JPS63170805A - Manufacture of non-reducing dielectric ceramic - Google Patents

Manufacture of non-reducing dielectric ceramic

Info

Publication number
JPS63170805A
JPS63170805A JP62002998A JP299887A JPS63170805A JP S63170805 A JPS63170805 A JP S63170805A JP 62002998 A JP62002998 A JP 62002998A JP 299887 A JP299887 A JP 299887A JP S63170805 A JPS63170805 A JP S63170805A
Authority
JP
Japan
Prior art keywords
dielectric constant
mol
dielectric
change rate
temperature change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62002998A
Other languages
Japanese (ja)
Inventor
西岡 吾朗
修司 渡部
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP62002998A priority Critical patent/JPS63170805A/en
Priority to US07/141,999 priority patent/US4988468A/en
Priority to DE3800198A priority patent/DE3800198C2/en
Publication of JPS63170805A publication Critical patent/JPS63170805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は非還元性誘電体磁器の製造方法に関し、特に
たとえば積層コンデンサなどの誘電体材料として用いら
れる非還元性誘電体磁器の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing non-reducible dielectric ceramics, and particularly relates to a method for manufacturing non-reducible dielectric ceramics used as dielectric materials such as multilayer capacitors. .

(従来技術) 従来、積層コンデンサを製造する際には、その上面にた
とえば印刷することによって内部電極となる金属粉末層
が形成された誘電体グリーンシートを、複数枚積み重ね
て圧着、一体化した後、その一体化物を焼成するという
工程が採用されている。
(Prior art) Conventionally, when manufacturing a multilayer capacitor, a plurality of dielectric green sheets, each of which has a metal powder layer that will become an internal electrode by printing on its top surface, are stacked, crimped, and integrated. , a process of firing the integrated product is adopted.

(発明が解決しようとする問題点) 従来の誘電体磁器は、低酸素分圧下で焼成すると還元さ
れ、その比抵抗が著しく劣化するという性質を有してい
た。このため、その焼成は空気中等の高酸素分圧下で、
たとえば1.300℃以上の高い温度で行われていた。
(Problems to be Solved by the Invention) Conventional dielectric ceramics have the property that when fired under low oxygen partial pressure, they are reduced and their specific resistance deteriorates significantly. For this reason, the firing is performed under high oxygen partial pressure such as in air.
For example, it was carried out at a high temperature of 1.300°C or higher.

したがって、このような熱処理条件に耐え得る内部電極
の材料として、たとえばパラジウム、白金などの貴金属
を用いなければならなく、そのため、製造される積層コ
ンデンサの大容量化および低価格化の大きな妨げとなっ
ていた。
Therefore, noble metals such as palladium and platinum must be used as materials for the internal electrodes that can withstand such heat treatment conditions, which is a major hindrance to increasing the capacity and lowering the price of manufactured multilayer capacitors. was.

そこで、本発明者らは、上述の問題を解決するために、
たとえばニッケルなどの卑金属を内部電極の材料として
使用することができるように、低酸素分圧下で焼成して
も還元されず高い比抵抗を有する誘電体磁器を創作した
。この誘電体磁器として、特公昭56−46641号公
報には、((Ba、 Ca、 )0) +e ・(Ti
、 Zr)Oxよりなる固溶体が開示されている。しか
しながら、この公報に開示されている製造方法で製造さ
れた誘電体磁器では、その磁器組成物が焼結過程で一様
な固溶体をなすため、そのキュリ一点が単一となり、そ
のため、その誘電率の温度変化率が大きかった。
Therefore, in order to solve the above-mentioned problem, the present inventors
For example, we created dielectric porcelain that does not reduce even when fired under low oxygen partial pressure and has a high specific resistance so that base metals such as nickel can be used as materials for internal electrodes. As this dielectric ceramic, Japanese Patent Publication No. 56-46641 describes ((Ba, Ca, )0) +e ・(Ti
, Zr)Ox is disclosed. However, in the dielectric porcelain manufactured by the manufacturing method disclosed in this publication, since the porcelain composition forms a uniform solid solution during the sintering process, the Curie point is single, and therefore the dielectric constant The rate of temperature change was large.

そこで、本発明者は、鋭意努力の結果、BaTi0=に
ZrO,およびCaO等を焼結過程で完全には固溶させ
ないことによって、誘電率の温度変化率を小さくするこ
とができることを見出した。
As a result of diligent efforts, the inventors of the present invention have found that the temperature change rate of the dielectric constant can be reduced by not completely dissolving ZrO, CaO, etc. in BaTi0= during the sintering process.

それゆえに、この発明の主たる目的は、非酸化性雰囲気
中で焼成しても、還元されて半導体化することなく高い
比抵抗を示し、かつ、高い誘電率を有し、しかも、誘電
率の温度変化率が小さい非還元性誘電体磁器を製造する
ことができる、非還元性誘電体磁器の製造方法を提供す
ることである。
Therefore, the main object of the present invention is to exhibit a high resistivity without being reduced and turned into a semiconductor even when fired in a non-oxidizing atmosphere, and to have a high dielectric constant, and also to It is an object of the present invention to provide a method for manufacturing non-reducible dielectric ceramics that can manufacture non-reducible dielectric ceramics with a small rate of change.

(問題点を解決するための手段) この発明は、それぞれが仮焼、粉砕されたBaTi0.
、 CaTiO3およびCaZrOsを、BaTi0.
、が82.0〜93.0モル%、CaTi0+が6.0
〜14.0モル%、およびCaZrOsが1.0〜8.
0モル%の範囲で配合したものを主成分として準備し、
主成分100モル部に、副成分としてマンガン酸化物、
カルシウム酸化物および二酸化けい素を、それぞれ、M
nO,、CaOおよび5iOzに換算して、MnO2が
0.1〜4.0モル部、CaOが0.2〜4.0モル部
、およびSiO2が0.1〜3.0モル部の範囲で添加
し、さらに、主成分に副成分を添加したものを焼成する
、非還元性誘電体磁器の製造方法である。
(Means for Solving the Problems) The present invention is based on a method using BaTi0.
, CaTiO3 and CaZrOs, BaTi0.
, is 82.0 to 93.0 mol%, and CaTi0+ is 6.0
~14.0 mol%, and CaZrOs from 1.0 to 8.
Prepared as the main ingredient in a range of 0 mol%,
100 mole parts of the main component, manganese oxide as a subcomponent,
Calcium oxide and silicon dioxide, respectively, M
In terms of nO, CaO and 5iOz, MnO2 is 0.1 to 4.0 mol parts, CaO is 0.2 to 4.0 mol parts, and SiO2 is 0.1 to 3.0 mol parts. This is a method for manufacturing non-reducible dielectric ceramics, in which the main component is added with a subcomponent and then fired.

(発明の効果) この発明によれば、非酸化性雰囲気中でたとえば1.2
70〜1.360℃の温度で焼成しても、還元されて半
導体化することなく10”0口以上の高い比抵抗を示し
、3.000以上の高い誘電率をもち、しかも、−55
℃〜+125℃の広い温度範囲において誘電率の温度変
化率が一15%〜+15%の範囲と小さい、非還元性誘
電磁器を製造することができる。
(Effect of the invention) According to the invention, for example, 1.2
Even when fired at a temperature of 70 to 1.360°C, it shows a high specific resistance of 10" or more without being reduced and turns into a semiconductor, and has a high dielectric constant of 3.000 or more, and -55
It is possible to produce a non-reducible dielectric ceramic whose temperature change rate of dielectric constant is as small as 115% to +15% over a wide temperature range of 125°C to 125°C.

また、この発明の実施例によれば、さらに、誘電損失が
1.00%未満と小さく、かつ、+20℃の温度におけ
る誘電率を基準とした一25℃〜+85℃の温度範囲に
おける誘電率の温度変化率が±10%未満と小さい、優
れた特性が得られた。
Further, according to the embodiment of the present invention, the dielectric loss is as small as less than 1.00%, and the dielectric constant in the temperature range of -25°C to +85°C is based on the dielectric constant at +20°C. Excellent characteristics were obtained with a small temperature change rate of less than ±10%.

したがって、高い誘電率、低い誘電損失および良好な誘
電率温度特性をすべて満足し、かつ、小型で大容量のコ
ンデンサの誘電体材料などとして極めて有用な非還元性
誘電体磁器を製造することができる。しかも、この非還
元性誘電体磁器をたとえば積層セラミックコンデンサの
誘電体材料として用いれば、たとえばニッケルなどの卑
金属を内部電極とした安価な積層セラミックコンデンサ
を得ることができる。
Therefore, it is possible to produce a non-reducible dielectric ceramic that satisfies all of high permittivity, low dielectric loss, and good permittivity-temperature characteristics, and is extremely useful as a dielectric material for small, large-capacity capacitors. . Moreover, if this non-reducible dielectric ceramic is used as a dielectric material for a multilayer ceramic capacitor, for example, an inexpensive multilayer ceramic capacitor can be obtained in which internal electrodes are made of a base metal such as nickel.

この発明の上述の目的、その他の目的、特徴および利点
は、以下の実施例の詳細な説明から一層明らかとなろう
The above objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments.

(実施例) まず、BaCO3とTi0zとを、BaTiO3を形成
するための比率で秤量し、それらをボールミルで十分に
混合して、この混合物を1200℃で1時間仮焼した後
、微粉砕した。
(Example) First, BaCO3 and Ti0z were weighed in a ratio to form BaTiO3, and they were thoroughly mixed in a ball mill. The mixture was calcined at 1200° C. for 1 hour, and then finely pulverized.

これと同様にして、CaC0zおよびTiQzから仮焼
、微粉砕されたCaTiO3の粉末と、CaC0,およ
びZrO2から仮焼、微粉砕されたCaZr0.の粉末
とを、それぞれ得た。
In the same way, CaTiO3 powder was calcined and finely ground from CaC0z and TiQz, and CaZr0. were obtained, respectively.

これらの粉末のX−ray回折像により、これらの粉末
が均一な結晶性を有することを確認した。
The X-ray diffraction images of these powders confirmed that these powders had uniform crystallinity.

このようにして得られたBaTiO3,CaTiO3お
よびCaZr0.の各粉末と、Mn0z+ CaOおよ
びSin、とを、別表1に示した組成比率の誘電体が得
られるように秤量した。なお、表1では、この発明の範
囲外の組成比の数値に下線を付した。
BaTiO3, CaTiO3 and CaZr0. Each powder, Mn0z+ CaO and Sin were weighed so as to obtain a dielectric having the composition ratio shown in Attached Table 1. In Table 1, numerical values of composition ratios outside the scope of the present invention are underlined.

さらに、この秤量原料に酢酸ビニル系有機バインダ5重
量%を加えて湿式混合してから、蒸発。
Furthermore, 5% by weight of a vinyl acetate organic binder was added to this weighed raw material, wet mixed, and then evaporated.

乾燥および整粒の工程を経て粉末を得た。そして、この
粉末を2000kg/cjの圧力で直径Low。
A powder was obtained through drying and sizing steps. Then, this powder was reduced to a diameter of Low at a pressure of 2000 kg/cj.

厚さl usに成形して成形物を得た。A molded product was obtained by molding to a thickness of lus.

この成形物を、ジルコニア粉末を敷粉としてアルミナ質
の匣に入れて、Hz/Nzの体積比率が3/100の還
元性ガス雰囲気中において、1゜270℃〜1,360
℃の温度で焼成して、素子を得た。
This molded product was placed in an alumina box with zirconia powder as a bed powder, and heated at 1°270°C to 1,360°C in a reducing gas atmosphere with a volume ratio of Hz/Nz of 3/100.
An element was obtained by firing at a temperature of .degree.

得られた素子の両面に、In−Ga合金を塗布して、電
極を形成し、各試料を得た。
In--Ga alloy was applied to both surfaces of the obtained element to form electrodes, and each sample was obtained.

そして、各試料の誘電率ε、誘電損失tan δ。Then, the dielectric constant ε and dielectric loss tan δ of each sample.

誘電率の温度変化率および比抵抗の電気的特性を次の条
件で測定した。
The electrical characteristics of the temperature change rate of dielectric constant and specific resistance were measured under the following conditions.

誘電率εおよび誘電損失tan δは、1kHzの周波
数で25℃の温度で測定した。
The dielectric constant ε and the dielectric loss tan δ were measured at a frequency of 1 kHz and a temperature of 25°C.

誘電率の温度変化率は、+25℃の温度における誘電率
を基準とした一55℃〜+125℃の温度範囲の誘電率
の温度変化率(Δc / C25)と、+20℃の温度
における誘電率を基準とした一25℃〜+85℃の温度
範囲の誘電率の温度変化率(ΔC/ Cto)とを、そ
れぞれ測定した。
The temperature change rate of the dielectric constant is the temperature change rate of the dielectric constant (Δc/C25) in the temperature range of -55℃ to +125℃ based on the dielectric constant at a temperature of +25℃, and the dielectric constant at a temperature of +20℃. The temperature change rate (ΔC/Cto) of the dielectric constant was measured in a temperature range of −25° C. to +85° C. as a reference.

比抵抗は、25℃の温度において、DC,500Vを2
分間印加した後測定した。
Specific resistance is DC, 500V at 25°C.
Measurements were taken after applying the voltage for a minute.

上述の測定結果を別表2に示した。なお、表2では、特
性の悪い数値に下線を付した。この場合、誘電率εにつ
いては3.000未満のものを、誘電損失tan δに
ついては1%以上のものを、誘電率の温度変化率(Δc
 / c zs)については−15〜+15%の範囲外
のものを、誘電率の温度変化率(ΔC/ Cz。)につ
いては−10〜+10%の範囲外のものを、比抵抗につ
いてはIQltΩ・C11未満のものを、それぞれ、特
性の悪いものとして示した。
The above measurement results are shown in Attached Table 2. In Table 2, numerical values with poor characteristics are underlined. In this case, the dielectric constant ε is less than 3.000, the dielectric loss tan δ is 1% or more, and the temperature change rate of the dielectric constant (Δc
/czs) outside the range of -15 to +15%, the temperature change rate of dielectric constant (ΔC/Cz.) outside the range of -10 to +10%, and the resistivity of IQltΩ. Those with less than C11 were respectively shown as having poor characteristics.

つまり、試料番号4のようにBaTiOsが82モル%
未満では誘電率が小さくなり、試料番号6のようにBa
TiOsが93モル%を超えると誘電率の温度特性が悪
くなる。
In other words, as in sample number 4, BaTiOs is 82 mol%.
If the dielectric constant is less than
If TiOs exceeds 93 mol %, the temperature characteristics of the dielectric constant deteriorate.

また、試料番号1および6のようにCaTiO3が6モ
ル%未満であると誘電率の温度変化率が一15%を超え
、試料番号3のようにCaTi0aが14モル%を超え
ると誘電率が小さくなる。
In addition, when CaTiO3 is less than 6 mol% as in sample numbers 1 and 6, the temperature change rate of the dielectric constant exceeds 115%, and when CaTiOa exceeds 14 mol% as in sample number 3, the dielectric constant becomes small. Become.

試料番号2のようにCaZrO3が1モル%未満である
と誘電率の温度変化率が−15%を超え、試料番号5の
ようにCaZr0aが8モル%を超えると誘電率が小さ
くなる。
When CaZrO3 is less than 1 mol% as in Sample No. 2, the temperature change rate of the dielectric constant exceeds -15%, and when CaZrOa exceeds 8 mol% as in Sample No. 5, the dielectric constant becomes small.

一方、試料番号15のようにMnO,が0.1モル部未
満であると誘電率の温度特性が悪くなり、試料番号18
のようにMnO□が4モル部を超えると誘電率が3,0
00未満と小さくなる。
On the other hand, if MnO is less than 0.1 mol part as in sample number 15, the temperature characteristics of the dielectric constant deteriorate;
When MnO□ exceeds 4 mol parts, the dielectric constant becomes 3.0.
It becomes smaller than 00.

また、試料番号19のようにCaOが0.2モル部未満
であると、還元焼成により比抵抗が小さくなりまた誘電
率の温度変化率が大きくなり、試料番号22のようにC
aOが4モル部を超えると、誘電率が小さくなりかつ焼
結性が悪くなる。
In addition, when CaO is less than 0.2 mol part as in Sample No. 19, the specific resistance decreases due to reduction calcination and the temperature change rate of the dielectric constant increases, and as in Sample No. 22, CaO
When aO exceeds 4 mole parts, the dielectric constant becomes small and sinterability deteriorates.

試料番号23のようにSiO2が0.1モル部未満であ
ると、焼結性が低下しかつ誘電率の温度変化率が大きく
なり、試料番号26のようにSiO□が3モル部を超え
ると、誘電率が小さくなりかつ誘電率の温度変化率が大
きくなる。
When SiO2 is less than 0.1 mol part as in sample number 23, the sinterability decreases and the temperature change rate of the dielectric constant becomes large, and when SiO□ exceeds 3 mol parts as in sample number 26. , the dielectric constant becomes smaller and the temperature change rate of the dielectric constant becomes larger.

また、参照例として特公昭56−46641号公報に開
示されているように、BaTiOs、CaTiO3およ
びCaZr0+の各成分を経ることなく作成した((H
a、 Ca、 )0) @  ・(Ti、 Zr)O2
よりなる固溶体の組成と、その誘電率、誘電損失、誘電
率の温度変化率および比抵抗とを、それぞれ、別表1と
別表2とに試料番号28として示した。この試料番号2
8に対応する本発明の実施例の組成およびその電気的特
性を、別表1および別表2に、試料番号27として示し
た。なお、特公昭56−46641号公報においては副
成分を含有していないが、試料番号28については副成
分としてMnO2,SiO2をそれぞれ1モル部、2モ
ル部添加含有させた。
In addition, as a reference example, as disclosed in Japanese Patent Publication No. 56-46641, BaTiOs, CaTiO3, and CaZr0+ were prepared without passing through each component ((H
a, Ca, )0) @ ・(Ti, Zr)O2
The composition of the solid solution, its dielectric constant, dielectric loss, temperature change rate of dielectric constant, and specific resistance are shown as sample number 28 in Attached Tables 1 and 2, respectively. This sample number 2
The composition and electrical characteristics of Example 8 of the present invention corresponding to Sample No. 27 are shown in Attached Tables 1 and 2 as Sample No. 27. In addition, although no subcomponent was contained in Japanese Patent Publication No. 56-46641, sample No. 28 contained 1 mol part and 2 mol part of MnO2 and SiO2 as subcomponents, respectively.

試料番号27および28の結果を比較して明らかなよう
に、試料°番号28では、単一固溶体をなし誘電率が低
く、単一のキュリ一点をもつため誘電率の温度変化率が
大きいという欠点を有しているが、それに対して、本発
明の範囲内の試料番号27では、高い誘電率と平坦な誘
電率の温度変化率を示すことがわかる。
As is clear from comparing the results of sample numbers 27 and 28, sample number 28 is a single solid solution, has a low dielectric constant, and has a single Curie point, so it has the disadvantage that the rate of change in dielectric constant with temperature is large. However, on the other hand, it can be seen that sample number 27 within the scope of the present invention exhibits a high dielectric constant and a flat temperature change rate of the dielectric constant.

さらに、別表2から明らかなように、本発明によれば、
誘電率が3.000以上で、誘電損失が1.00%未満
で、しかも、+25℃の温度における誘電率を基準とし
た一55℃〜+125℃の温度範囲の誘電率の温度変化
率が±15%未満であり、かつ、+20℃の温度におけ
る誘電率を基準とした一25℃〜+85℃の温度範囲の
誘電率の温度変化率が±10%未満である、優れた特性
が得られることがわかる。
Furthermore, as is clear from Attached Table 2, according to the present invention,
The dielectric constant is 3.000 or more, the dielectric loss is less than 1.00%, and the temperature change rate of the dielectric constant in the temperature range of -55℃ to +125℃ based on the dielectric constant at +25℃ is ± 15%, and the temperature change rate of the dielectric constant in the temperature range of -25°C to +85°C is less than ±10% based on the dielectric constant at +20°C. I understand.

特許出願人 株式会社 村田製作所 代理人 弁理士 岡 1) 全 啓 (ほか1名)Patent applicant Murata Manufacturing Co., Ltd. Agent: Patent Attorney Oka 1) Zenhiro (1 other person)

Claims (1)

【特許請求の範囲】 それぞれが仮焼、粉砕されたBaTiO_3、CaTi
O_3およびCaZrO_3を、 BaTiO_3が82.0〜93.0モル%、CaTi
O_3が6.0〜14.0モル%、およびCaZrO_
3が1.0〜8.0モル% の範囲で配合したものを主成分として準備し、前記主成
分100モル部に、副成分としてマンガン酸化物、カル
シウム酸化物および二酸化けい素を、それぞれ、MnO
_2、CaOおよびSiO_2に換算して、 MnO_2が0.1〜4.0モル部、 CaOが0.2〜4.0モル部、および SiO_2が0.1〜3.0モル部 の範囲で添加し、さらに 前記主成分に前記副成分を添加したものを焼成する、非
還元性誘電体磁器の製造方法。
[Claims] BaTiO_3 and CaTi each calcined and pulverized
O_3 and CaZrO_3, BaTiO_3 is 82.0 to 93.0 mol%, CaTi
O_3 is 6.0 to 14.0 mol%, and CaZrO_
3 was blended in the range of 1.0 to 8.0 mol% as the main component, and manganese oxide, calcium oxide and silicon dioxide were added as subcomponents to 100 mol parts of the main component, respectively. MnO
_2, converted to CaO and SiO_2, MnO_2 is added in the range of 0.1 to 4.0 mol parts, CaO is 0.2 to 4.0 mol parts, and SiO_2 is added in the range of 0.1 to 3.0 mol parts. A method for producing non-reducible dielectric porcelain, which further comprises firing a mixture of the main component and the subcomponent added thereto.
JP62002998A 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic Pending JPS63170805A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62002998A JPS63170805A (en) 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic
US07/141,999 US4988468A (en) 1987-01-08 1988-01-06 Method for producing non-reducible dielectric ceramic composition
DE3800198A DE3800198C2 (en) 1987-01-08 1988-01-07 Process for making a non-reducible dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002998A JPS63170805A (en) 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic

Publications (1)

Publication Number Publication Date
JPS63170805A true JPS63170805A (en) 1988-07-14

Family

ID=11545044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002998A Pending JPS63170805A (en) 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic

Country Status (1)

Country Link
JP (1) JPS63170805A (en)

Similar Documents

Publication Publication Date Title
JPH04218207A (en) Dielectric porcelain composition
JPS61250905A (en) Dielectric ceramic composition and manufacture thereof
KR940003473B1 (en) Dielectric ceramic composition with high dielectric constant and flat tc characteristics
JP3368602B2 (en) Non-reducing dielectric porcelain composition
JPS63289707A (en) Nonreducible dielectric ceramic constituent
JPS597665B2 (en) High dielectric constant porcelain composition
JP3143922B2 (en) Non-reducing dielectric ceramic composition
JP3634930B2 (en) Dielectric porcelain composition
JPH04115409A (en) Non-reducing dielectric ceramic composite
JPS63170805A (en) Manufacture of non-reducing dielectric ceramic
JP2869900B2 (en) Non-reducing dielectric porcelain composition
JPS63170804A (en) Manufacture of non-reducing dielectric ceramic
JPS63170807A (en) Manufacture of non-reducing dielectric ceramic
JP3362408B2 (en) Dielectric porcelain composition
JP2789110B2 (en) High dielectric constant porcelain composition
JPS63218102A (en) Manufacture of non-reduction dielectric ceramic
JP3064518B2 (en) Dielectric porcelain composition
JPS63170803A (en) Manufacture of non-reducing dielectric ceramic
JPH04188504A (en) Dielectric porcelain composition
JPS63170806A (en) Manufacture of non-reducing dielectric ceramic
JP2958822B2 (en) Non-reducing dielectric porcelain composition
JP2958820B2 (en) Non-reducing dielectric porcelain composition
JPH0637322B2 (en) Dielectric porcelain composition
JPH08119728A (en) Dielectric porcelain composition
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof