JPS63170535A - Electronically controlled fuel injection device - Google Patents

Electronically controlled fuel injection device

Info

Publication number
JPS63170535A
JPS63170535A JP165887A JP165887A JPS63170535A JP S63170535 A JPS63170535 A JP S63170535A JP 165887 A JP165887 A JP 165887A JP 165887 A JP165887 A JP 165887A JP S63170535 A JPS63170535 A JP S63170535A
Authority
JP
Japan
Prior art keywords
injection
acceleration
fuel
cylinder
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP165887A
Other languages
Japanese (ja)
Other versions
JPH0551779B2 (en
Inventor
Masami Nagano
正美 永野
Seiji Suda
須田 正爾
Takeshi Atago
阿田子 武士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP165887A priority Critical patent/JPS63170535A/en
Publication of JPS63170535A publication Critical patent/JPS63170535A/en
Publication of JPH0551779B2 publication Critical patent/JPH0551779B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enhance acceleration response and further to prevent the deterioration in the performance of exhaust gas, by additionally injecting a prescribed quantity of fuel prescribed times to each cylinder in turn from the cylinder in which the normal fuel injection has been finished directly before the acceleration is detected. CONSTITUTION:In a fuel injection control device in which fuel is injected in turn in a prescribed timing from the fuel injection valve arranged for each cylinder, the cylinder in which fuel injection has been finished directly before the acceleration is detected is discriminated, and additional injection is carried out in turn from this cylinder. In other words, additional injection is carried out to the fifth cylinder in the normal injection timing in which, next, the normal injection is to be carried out to the cylinder (the third cylinder). Thus, the acceleration can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の電子制御燃料噴射装置に係り、特に
シーケンシャル噴射方式に好適な加速補正法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electronically controlled fuel injection system for an internal combustion engine, and particularly to an acceleration correction method suitable for a sequential injection system.

〔従来の技術〕[Conventional technology]

従来、各気筒の吸気タイミングに同期して各気筒の噴射
弁を順次駆動していくシーケンシャル噴射方式において
、加速補正法として、特開昭59−96444号に記載
のように、加速を検出した後、直に全気筒同時にまたは
、グループ分けされた気筒群毎に追加噴射を行う非同期
噴射による加速補正法があった。また加速時にパルス幅
を増大させてゆく加速補正法があった。
Conventionally, in the sequential injection method in which the injection valves of each cylinder are sequentially driven in synchronization with the intake timing of each cylinder, as an acceleration correction method, as described in JP-A No. 59-96444, after acceleration is detected. There was an acceleration correction method using asynchronous injection, in which additional injection was performed in all cylinders at the same time or in each group of cylinders. There is also an acceleration correction method that increases the pulse width during acceleration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術による加速時にパルス幅を増大させてゆく方法
で補正を行った場合の問題点は、第8!l!Jの如く補
正係数(KAO)がセットされるまでの遅れ時間があり
&5.Nα3.Na6気筒の燃料噴射量を増量すること
ができない、ここで補正係数(KAC)について説明す
る。  ・ 通常噴射パルス幅は、空気量を回転数で割った値である
ため、加速時では、その空気量に見合った燃料量が得ら
れない。そこで薄くなってしまった分を補うために補正
係数(KAC)用いてパルス幅を補正する。第8図にお
いては、加速検出後KACが急激に立ち上がり、その後
通常噴射パルス幅が、その時点での運転状態に最適にな
るに従って、減ってくる。
The problem when performing correction by increasing the pulse width during acceleration according to the prior art is No. 8! l! There is a delay time until the correction coefficient (KAO) is set as shown in J&5. Nα3. The correction coefficient (KAC), which cannot increase the fuel injection amount of the Na6 cylinder, will be explained here. - Since the normal injection pulse width is the amount of air divided by the number of rotations, the amount of fuel that corresponds to the amount of air cannot be obtained during acceleration. Therefore, in order to compensate for the thinning, the pulse width is corrected using a correction coefficient (KAC). In FIG. 8, KAC rises rapidly after acceleration is detected, and then the normal injection pulse width decreases as it becomes optimal for the operating condition at that time.

第9図は、加速時に通常パルスの幅を増大させる補正を
行った場合の平均有効圧力(Pl)の挙動を測定した結
果を図示したものである。尚、測定はセカンドギアで3
.000 rpmから減速しI 、 500rpmから
アクセルを急全開させて行った。この結果加速後3つの
気筒は平均有効圧力が立ち上がっていることが分かる。
FIG. 9 illustrates the results of measuring the behavior of the average effective pressure (Pl) when a correction is made to increase the width of the normal pulse during acceleration. In addition, the measurement was made with 3rd gear in second gear.
.. The speed was reduced from 000 rpm, and the accelerator was suddenly fully opened from 500 rpm. As a result, it can be seen that the average effective pressure in the three cylinders increases after acceleration.

第10図は、前記測定で車両加速度Gの挙動を図示した
ものである。この結果加速直後に車両前後加速の落ち込
みが見られ、その後高く立ち上がり、激しい振動が発生
してい虐 ることか分かる。この結果から考慮されるようにパルス
の幅を増大させる補正法では加速性能を改善することが
できない。
FIG. 10 illustrates the behavior of the vehicle acceleration G in the above measurements. As a result, you can see a drop in the vehicle's front and rear acceleration immediately after acceleration, and then it picks up sharply, causing severe vibrations, which is clearly a problem. As considered from this result, acceleration performance cannot be improved by a correction method that increases the pulse width.

また前記パルスの幅を増大させる補正法に加えて、加速
性能を向上させるために加速検出時、直に全気筒同時に
追加噴射を行う非同期噴射による加速補正法を第7図に
示した。この図示したような加速条件においては、全気
筒同時に同量の追加燃料を噴射することから、パルスの
幅が増大した後の気筒(NO3,&4. &1気筒)で
は燃料が過、濃となり排気ガス性能つまり一酸化炭素濃
度が増すという問題があった。さらに非同期噴射方式で
は、割込みにより追加噴射が行オ)れるため1通常パル
スと追加パルスが重なってしまう、またその他仕事量が
増大することからソフト上負担増となり別機能を削除し
なければならなかった。従来の技術においては以上のよ
うな問題点があった。
In addition to the above-mentioned correction method of increasing the pulse width, FIG. 7 shows an acceleration correction method using asynchronous injection in which additional injection is performed simultaneously in all cylinders immediately upon detection of acceleration in order to improve acceleration performance. Under the acceleration conditions shown in the figure, since the same amount of additional fuel is injected at the same time in all cylinders, the cylinders after the pulse width has increased (NO3, &4, &1 cylinders) are overfilled with fuel, resulting in increased exhaust gas. There was a problem with the performance, namely the increase in carbon monoxide concentration. Furthermore, in the asynchronous injection method, additional injections are performed due to interruptions, so one normal pulse and the additional pulse overlap, and the amount of other work increases, which increases the burden on the software and requires the removal of other functions. Ta. The conventional technology has the above-mentioned problems.

本発明の目的は、パルス幅を増大させる方法のみの補正
法に見られる加速応答性の悪さ及び、全気筒同時噴射の
非同期噴射に見られる排気ガス性能の劣化という欠点を
同時に解決することにある。
An object of the present invention is to simultaneously solve the drawbacks of poor acceleration response seen in a correction method that only increases the pulse width and deterioration of exhaust gas performance seen in asynchronous injection of all cylinders simultaneously. .

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、内燃機関が加速状態であることを検出し、
その直前に通常燃料噴射が終了している気筒を判別し、
該気筒から順次側々の気筒に通常燃料噴射の終了次第、
個別に所定量の燃料量を。
The above purpose is to detect that the internal combustion engine is in an acceleration state,
The cylinder in which normal fuel injection ended immediately before that is determined,
As soon as normal fuel injection is completed from this cylinder to the side cylinders in sequence,
Individually predetermined amount of fuel.

所定回数追加噴射することによって達成される。This is achieved by additionally injecting a predetermined number of times.

〔作用〕[Effect]

本発明の加速補正法は、各気筒4に対応した燃料を追加
噴射でき、追加噴射の回数も加速の大きさと追加噴射量
に対応しており、しかも加速検出時に通常噴射の終了し
てしまっている気筒にも、追加噴射することができるの
で、加速時に最適な空燃比を得ることができる。
The acceleration correction method of the present invention can additionally inject fuel corresponding to each cylinder 4, and the number of additional injections corresponds to the magnitude of acceleration and the amount of additional injection, and furthermore, the normal injection has ended when acceleration is detected. Since additional injection can be performed even in the cylinder where the engine is currently in use, the optimum air-fuel ratio can be obtained during acceleration.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

本発明を実施したシステム図は第5図に示されている。A system diagram implementing the invention is shown in FIG.

この図をもって説明する。This will be explained using this figure.

空気はエアクリーナ1の入口部2より吸入し、ゝ電入空
気量を検出する熱線式空気流量計3.ダクト4.空気流
量を制御する絞弁を有するスロットルボディ5を通り、
コレクタ6に入る。ここで空気は内燃機関7にて連通ず
る各吸気管8に分配され、シリンダ内に吸収される。
Air is taken in from the inlet 2 of the air cleaner 1, and a hot wire air flowmeter 3 detects the amount of energized air. Duct 4. through a throttle body 5 having a throttle valve that controls the air flow;
Enter Collector 6. Here, air is distributed to each intake pipe 8 communicating with the internal combustion engine 7 and absorbed into the cylinder.

一方燃料は、燃料タンク9から燃料ポンプ10で吸引、
加圧され、燃料ダンパ11.燃料フィルタ12.噴射弁
1:3.燃圧レギュレータ14等より構成されている燃
料系に供給される。燃料は前記レギュレータ14により
一定に調圧され、吸気管8に設けた噴射弁13から前記
吸気管8内に噴射される。また前記空気流量計3からは
吸入空気量を検出する信号が出力され、この出力はコン
トロールユニット15に入力される様になっている。
On the other hand, fuel is sucked from the fuel tank 9 by the fuel pump 10.
Pressurized, fuel damper 11. Fuel filter 12. Injection valve 1:3. The fuel is supplied to a fuel system including a fuel pressure regulator 14 and the like. The pressure of the fuel is regulated to a constant level by the regulator 14, and the fuel is injected into the intake pipe 8 from an injection valve 13 provided in the intake pipe 8. Further, the air flow meter 3 outputs a signal for detecting the amount of intake air, and this output is input to the control unit 15.

クランクセンサ内蔵型ディストリビュータ−16により
噴射時期や点火時期の基準信号及び回転数を検出する信
号が出力され、前記コントロールユニット】5に入力さ
れるようになっている。前記コントロールユニット15
は、第6図に示したようにMPU、ROM、RAMおよ
びA/D変換器、入出力回路を含むI10ユニットで構
成され、前記空気流量計3の出力信号及びクランク角セ
ンサ内蔵型ディストリビュータ−16の出力信号等によ
り演算を行い、各気筒毎に配設された噴射弁13に所定
の噴射タインミングで各気筒毎に開弁することによって
燃料はシーケンシャルに各吸気管8に噴射されるように
なっている。
A reference signal for injection timing and ignition timing and a signal for detecting the rotation speed are outputted from the distributor 16 with a built-in crank sensor and are inputted to the control unit 5. The control unit 15
As shown in FIG. 6, the unit is composed of an I10 unit including an MPU, ROM, RAM, an A/D converter, and an input/output circuit, and is connected to the output signal of the air flow meter 3 and the distributor 16 with a built-in crank angle sensor. The fuel is sequentially injected into each intake pipe 8 by opening the injection valve 13 disposed in each cylinder at a predetermined injection timing. ing.

また18は、スロットルセンサで、この出力信号に基づ
いて加速か否かを判断する。
Reference numeral 18 denotes a throttle sensor, which determines whether or not acceleration is occurring based on this output signal.

17はイグニションコイルである。17 is an ignition coil.

以上の構成を用いた本発明の加速補正法について、本発
明の基本的な概念を捉えた第1図のブロック図と第2図
の本発明を6気筒の内燃機関に採用した場合の加速補正
法の図をもって説明する。
Regarding the acceleration correction method of the present invention using the above configuration, Fig. 1 is a block diagram that captures the basic concept of the present invention, and Fig. 2 is a block diagram of the acceleration correction method when the present invention is applied to a 6-cylinder internal combustion engine. Let me explain with a diagram of the law.

内燃機関が定常状態であるとき(第2図において、加速
が検出される前)は、空気流量検出手段3本実施例では
エアフローセンサと回転数検出手段161本実施例では
クランク角センサからの信号が基本燃料演算手段に入力
され、内燃機関の定常運転状態に応じた燃料噴射量を算
出し、その噴射量に応じた幅を持ったパルスを発生させ
る。そのパルスをパルス分配制御手段25によって各噴
射弁13に分配させる。
When the internal combustion engine is in a steady state (before acceleration is detected in FIG. 2), the air flow rate detection means 3 in this embodiment, the air flow sensor and the rotation speed detection means 161 in this embodiment, the signal from the crank angle sensor is detected. is input to the basic fuel calculating means, which calculates the fuel injection amount according to the steady operating state of the internal combustion engine, and generates a pulse having a width corresponding to the injection amount. The pulse is distributed to each injection valve 13 by the pulse distribution control means 25.

′ 次に内燃機関が加速状態に入った場合である。'The next case is when the internal combustion engine enters an acceleration state.

内燃機関が加速しているか否かを判断する方法は、本実
施例では、スロットルセンサ18の出力信号を演算し加
速か否かを判断する。加速状態が検出されると(第2図
において&5気筒の通常噴射が終了した直後)、その直
前に噴射を行なった気筒(第2図では、−5気筒)を気
筒判別手段22で判別する0次に追加噴射量決定手段2
3によって演算された追加燃料量が、次に通常噴射を行
う気筒(第2図において翫3気筒)の通常噴射タイミン
グでN115気筒に追加噴射(Tadd 1 )される
In this embodiment, the method for determining whether or not the internal combustion engine is accelerating is to calculate the output signal of the throttle sensor 18 to determine whether or not the internal combustion engine is accelerating. When an acceleration state is detected (immediately after normal injection in cylinder &5 in Fig. 2 ends), the cylinder discriminating means 22 discriminates the cylinder in which injection was performed immediately before (cylinder -5 in Fig. 2). Next, additional injection amount determining means 2
The additional fuel amount calculated in step 3 is additionally injected (Tadd 1 ) into the N115 cylinder at the normal injection timing of the next cylinder to perform normal injection (the 3rd cylinder in FIG. 2).

次の追加噴射は、Nn3気筒の次に通常噴射を行うNα
6気筒の通常噴射タイミングで、追加燃料量決定手段に
よって演算された追加燃料を、N113気筒に噴射され
る(Tadd 2 )。以後、追加噴射を行う気筒の次
に通常噴射する気筒の通常噴射タイミングで順次追加噴
射を行う。
The next additional injection is Nα, which performs normal injection after Nn3 cylinders.
At the normal injection timing for the 6th cylinder, the additional fuel calculated by the additional fuel amount determining means is injected into the N113 cylinder (Tadd 2 ). Thereafter, additional injections are sequentially performed at the normal injection timing of the cylinder in which normal injection is performed next to the cylinder in which additional injection is performed.

ここで、追加噴射の回数は、加速の大きさと、上である
Here, the number of additional injections is equal to the magnitude of acceleration.

第】】図、第12図は本発明のフローチャートを示した
もので、第11図に示したフローは10m5のタスクで
処理され、第12図に示したフロン −は6気筒の為120度のクラ々り角度で処理される。
12 shows a flowchart of the present invention. The flow shown in FIG. 11 is processed in a 10m5 task, and the freon shown in FIG. 12 is 120 degrees because it has 6 cylinders. Processed at a sharp angle.

第11図から説明する。This will be explained starting from FIG.

ステップ;200 このステップでは、スロットル開度θths′基本パル
ス幅Tpを読み込む。
Step; 200 In this step, the throttle opening degree θths' basic pulse width Tp is read.

ステップ:201 ステップ200で読み込まれたθthの単位時間当りの
変化量ΔOthの大きさを算出し、所定値ΔθthRf
!Fより大きい場合に加速と判断する。
Step: 201 Calculate the amount of change ΔOth per unit time of θth read in step 200, and set a predetermined value ΔθthRf.
! If it is larger than F, it is judged as acceleration.

尚、加速の判別には、空気流量ΔOaやパルス幅Δ’r
pを使用しても良い。
In addition, to determine acceleration, air flow rate ΔOa and pulse width Δ'r
p may also be used.

ステップ;202 このステップでは、加速検出直前に燃料が噴射された気
筒を判別する為に加速フラグをセットすステップ201
で算出された加算の大きさΔθthによって、第14図
に示した加速の大きさに対応した追加噴射回数のマツプ
がら、該加速の大きさに対応した追加噴射回数を検索し
、C/ U N Tにセットする会 ステップ;204 このステップでは、第1311!!lに示した加速検出
後の噴射回数に対応するマツプから、加速検出後の噴射
回数に対応した補正係数に、又は、第15図に示した加
速の大きさに対応した補正係数のマツプから、加速の大
きさに対応した補正係数XZの少なくともいずれか一方
を求める。
Step; 202 In this step, step 201 sets an acceleration flag to determine the cylinder in which fuel was injected immediately before acceleration detection.
Based on the addition magnitude Δθth calculated in , the number of additional injections corresponding to the magnitude of acceleration is searched from the map of the number of additional injections corresponding to the magnitude of acceleration shown in FIG. 14, and the number of additional injections corresponding to the magnitude of acceleration is searched. Meeting step to set to T; 204 In this step, the 1311th! ! From the map corresponding to the number of injections after acceleration detection shown in FIG. 1, to the correction coefficient corresponding to the number of injections after acceleration detection, or from the map of the correction coefficient corresponding to the magnitude of acceleration shown in FIG. At least one of the correction coefficients XZ corresponding to the magnitude of acceleration is determined.

尚、この他の補正係数として、加速開始前の運転状態や
エンジン温度に依存させたものがあり、これらを追加す
ることによりさらに加速時の空燃バー 軟制御精度を向上することができる。
Note that there are other correction coefficients that depend on the operating conditions and engine temperature before the start of acceleration, and by adding these, it is possible to further improve the accuracy of the air-fuel bar soft control during acceleration.

ステップ;205 ステップ200で読み込んだT、pとステップ204で
読み込んだ補正係数に、Kgの少なくともいずれか一方
を使用して追加噴射量Taddを求め。
Step; 205: Obtain additional injection amount Tadd using at least one of Kg and T and p read in step 200 and the correction coefficient read in step 204.

’r A Dにセットする。'r A D.

次に第12図について説明する。Next, FIG. 12 will be explained.

ステップ;100 このステップでは追加噴射を行うかどうかの判断及び後
何回追加噴射を行うかを処理する。
Step; 100 In this step, it is determined whether or not additional injection is to be performed and how many additional injections are to be performed.

ステップ;101 前回通常噴射を行った気筒にTaddをセラ1−する。Step; 101 Apply Tadd to the cylinder where normal injection was performed last time.

ステップ;102 Taddを1回噴射を終したらC0UNT値を1減少さ
せる。
Step: 102 After one injection of Tadd is completed, the C0UNT value is decreased by 1.

ステップ;103 今回1通常噴射する一パルスTi をセットする。Step; 103 Set one pulse Ti for one normal injection this time.

第3図、第4図に実車で加速性能テストを行った結果を
図示した。
Figures 3 and 4 show the results of an acceleration performance test performed on an actual vehicle.

第3図から、1図示平均有効圧力P1は、加速後スムー
ズに立上がっている。また第4図から車両前後加速度G
は、第10図におけるような加速直後のグラフの落ち込
みがなく、さらに加速度振幅も小さ°くなっている。
From FIG. 3, the indicated average effective pressure P1 rises smoothly after acceleration. Also, from Figure 4, the vehicle longitudinal acceleration G
In this case, there is no dip in the graph immediately after acceleration as in FIG. 10, and the acceleration amplitude is also small.

また本実施例によれば、加速後の通常の噴射タイミング
を用いて各気筒の燃料要求量に応じた燃料を追加噴射で
きるので、全気筒同時に噴射する非同期噴射にみられる
ユテ、ソフトウェアの負担を増すことなく加速時に最適
な空燃崇が得られる。
Furthermore, according to this embodiment, it is possible to additionally inject fuel according to the fuel requirement of each cylinder using the normal injection timing after acceleration, thereby reducing the burden on the UTE and software that occurs with asynchronous injection in which all cylinders are injected at the same time. Optimum air-fuel ratio can be obtained during acceleration without increasing the amount of fuel.

本実施例では、処理速度の都合上追加噴射のタイミング
を次に通常噴射を行う気筒の通常噴射タイミングと同期
させて追加噴射を行ったが、処理速度が早くなければ同
期させずに本発明を実施することが可能である。
In this example, due to the processing speed, the timing of the additional injection was synchronized with the normal injection timing of the next cylinder to perform normal injection, but if the processing speed was not fast enough, the present invention would not be synchronized. It is possible to implement it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、加速検出した時点ですでに通常噴射が
完了してしまった気、筒から順次追加噴射を行うことが
でき、さらに追加噴射の燃料量は。
According to the present invention, additional injection can be sequentially performed from cylinders where normal injection has already been completed at the time of acceleration detection, and the amount of fuel for additional injection can be controlled.

各気筒の必要量に対応しているので、パルスの幅を増大
させる補正法に見られるような、加速検出から実際にパ
ルスの幅が増大し始めるまでの気筒、つまり燃料供給が
加速量に対応した必要燃料量に比べて少ない気筒にも所
定量の燃料が供給され。
Since it corresponds to the required amount of each cylinder, the cylinder from acceleration detection until the pulse width actually starts to increase, that is, the fuel supply corresponds to the acceleration amount, as seen in the correction method that increases the pulse width. A predetermined amount of fuel is supplied to the cylinders that are smaller than the required amount of fuel.

また全気筒同時に追加噴射する非同期噴射方式に見られ
る、加速中に燃料が過濃となってしまう気筒でも、所定
量の燃料が供給される。以上のことより、パルスの幅を
増大させる補正法に見られる、加速性能の悪さという問
題点、及び全気筒同時に追加噴射を行う非同期噴射によ
る補正法に見られる、排気ガス性能が悪いという問題点
を改善する効果がある。
Furthermore, a predetermined amount of fuel is supplied even to cylinders where fuel becomes excessively rich during acceleration, which is the case with an asynchronous injection system in which additional injection is performed simultaneously in all cylinders. From the above, the problem of poor acceleration performance seen in the correction method that increases the pulse width, and the problem of poor exhaust gas performance seen in the correction method using asynchronous injection that performs additional injection in all cylinders simultaneously. It has the effect of improving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念を示すブロック図、第2図は本発
明の実施例を示す図、第3図、第4図は本発明によるテ
スト結果を示す図、第5図は本発明を採用した電子制御
燃料噴射装置のシステム図、第6図はその制御系を示す
図、第7図、第8図は従来技術を示す図、第9図、第1
0図は従来技術によるテスト結果を示す図、第11図、
第12図は本発明のフローチャートを示す図、第13図
。 第15図は補正係数を示す図、第14図は本発明による
追加噴射回数を示す図である。
FIG. 1 is a block diagram showing the concept of the present invention, FIG. 2 is a diagram showing an embodiment of the present invention, FIGS. 3 and 4 are diagrams showing test results according to the present invention, and FIG. 5 is a diagram showing the test results according to the present invention. A system diagram of the adopted electronically controlled fuel injection device, Fig. 6 is a diagram showing its control system, Figs. 7 and 8 are diagrams showing the conventional technology, Fig. 9, Fig. 1
Figure 0 is a diagram showing the test results according to the conventional technology, Figure 11,
FIG. 12 is a diagram showing a flowchart of the present invention, and FIG. 13 is a diagram showing a flowchart of the present invention. FIG. 15 is a diagram showing the correction coefficient, and FIG. 14 is a diagram showing the number of additional injections according to the present invention.

Claims (1)

【特許請求の範囲】 1、内燃機関の運転状態に応じて基本の燃料噴射量を決
定する基本燃料演算手段と、該基本燃料演算手段の出力
に基づいた開弁時間で各気筒に配設された噴射弁を所定
の噴射タイミングで燃料を順次噴射するようにした内燃
機関の電子制御燃料噴射装置において、前記内燃機関の
加速状態を検出する加速検出手段、加速検出の直前に燃
料噴射を行った気筒を判別する気筒判別手段、前記基本
燃料噴射量に対する追加燃料噴射量を求める追加燃料決
定手段及び追加噴射の回数を求める追加噴射回数決定手
段、前記気筒判別手段により判別された気筒から順次、
所定の噴射タイミングで、所定量、所定回数の追加噴射
を行うためのパルス分配制御手段を備えたことを特徴と
する内燃機関の電子制御燃料噴射装置。 2、前記追加噴射の噴射タイミングは、前記加速検出手
段により加速を検出した後に通常噴射を行う気筒の通常
噴射タイミングを順次用いることを特徴とする特許請求
の範囲第1項記載の電子制御燃料噴射装置。 3、前記追加燃料の噴射量は、前記内燃機関の加速量が
大きい程多いことを特徴とする特許請求の範囲第1項記
載の電子制御燃料噴射装置。 4、前記追加噴射の回数は、前記内燃機関の加速量が大
きい程多いことを特徴とする特許請求の範囲第1項記載
の電子制御燃料噴射装置。 5、前記追加燃料噴射量と、前記追加噴射回数は相互に
依存することを特徴とする特許請求の範囲第1項記載の
電子制御燃料噴射装置。
[Scope of Claims] 1. Basic fuel calculation means for determining the basic fuel injection amount according to the operating state of the internal combustion engine, and a valve opening time based on the output of the basic fuel calculation means, which is arranged in each cylinder. In an electronically controlled fuel injection device for an internal combustion engine, the fuel injection device is configured to sequentially inject fuel at a predetermined injection timing using a fuel injection valve, an acceleration detection means for detecting an acceleration state of the internal combustion engine, and an acceleration detection means for injecting fuel immediately before acceleration detection. a cylinder discriminating means for discriminating a cylinder, an additional fuel determining means for determining an additional fuel injection amount with respect to the basic fuel injection amount, an additional injection number determining means for determining the number of additional injections, sequentially from the cylinder determined by the cylinder discriminating means,
An electronically controlled fuel injection device for an internal combustion engine, comprising a pulse distribution control means for performing additional injection of a predetermined amount and a predetermined number of times at a predetermined injection timing. 2. The electronically controlled fuel injection according to claim 1, wherein the injection timing of the additional injection is sequentially the normal injection timing of the cylinders in which normal injection is performed after the acceleration detection means detects the acceleration. Device. 3. The electronically controlled fuel injection device according to claim 1, wherein the injection amount of the additional fuel increases as the acceleration amount of the internal combustion engine increases. 4. The electronically controlled fuel injection device according to claim 1, wherein the number of additional injections increases as the amount of acceleration of the internal combustion engine increases. 5. The electronically controlled fuel injection device according to claim 1, wherein the additional fuel injection amount and the number of additional injections are mutually dependent.
JP165887A 1987-01-09 1987-01-09 Electronically controlled fuel injection device Granted JPS63170535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP165887A JPS63170535A (en) 1987-01-09 1987-01-09 Electronically controlled fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP165887A JPS63170535A (en) 1987-01-09 1987-01-09 Electronically controlled fuel injection device

Publications (2)

Publication Number Publication Date
JPS63170535A true JPS63170535A (en) 1988-07-14
JPH0551779B2 JPH0551779B2 (en) 1993-08-03

Family

ID=11507617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP165887A Granted JPS63170535A (en) 1987-01-09 1987-01-09 Electronically controlled fuel injection device

Country Status (1)

Country Link
JP (1) JPS63170535A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203840A (en) * 1983-05-04 1984-11-19 Toyota Motor Corp Fuel injection controlling method for internal- combustion engine
JPS6098144A (en) * 1983-11-02 1985-06-01 Hitachi Ltd Electronic fuel injector for multi-cylinder internal- combustion engine
JPS6111437A (en) * 1984-06-27 1986-01-18 Toyota Motor Corp Fuel injection controlling method of internal-combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203840A (en) * 1983-05-04 1984-11-19 Toyota Motor Corp Fuel injection controlling method for internal- combustion engine
JPS6098144A (en) * 1983-11-02 1985-06-01 Hitachi Ltd Electronic fuel injector for multi-cylinder internal- combustion engine
JPS6111437A (en) * 1984-06-27 1986-01-18 Toyota Motor Corp Fuel injection controlling method of internal-combustion engine

Also Published As

Publication number Publication date
JPH0551779B2 (en) 1993-08-03

Similar Documents

Publication Publication Date Title
EP0478120A2 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
US4440119A (en) Electronic fuel injecting method and device for internal combustion engine
JP2776971B2 (en) Control device for internal combustion engine
JPH0315648A (en) Ignition timing control device for internal combustion engine
JP3976322B2 (en) Engine control device
KR100406897B1 (en) Controller for multicylinder engine
US4580221A (en) Method and device for internal combustion engine condition sensing and fuel injection control
JPS63170535A (en) Electronically controlled fuel injection device
JPH0510168A (en) Multicylinder type fuel injection two-cycle internal combustion engine
JPH0512538B2 (en)
JPH057546B2 (en)
JP2855383B2 (en) Interrupt injection control device for electronically controlled fuel injection type internal combustion engine
JP2755671B2 (en) Fuel injection control method and device
JPS63223344A (en) Electronically controlled fuel injection device
JPS60261947A (en) Accelerative correction of fuel injector
JPH0374548A (en) Air flow measuring device
JP3201646B2 (en) Air-fuel ratio control device
JPH0776538B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS63140867A (en) Engine controller
JP2846023B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0734193Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2567017B2 (en) Measuring method of intake pipe pressure of internal combustion engine
JPH073205B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS6035153A (en) Control method of fuel injection in internal-conbustion engine
JPS6098144A (en) Electronic fuel injector for multi-cylinder internal- combustion engine