰囲気中で高温焼成しても目的とする内部
電極を得ることが出来る。しかし、白金、パラジ
ウム等の貴金属は高価であるため、必然的に積層
磁器コンデンサがコスト高になつた。 この種の問題を解決するために、ニツケル等の
卑金属を主成分とする導電性ペーストを生シート
に塗布し、還元又は中性雰囲気(非酸化性雰囲
気)中で焼結させることが考えられる。しかし、
非酸化性雰囲気による焼成であつても、焼結温度
が1300℃以上になると、ニツケル等の卑金属の溶
融凝集が生じ、良質な内部電極を得ることが困難
になる。 発明の目的 そこで、本発明の目的は、非酸化性雰囲気にお
いて比較的低い温度(1200℃以下)で焼結させる
ことが可能であり、且つ比誘電率が100以上、Q
が1000以上、抵抗率が106MΩ・cm以上の特性を
得ることが可能である誘電体磁器組成物を提供す
ることにある。 発明の構成 上記目的を達成するための本発明は、
{(Sr(1-x)Cax)O}kTiO2(但し、x,kは、1.0
≧x≧0,1.04≧k≧1.00を満足する数値)から
成る100重量部の基本成分と、0.2〜10.0重量部の
ガラス成分と、から成り、前記ガラス成分は
Li2OとM(但しMはBaO,CaO及びSrOの少なく
とも1種の金属酸化物)とSiO2とから成り、且
つ前記Li2Oと前記Mと前記SiO2との組成範囲
が、これ等の組成をモル%で示す三角図に於け
る、前記Li2Oが0モル%、前記Mが35モル%、
前記SiO2が65モル%の組成を示す第1の点A
と、前記Li2Oが0モル%、前記Mが40モル%、
前記SiO2が60モル%の組成を示す第2の点B
と、前記Li2Oが5モル%、前記Mが45モル%、
前記SiO2が50モル%の組成を示す第3の点C
と、前記Li2Oが50モル%、前記Mが0モル%、
前記SiO2が50モル%の組成を示す第4の点D
と、前記Li2Oが25モル%、前記Mが0モル%、
前記SiO2が75モル%の組成を示す第5の点E
と、前記第1の点Aと、を順に結ぶ5本の直線で
囲まれた領域内とされていることを特徴とする誘
電体磁器組成物に係わるものである。なお、本願
発明に係わる基本成分は、(MeO)kTiO2(但し、
MeはSr,Ca及びSr+Caから選択された金属、k
は1.00〜1.04)で示すこともできる。 発明の作用効果 上記発明によれば、非酸化性雰囲気中に於いて
1200℃以下の温度で焼結させ、酸化性雰囲気中に
於いて1000℃以下、好ましくは600〜1000℃の温
度で熱処理することによつて比誘電率が100〜
300、Qが1000以上、抵抗率が106MΩ・cm以上の
誘電体磁器組成物を得ることが出来る。従つて、
ニツケル等の卑金属を内部電極とする温度補償用
積層磁器コンデンサ等を提供することが出来る。 実施例 次に本発明に関係する実施例1〜83について述
べる。但し、本発明を明確にするために本発明の
範囲外の実施例も含まれている。 実施例1に於いては、 {(Sr(1-x)Cax)O}kTiO2の組成式に於ける1
−xが0.62、xが0.38、kが1.0の基本成分即ち {(Sr0.62Ca0.38)O}1.0TiO2を得るために、純
度99%以上のSrCO3,CaCO3、及びTiO2を出発
原料として用意し、これ等をSrCO3が0.62モル
部、CaCO3が0.32モル部、TiO2が1.0モル部の割
合になるように秤量した。尚不純物を目方に入れ
ないで秤量した。次に、この原料を15時間湿式混
合し、粉砕した後に乾燥し、約1200℃の大気中で
2時間仮焼成を行つた。これにより、 {(Sr(1-x)Cax)O}kTiO2の構造の複合ペロブ
スカイト型結晶の基本成分が得られる。 次に、この仮焼材料(基本成分)100重量部に
対して3重量部の割合で平均粒径約5μmのガラ
ス粉末(ガラス成分)を添加した。尚このガラス
成分は第1表の実施例1の欄に示す如く35モル%
のM(BaO14モル%、CaO10.5モル%、SrO10.5
モル%)と、65モル%のSiO2とから成る。更
に、基本成分とガラス成分との合計重量に対して
15重量%となるように、有機バインダとしてのア
クリル酸エステルポリマー、グリセリン、縮合リ
ン酸塩の水溶液を加え、更に50重量%の水を加え
てボールミルで粉砕混合してスラリーとし、脱泡
処理後、ドクターブレード法により長尺の生シー
トを作成した。次に、この生シートを乾燥した後
にプレスによる打ち抜きで第1図に示す如く3枚
の生シート1,2,3を作製した。 次に、生シート1,2の一方の主面に第2図に
示す如く1つの辺に達し、他の3辺には端と間隔
をもつようNiを主成分とした導電ペースト
(Ni91重量%、MnO1重量%、PbO―BaO―SiO2
ガラス8重量%、ビヒクルから成るペースト)を
約3μmの厚さに塗布して導電ペースト層4,5
を形成し、導電ペーストを塗布した2枚の生シー
ト1,2を、端部まで導電ペーストを塗布した辺
が互いに反対方向に向き、導電ペースト層4,5
が生シート1枚を介して対向するよう積み重ね、
更に導電ペーストを塗布しない生シート3を重ね
て熱圧着させて一体化した積層体を作成した。 次に、この積層体を加熱炉に入れ、大気雰囲気
中で100℃/hの温度上昇率600℃まで昇温して、
第2表に示す水素(H2)1体積%と窒素(N2
99体積%とからなる非酸化性雰囲気に切替え更に
100℃/hの温度上昇率で第2表に示す焼結温度
1110℃まで昇温してこの1110℃を3時間保持した
後100℃/hの降温速度で600℃まで降温し、非酸
化性雰囲気を空気雰囲気に切替えて、600℃で30
分間保持して酸化処理を行い、その後空気中で
100℃/hの降温速度で室温(約20℃)まで冷却
して積層焼結体を作製した。 これにより、第3図に示す如く、生シート1,
2,3に対応した誘電体磁器層1a,2a,3a
と、ペースト層4,5に対応した内部電極4a,
5aとから成る焼結体6が得られた。尚磁器層1
a,2a,3aの厚さは約0.05mm、焼結体6の電
極を含めた厚さは約0.16mm、その縦幅及び横幅は
夫々6mm、電極4a,5aの対向面積は5mm×5
mm=25mm2である。また磁器層1a,2a,3a
は、{(Sr(1-x)Cax)O}kTiO2の組成式で示され
る複合プロブスカイト型磁器結晶にガラス成分が
混入された磁器組成物から成る。 次に、電極4a,5aが露出する焼結体6の側
面にZn(亜鉛)とガラスフリツトとビヒクルと
から成る導電性ペーストを塗布して乾燥し、これ
を大気中で600℃の温度で15分間焼付け、第4図
に示す如くZn電極層7を形成し、更にこの上に
銅Cuを無電解メツキで被着させてCu層8を形成
し、更にこの上に電気メツキ法で半田層9を設け
て、一対の外部電極10,11を形成した。 次に、完成した積層磁器コンデンサの比誘電率
ε,Q,抵抗率ρ、温度係数TCを測定したとこ
ろ、第2表に示す結果が得られた。尚電気的特性
は次の条件で測定した。 (A) 比誘電率εは、温度20℃において周波数1k
Hz、電圧〔実効値〕0.5V交流でQメータによ
り静電容量を測定し、この測定値と電極4a,
5aの対向面積25mm2と電極5a,6a間の磁器
層2aの厚さ0.05mmから計算で求めた。 (B) Qはεと同一条件でQメータにより測定し
た。 (C) 抵抗率ρ(MΩ・cm)は、温度20℃に於いて
DC50Vを1分間印加した後に電極10,11
間の抵抗値を測定し、この測定値と寸法とに基
づいて計算で求めた。 (D) 温度係数TCは、85℃の静電容量C85と20℃の
静電容量C20とを測定し、C85−C20/C20×1
/65×106 (PPM/℃)で算出した。 以上、実施例1について述べたが、実施例2〜
83についても、磁器組成及び/又は焼結条件を第
1表及び第2表に示すように変えた他は、実施例
1と全く同一条件で積層磁器コンデンサを作製
し、同一方法で電気的特性を測定した。 尚、第1表に於ける基本成分の欄には、 {(Sr(1-x)Cax)O}kTiO2の組成式の1−xと
xとkの値が示されている。基本成分の量は全部
の実施例で100重量部一定であるので各実施例の
欄に記載されていない。ガラス成分の量は100重
量部の基本成分に対する値である。また第2表の
焼結条件のH2の割合の欄には、焼結時の非酸化
性雰囲気に於けるH2とN2との体積比に於けるH2
(水素)の体積%を示した。また焼結条件の温度
の欄には、非酸化性雰囲気に於ける焼結温度を示
した。酸化性雰囲気(空気)中の熱処理温度は各
実施例において600℃であるので表には示されて
いない。第1表及び第2表中の〃の印は同上を示
す。
Technical Field The present invention relates to a dielectric ceramic composition suitable for temperature-compensating multilayer ceramic capacitors with internal electrodes made of base metals, and more specifically, the present invention relates to a dielectric ceramic composition suitable for temperature-compensating multilayer ceramic capacitors with internal electrodes made of base metals. The present invention relates to a dielectric ceramic composition obtained by heat-treating the composition in an oxidizing atmosphere at a temperature lower than the sintering temperature. Conventional technology Conventionally, when manufacturing multilayer ceramic capacitors,
A conductive paste of a noble metal such as platinum or palladium was printed on a dielectric green sheet (green sheet), a plurality of sheets were stacked and pressed together, and the sheets were fired at a high temperature in an oxidizing atmosphere. By using precious metals in this way,
The desired internal electrode can be obtained even by high-temperature firing in an oxidizing atmosphere. However, since precious metals such as platinum and palladium are expensive, the cost of multilayer ceramic capacitors has inevitably increased. In order to solve this type of problem, it is conceivable to apply a conductive paste containing a base metal such as nickel as a main component to a raw sheet and sinter it in a reducing or neutral atmosphere (non-oxidizing atmosphere). but,
Even when sintering is performed in a non-oxidizing atmosphere, if the sintering temperature exceeds 1300°C, base metals such as nickel will melt and agglomerate, making it difficult to obtain high-quality internal electrodes. Purpose of the Invention Therefore, the purpose of the present invention is to enable sintering at a relatively low temperature (below 1200°C) in a non-oxidizing atmosphere, have a dielectric constant of 100 or more, and have a Q
The object of the present invention is to provide a dielectric ceramic composition capable of obtaining characteristics of 1000 or more and a resistivity of 10 6 MΩ·cm or more. Structure of the Invention The present invention to achieve the above object is as follows:
{(Sr (1-x) Ca x )O} k TiO 2 (However, x, k are 1.0
≧x≧0, 1.04≧k≧1.00) and 0.2 to 10.0 parts by weight of a glass component, the glass component being
It consists of Li 2 O, M (where M is at least one metal oxide of BaO, CaO, and SrO), and SiO 2 , and the composition range of the Li 2 O, the M, and the SiO 2 is as follows. In the triangular diagram showing the composition in mol%, the Li 2 O is 0 mol%, the M is 35 mol%,
A first point A having a composition of 65 mol% of SiO 2
and the Li 2 O is 0 mol%, the M is 40 mol%,
A second point B where the SiO 2 has a composition of 60 mol%
and the Li 2 O is 5 mol%, the M is 45 mol%,
A third point C having a composition of 50 mol% of SiO 2
and the Li 2 O is 50 mol%, the M is 0 mol%,
A fourth point D having a composition of 50 mol% of SiO 2
and the Li 2 O is 25 mol%, the M is 0 mol%,
A fifth point E where the SiO 2 has a composition of 75 mol%
The present invention relates to a dielectric ceramic composition characterized in that the area is within an area surrounded by five straight lines sequentially connecting the first point A and the first point A. The basic components related to the present invention are (MeO) k TiO 2 (however,
Me is a metal selected from Sr, Ca and Sr+Ca, k
can also be expressed as 1.00-1.04). Effects of the invention According to the above invention, in a non-oxidizing atmosphere,
By sintering at a temperature of 1200°C or less and heat-treating in an oxidizing atmosphere at a temperature of 1000°C or less, preferably 600 to 1000°C, the dielectric constant is 100 to 100°C.
300, a dielectric ceramic composition having a Q of 1000 or more and a resistivity of 10 6 MΩ·cm or more can be obtained. Therefore,
It is possible to provide a temperature-compensating multilayer ceramic capacitor whose internal electrode is made of a base metal such as nickel. Examples Next, Examples 1 to 83 related to the present invention will be described. However, in order to clarify the present invention, examples outside the scope of the present invention are also included. In Example 1, {(Sr (1-x) Ca x )O} k 1 in the composition formula of TiO 2
In order to obtain the basic components where -x is 0.62, x is 0.38, and k is 1.0, that is, {(Sr 0 . 62 Ca 0 . 38 ) O} 1 .0 TiO 2 , SrCO 3 , CaCO 3 with a purity of 99 % or more, and TiO 2 were prepared as starting materials, and these were weighed so that the proportions were 0.62 mol part of SrCO 3 , 0.32 mol part of CaCO 3 , and 1.0 mol part of TiO 2 . It was weighed without including impurities. Next, this raw material was wet mixed for 15 hours, pulverized, dried, and pre-calcined for 2 hours in the atmosphere at about 1200°C. As a result, the basic component of a composite perovskite crystal having the structure of {(Sr (1-x) Ca x )O} k TiO 2 is obtained. Next, 3 parts by weight of glass powder (glass component) having an average particle size of about 5 μm was added to 100 parts by weight of this calcined material (basic component). The glass component was 35 mol% as shown in the column of Example 1 in Table 1.
M (BaO14 mol%, CaO10.5 mol%, SrO10.5
mol %) and 65 mol % SiO 2 . Furthermore, based on the total weight of the basic component and glass component,
Add an aqueous solution of an acrylic acid ester polymer, glycerin, and condensed phosphate as an organic binder to a concentration of 15% by weight, then add 50% by weight of water, grind and mix in a ball mill to form a slurry, and after defoaming treatment. A long green sheet was prepared using the doctor blade method. Next, after drying this green sheet, three green sheets 1, 2, and 3 were produced as shown in FIG. 1 by punching with a press. Next, a conductive paste containing Ni as a main component (91% by weight Ni , MnO1 wt%, PbO―BaO― SiO2
Conductive paste layers 4 and 5 are formed by applying a paste consisting of 8% glass and vehicle to a thickness of approximately 3 μm.
The two green sheets 1 and 2 coated with conductive paste are formed so that the sides coated with conductive paste to the ends face in opposite directions, and conductive paste layers 4 and 5 are formed.
Stack them so that they are facing each other with one raw sheet in between,
Furthermore, green sheets 3 without applying conductive paste were stacked and thermocompression bonded to create an integrated laminate. Next, this laminate was placed in a heating furnace and heated to 600°C at a temperature increase rate of 100°C/h in an atmospheric atmosphere.
Hydrogen (H 2 ) 1% by volume and nitrogen (N 2 ) shown in Table 2
Furthermore, switch to a non-oxidizing atmosphere consisting of 99% by volume.
Sintering temperatures shown in Table 2 at a temperature rise rate of 100°C/h
After raising the temperature to 1110℃ and maintaining this 1110℃ for 3 hours, the temperature was lowered to 600℃ at a cooling rate of 100℃/h, and the non-oxidizing atmosphere was changed to an air atmosphere, and the temperature was increased to 600℃ for 30 minutes.
Hold for 1 minute to perform oxidation treatment, then leave in air
A laminated sintered body was produced by cooling to room temperature (approximately 20°C) at a cooling rate of 100°C/h. As a result, as shown in FIG.
Dielectric ceramic layers 1a, 2a, 3a corresponding to 2 and 3
and internal electrodes 4a corresponding to the paste layers 4 and 5,
A sintered body 6 consisting of 5a was obtained. Porcelain layer 1
The thickness of a, 2a, and 3a is approximately 0.05 mm, the thickness of the sintered body 6 including the electrode is approximately 0.16 mm, its vertical width and horizontal width are each 6 mm, and the opposing area of electrodes 4a and 5a is 5 mm x 5 mm.
mm= 25mm2 . Also, the ceramic layers 1a, 2a, 3a
is composed of a porcelain composition in which a glass component is mixed into a composite provskite type porcelain crystal represented by the compositional formula of {(Sr (1-x) Ca x )O} k TiO 2 . Next, a conductive paste consisting of Zn (zinc), glass frit, and vehicle is applied to the side surface of the sintered body 6 where the electrodes 4a and 5a are exposed, and dried. By baking, a Zn electrode layer 7 is formed as shown in FIG. 4, and then copper is deposited on this layer by electroless plating to form a Cu layer 8. Further, a solder layer 9 is formed on this layer by electroplating. A pair of external electrodes 10 and 11 were formed. Next, the dielectric constant ε, Q, resistivity ρ, and temperature coefficient TC of the completed multilayer ceramic capacitor were measured, and the results shown in Table 2 were obtained. The electrical characteristics were measured under the following conditions. (A) The relative permittivity ε is at a frequency of 1k at a temperature of 20°C.
Hz, voltage [effective value] 0.5V AC, measure the capacitance with a Q meter, and compare this measured value with the electrode 4a,
It was calculated from the facing area of electrodes 5a of 25 mm 2 and the thickness of ceramic layer 2a between electrodes 5a and 6a of 0.05 mm. (B) Q was measured using a Q meter under the same conditions as ε. (C) Resistivity ρ (MΩ・cm) at a temperature of 20℃
After applying DC50V for 1 minute, electrodes 10 and 11
The resistance value between them was measured and calculated based on this measured value and the dimensions. (D) Temperature coefficient TC is determined by measuring capacitance C 85 at 85°C and capacitance C 20 at 20°C, and calculating C 85 - C 20 /C 20 ×1
/65×10 6 (PPM/°C). Above, Example 1 has been described, but Examples 2-
Regarding No. 83, a multilayer ceramic capacitor was manufactured under exactly the same conditions as in Example 1, except that the ceramic composition and/or sintering conditions were changed as shown in Tables 1 and 2, and the electrical characteristics were determined using the same method. was measured. In addition, in the column of basic components in Table 1, the values of 1-x, x, and k in the compositional formula of {(Sr (1-x) Ca x )O} k TiO 2 are shown. Since the amount of the basic component is constant at 100 parts by weight in all Examples, it is not listed in the column of each Example. The amount of glass component is based on 100 parts by weight of the base component. In addition, in the H 2 ratio column of the sintering conditions in Table 2, the H 2 ratio in the volume ratio of H 2 and N 2 in a non-oxidizing atmosphere during sintering is shown.
(Hydrogen) volume % is shown. In addition, the sintering condition temperature column shows the sintering temperature in a non-oxidizing atmosphere. The heat treatment temperature in an oxidizing atmosphere (air) is 600° C. in each example, so it is not shown in the table. The mark 〃 in Tables 1 and 2 indicates the same as above.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 上記第1表及び第2表に於いて、実施例6〜
10,41,47,48,51,52,55,56,59,68,71,
72,75,76,79,80及び83は本発明の範囲外のも
のであり、その他は本発明の範囲に含まれるもの
である。また、第2表の電気的特性の欄に特性が
記入されていない実施例では緻密な焼結体が得ら
れなかつた。 実施例1〜40は、主としてガラス成分の組成を
決定するために、ガラス成分の組成と磁器コンデ
ンサの電気特性との関係を求めたものである。 実施例1及び2から明らかなように、ガラス成
分中のLi2Oがない場合であつても、M成分が合
計で35〜40モル%、SiO2が残部であれば1110℃
で焼結され、εが290又は291、Qが4200又は
4000、ρが5.8又は5.9×106(MΩ・cm)の良好
なコンデンサが得られる。実施例8のようにMが
50モル%では緻密な焼結体が得られず、本発明の
目的を達成しない。Li2Oが5モル%では、実施
例3に示す如くM成分が45モル%、SiO2が50モ
ル%で実施例1及び2と同等の焼結温度と電気特
性が得られるが、M成分が20モル%、SiO2が80
モル%では実施例7に示される如く焼結温度が高
く、1250℃では緻密な焼結体が得られず本発明の
目的を達成しない。 実施例9及び10は共にSiO2が40モル%である
が、両実施例ともに1250℃では緻密な焼結体が得
られず、本発明の目的を達成しない。 実施例4及び5に示す様に、M成分が全く含ま
れない場合でも、Li2Oが25〜50モル%、SiO2
50〜75モル%の範囲であれば、実施例1と同等の
電気特性が得られ、本発明の目的を達成する。 実施例11〜17から明らかな様に、本発明に係る
ガラス中に含有するM成分の構成するBaO,
CAO,SrOの何れであつても、あるいは何れの
組合せであつても、実施例1と同等の電気特性を
示し、本発明の目的を十分に達成する。 従つて、本発明におけるガラス成分の組成範囲
は、Li2O―M―SiO2ガラスの組成を示す第5図
のA点,B点,C点,D点,E点,A点を順に結
ぶ5本の直線で囲まれた領域内である。なお、第
5図に示す三角図の、 A点はLi2O0モル%、M35モル%、SiO265モル
%を示し、 B点はLi2O0モル%、M40モル%、SiO260モル
%を示し、 C点はLi2O5モル%、M45モル%、SiO250モル
%を示し、 D点はLi2O50モル%、M0モル%、SiO250モル
%を示し、 E点はLi2O25モル%、M0モル%、SiO275モル
%を示す。 従つて、実施例6〜10は、本発明の範囲外であ
る。 実施例23〜28に示す様に1−xが1.0、xが
0、kが1.02であつても即ち(SrO)1.02TiO2であ
つてもガラス成分が実施例1〜5に示す範囲であ
れば、良好な電気特性の誘電体磁器組成物(積層
磁器コンデンサ)が得られる。 実施例29〜34に示す様に(1−x)が0、xが
1.0、kが1.02であつても即ち(CaO)1.02TiO2
あつてもガラス成分が実施例1〜5に示す範囲で
あれば、良好な電気特性の誘電体磁器組成物(積
層磁器コンデンサ)が得られる。 実施例35〜40に示す様に(1−x)が0.3、x
が0.7、kが1.02であつても即ち(Sr0.3Ca0.70.02
TiO2であつても上記と同様である。 実施例41〜59は、種々の磁器組成物とガラス成
分の添加量との関係を調べたものである。 実施例41〜47,48〜51,52〜55,56〜59の各基
本成分の異なるグループにおいて、ガラス成分の
好ましい添加量は100重量部の基本成分に対し0.2
〜10.0重量部である。実施例41,48,52,56のよ
うにガラス成分を全く添加しない場合には、焼成
温度が1250℃と高いにもかかわらず、緻密な焼結
体が得られず、本発明の目的を達成しない。ある
いは実施例47,51,55,59にに示すようにガラス
成分の添加量が12重量部の場合にはQが1000未満
となつて本発明の目的を達成しない。よつてガラ
スの添加量は、基本成分に対し0.2〜10重量%の
範囲に限定される。 実施例60〜67は、焼成雰囲気と特性との関係を
調べたものである。これにより、種々の磁器組成
に於いて中性雰囲気でも還元雰囲気でも共に満足
する電気特性が得られることがわかる。ただし還
元性雰囲気の場合、中性雰囲気で焼成した場合に
比して同一組成物であつても、Q及び比抵抗が悪
くなる傾向があるが、本発明の目的を十分に達成
することが可能な範囲である。 実施例68〜83は、基本成分中のkの値の変化に
対する電気特性の変化を調べたものである。これ
らの実施例によれば、kが0.98のようにTiの量に
対するSr(1-x)CaxOの量が少ない場合は、Qが悪
くなり、しかも抵抗率ρも6.2×104(MΩ・cm)
以下となり、本発明の目的を達成しない。また、
kの値が1.05となつた場合は、緻密な焼結体が得
られず、本発明の目的を達成しない。よつてkの
値は1.0〜1.04に限定される。 上述から明らかな如く、本発明によれば、還元
又は中性雰囲気中1070〜1200℃の温度による焼成
後、空気中600〜1000℃の熱処理により、比誘電
率が122〜333、Qが1400〜7500、抵抗率ρが5.1
×106〜3.2×107MΩ・cmである種々のTCの誘電
体磁器組成物を提供することが出来る。また、内
部電極をニツケル等の卑金属とした温度補償用積
層磁器コンデンサを提供することが出来る。 以上、本発明の実施例について述べたが、本発
明はこれに限定されるものではなく、更に変形が
可能なものである。例えば、酸化性雰囲気中での
熱処理温度は600℃以外の600〜1000℃即ち焼結温
度より200℃以上低い温度であればよい。この点
は、電極材料の酸化されない範囲で磁器が十分に
酸化される温度と時間を考慮して考えることがで
きる。また、本発明の組成物(抗還元性の範囲を
含み酸化処理の不必要な範囲を含んでいる)は、
抵抗率を高くするために酸化性雰囲気で加熱処理
をするが、この酸化処理を独立に行わずに、電極
ペーストの焼付(550〜850℃)で兼ねることがで
きる。また、本発明の目的を阻害しない範囲で他
の物質を更に添加してもよい。例えば本発明の組
成物に対しMnO2を0.05〜0.1重量%の範囲で添加
してもよい。また基本成分を得るための出発原料
を、実施例で示したもの以外の例えばCa,Sr,
Tiの化合物、例えばCaO,SrO等の酸化物、又は
水酸化物等としてもよい。
[Table] In Tables 1 and 2 above, Examples 6 to
10, 41, 47, 48, 51, 52, 55, 56, 59, 68, 71,
72, 75, 76, 79, 80 and 83 are outside the scope of the present invention, and the others are within the scope of the present invention. Further, in the examples in which the characteristics were not entered in the electrical characteristics column of Table 2, a dense sintered body could not be obtained. In Examples 1 to 40, the relationship between the composition of the glass component and the electrical characteristics of the ceramic capacitor was mainly determined in order to determine the composition of the glass component. As is clear from Examples 1 and 2, even if there is no Li 2 O in the glass component, if the M component is 35 to 40 mol% in total and the remainder is SiO 2 , the temperature is 1110°C.
sintered, ε is 290 or 291, Q is 4200 or
4000, a good capacitor with ρ of 5.8 or 5.9×10 6 (MΩ·cm) can be obtained. As in Example 8, M
At 50 mol%, a dense sintered body cannot be obtained and the object of the present invention cannot be achieved. When Li 2 O is 5 mol %, the M component is 45 mol % and SiO 2 is 50 mol % as shown in Example 3, the same sintering temperature and electrical properties as in Examples 1 and 2 can be obtained. is 20 mol%, SiO 2 is 80
When using mol%, the sintering temperature is high as shown in Example 7, and at 1250°C, a dense sintered body cannot be obtained and the object of the present invention cannot be achieved. In both Examples 9 and 10, SiO 2 was 40 mol %, but in both Examples, a dense sintered body could not be obtained at 1250° C., and the object of the present invention was not achieved. As shown in Examples 4 and 5, even when no M component is included, Li 2 O is 25 to 50 mol% and SiO 2 is
If it is in the range of 50 to 75 mol %, electrical properties equivalent to those of Example 1 can be obtained and the object of the present invention can be achieved. As is clear from Examples 11 to 17, BaO, which constitutes the M component contained in the glass according to the present invention,
Regardless of whether CAO or SrO is used, or any combination thereof, it exhibits electrical characteristics equivalent to those of Example 1 and fully achieves the object of the present invention. Therefore, the composition range of the glass component in the present invention is determined by sequentially connecting points A, B, C, D, E, and A in FIG. 5, which shows the composition of Li 2 O—M—SiO 2 glass. This is within the area surrounded by five straight lines. In addition, in the triangular diagram shown in Fig. 5, point A indicates 0 mol% of Li 2 O, 35 mol% of M, and 65 mol% of SiO 2 , and point B indicates 0 mol% of Li 2 O, 40 mol% of M, and 60 mol% of SiO 2 . Point C indicates 5 mol% of Li 2 O , 45 mol% of M, and 50 mol% of SiO 2 , Point D indicates 50 mol% of Li 2 O, 0 mol% of M0, and 50 mol% of SiO 2 , and Point E indicates Li 2 It shows O25 mol%, M0 mol%, and SiO2 75 mol%. Therefore, Examples 6 to 10 are outside the scope of the present invention. As shown in Examples 23 to 28, even if 1-x is 1.0, x is 0, and k is 1.02, that is, (SrO) 1.02 TiO 2 , the glass component is within the range shown in Examples 1 to 5. If so, a dielectric ceramic composition (multilayer ceramic capacitor) with good electrical properties can be obtained. As shown in Examples 29 to 34, (1-x) is 0 and x is
1.0, k is 1.02, that is, (CaO) 1.02 TiO2 , as long as the glass component is within the range shown in Examples 1 to 5, a dielectric ceramic composition (laminated ceramic) with good electrical properties can be obtained. capacitor) is obtained. As shown in Examples 35 to 40, (1-x) is 0.3, x
Even if is 0.7 and k is 1.02, that is, (Sr 0 . 3 Ca 0 . 7 ) 0 . 02
The same applies to TiO 2 as above. Examples 41 to 59 investigate the relationship between various porcelain compositions and the amount of glass component added. In each of the different groups of basic components of Examples 41-47, 48-51, 52-55, 56-59, the preferable addition amount of the glass component is 0.2 to 100 parts by weight of the basic components.
~10.0 parts by weight. When no glass component was added as in Examples 41, 48, 52, and 56, a dense sintered body was not obtained even though the firing temperature was as high as 1250°C, and the object of the present invention was not achieved. do not. Alternatively, as shown in Examples 47, 51, 55, and 59, when the amount of glass component added is 12 parts by weight, Q becomes less than 1000 and the object of the present invention is not achieved. Therefore, the amount of glass added is limited to a range of 0.2 to 10% by weight based on the basic components. In Examples 60 to 67, the relationship between firing atmosphere and characteristics was investigated. This shows that satisfactory electrical properties can be obtained in both neutral and reducing atmospheres with various porcelain compositions. However, in the case of a reducing atmosphere, the Q and specific resistance tend to be worse than in the case of firing in a neutral atmosphere, even if the composition is the same, but it is possible to sufficiently achieve the purpose of the present invention. This is a range. In Examples 68 to 83, changes in electrical characteristics with respect to changes in the value of k in the basic component were investigated. According to these examples, when the amount of Sr (1-x) Ca x O is small relative to the amount of Ti, such as when k is 0.98, the Q becomes poor and the resistivity ρ is also 6.2×10 4 (MΩ ·cm)
As a result, the object of the present invention is not achieved. Also,
If the value of k is 1.05, a dense sintered body cannot be obtained and the object of the present invention cannot be achieved. Therefore, the value of k is limited to 1.0 to 1.04. As is clear from the above, according to the present invention, after firing at a temperature of 1070 to 1200°C in a reducing or neutral atmosphere, heat treatment at 600 to 1000°C in air results in a dielectric constant of 122 to 333 and a Q of 1400 to 1400. 7500, resistivity ρ is 5.1
It is possible to provide various dielectric ceramic compositions with TC of ×10 6 to 3.2 × 10 7 MΩ·cm. Furthermore, it is possible to provide a temperature-compensating multilayer ceramic capacitor in which the internal electrodes are made of a base metal such as nickel. Although the embodiments of the present invention have been described above, the present invention is not limited thereto and can be further modified. For example, the heat treatment temperature in an oxidizing atmosphere may be any temperature other than 600°C, such as 600 to 1000°C, that is, 200°C or more lower than the sintering temperature. This point can be considered by considering the temperature and time at which the porcelain is sufficiently oxidized while the electrode material is not oxidized. In addition, the composition of the present invention (which includes an anti-reducing range and includes a range that does not require oxidation treatment),
Although heat treatment is performed in an oxidizing atmosphere to increase the resistivity, this oxidation treatment can also be performed by baking the electrode paste (at 550 to 850°C) without performing it separately. Further, other substances may be further added within a range that does not impede the object of the present invention. For example, MnO 2 may be added to the composition of the present invention in an amount of 0.05 to 0.1% by weight. In addition, the starting materials for obtaining the basic components may be other than those shown in the examples, such as Ca, Sr,
It may also be a Ti compound, for example an oxide such as CaO or SrO, or a hydroxide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜83に従う生シートを示す斜
視図、第2図は第1図の生シートにニツケルペー
ストを印刷した状態を示す斜視図、第3図は第2
図の生シートを一体化して焼結した物を示す断面
図、第4図は第3図の焼結体に外部電極を設けた
状態を示す断面図である。第5図はガラス成分の
組成を示す三角図である。 1,2,3…生シート、1a,2a,3a…磁
器層、4,5…ペースト層、4a,5a…電極、
6…焼結体、10,11…外部電極。
FIG. 1 is a perspective view showing the raw sheets according to Examples 1 to 83, FIG. 2 is a perspective view showing the state in which nickel paste is printed on the raw sheet of FIG. 1, and FIG.
FIG. 4 is a cross-sectional view showing a product obtained by integrating and sintering the green sheets shown in the figure, and FIG. 4 is a cross-sectional view showing the sintered body of FIG. 3 provided with external electrodes. FIG. 5 is a triangular diagram showing the composition of glass components. 1, 2, 3... raw sheet, 1a, 2a, 3a... porcelain layer, 4, 5... paste layer, 4a, 5a... electrode,
6... Sintered body, 10, 11... External electrode.

Claims (1)

【特許請求の範囲】 1 (MeO)kTiO2(但し、MeはSr,Ca及びSr+
Caから選択された金属、kは1.00〜1.04)から成
る100重量部の基本成分と、 0.2〜10.0重量部のガラス成分と、 から成り、前記ガラス成分はLi2OとM(但しM
はBaO,CaO及びSrOの少なくとも1種の金属酸
化物)とSiO2と の組成をモル%で示す三角図に於ける、 前記Li2Oが0モル%、前記Mが35モル%、前
記SiO2が65モル%の組成を示す第1の点Aと、
前記Li2Oが0モル%、前記Mが40モル%、前記
SiO2が60モル%の組成を示す第2の点Bと、前
記Li2Oが5モル%、前記Mが45モル%、前記
SiO2が50モル%の組成を示す第3の点Cと、前
記Li2Oが50モル%、前記Mが0モル%、前記
SiO2が50モル%の組成を示す第4の点Dと、前
記Li2Oが25モル%、前記Mが0モル%、前記
SiO2が75モル%の組成を示す第5の点Eと、前
記第1の点Aと、を順に結ぶ5本の直線で囲まれ
た領域内のものであることを特徴とする誘電体磁
器組成物。
[Claims] 1 (MeO) k TiO 2 (Me is Sr, Ca and Sr+
100 parts by weight of a basic component consisting of a metal selected from Ca (k is 1.00 to 1.04), and a glass component of 0.2 to 10.0 parts by weight, the glass component being Li 2 O and M (where M
In the triangular diagram showing the composition in mol% of at least one metal oxide of BaO, CaO and SrO) and SiO 2 , the Li 2 O is 0 mol%, the M is 35 mol%, the SiO a first point A having a composition of 65 mol% 2 ;
The above Li 2 O is 0 mol%, the above M is 40 mol%, the above
The second point B has a composition of 60 mol% SiO 2 , the Li 2 O is 5 mol%, the M is 45 mol%, and the
A third point C having a composition of 50 mol % of SiO 2 , 50 mol % of said Li 2 O, 0 mol % of said M;
A fourth point D having a composition of 50 mol % of SiO 2 , 25 mol % of said Li 2 O, 0 mol % of said M, and a fourth point D having a composition of 50 mol % of SiO 2
Dielectric porcelain, characterized in that it is within a region surrounded by five straight lines connecting in order the fifth point E having a composition of 75 mol % SiO 2 and the first point A. Composition.
JP58100681A 1983-06-06 1983-06-06 Dielectric ceramic composition Granted JPS59227769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58100681A JPS59227769A (en) 1983-06-06 1983-06-06 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58100681A JPS59227769A (en) 1983-06-06 1983-06-06 Dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS59227769A JPS59227769A (en) 1984-12-21
JPS6224388B2 true JPS6224388B2 (en) 1987-05-28

Family

ID=14280486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58100681A Granted JPS59227769A (en) 1983-06-06 1983-06-06 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS59227769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933256B2 (en) 2000-02-09 2005-08-23 Tdk Corporation Dielectric ceramic composition, electronic device, and method for producing same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157607A (en) * 1985-12-30 1987-07-13 太陽誘電株式会社 Dielectric porcelain compound
JPS62157606A (en) * 1985-12-30 1987-07-13 太陽誘電株式会社 Dielectric porcelain compound
JPS62157604A (en) * 1985-12-30 1987-07-13 太陽誘電株式会社 Dielectric porcelain compound
JPS62157605A (en) * 1985-12-30 1987-07-13 太陽誘電株式会社 Dielectric porcelain compound
JP3030557B2 (en) * 1987-11-28 2000-04-10 ティーディーケイ株式会社 Electronic components using dielectric porcelain materials
JP3028503B2 (en) * 1992-01-31 2000-04-04 株式会社村田製作所 Non-reducing dielectric porcelain composition
JP4654478B2 (en) * 1999-01-14 2011-03-23 Tdk株式会社 Dielectric composition and ceramic capacitor using the same
US6645895B2 (en) 2000-03-30 2003-11-11 Tdk Corporation Method of producing ceramic composition and method of producing electronic device
US6572793B2 (en) 2000-03-30 2003-06-03 Tdk Corporation Method of producing ceramic composition and method of producing electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933256B2 (en) 2000-02-09 2005-08-23 Tdk Corporation Dielectric ceramic composition, electronic device, and method for producing same

Also Published As

Publication number Publication date
JPS59227769A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
JPS621595B2 (en)
KR900008779B1 (en) Ceramic capacitor method of manufacture
JPS6224388B2 (en)
JPH0559523B2 (en)
JPH0552602B2 (en)
JPH0559522B2 (en)
JP2736397B2 (en) Porcelain capacitor and method of manufacturing the same
JP4325900B2 (en) Dielectric porcelain composition
JPH0544764B2 (en)
JPH0524654B2 (en)
JP2843736B2 (en) Porcelain capacitor and method of manufacturing the same
KR900008778B1 (en) Ceramic capacitor method manufacture
JPH0234552A (en) Dielectric porcelain composition
JP3269908B2 (en) Porcelain capacitor and method of manufacturing the same
JP2843733B2 (en) Porcelain capacitor and method of manufacturing the same
JPS6224385B2 (en)
JPH0551127B2 (en)
JP3269907B2 (en) Porcelain capacitor and method of manufacturing the same
JPH04359811A (en) Ceramic capacitor and its manufacture
JP2879867B2 (en) Porcelain capacitor and method of manufacturing the same
JP2938671B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0234551A (en) Dielectric porcelain composition
JPS6114608B2 (en)
JPH0234550A (en) Dielectric porcelain composition
JPH0574883B2 (en)