JPS63169374A - Production of thin metal film - Google Patents

Production of thin metal film

Info

Publication number
JPS63169374A
JPS63169374A JP31104586A JP31104586A JPS63169374A JP S63169374 A JPS63169374 A JP S63169374A JP 31104586 A JP31104586 A JP 31104586A JP 31104586 A JP31104586 A JP 31104586A JP S63169374 A JPS63169374 A JP S63169374A
Authority
JP
Japan
Prior art keywords
cylindrical
substrate
voltage
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31104586A
Other languages
Japanese (ja)
Inventor
Kiyokazu Toma
清和 東間
Ryuji Sugita
龍二 杉田
Kazuyoshi Honda
和義 本田
Taro Nanbu
太郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31104586A priority Critical patent/JPS63169374A/en
Publication of JPS63169374A publication Critical patent/JPS63169374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To continuously form the title thin metal film having excellent characteristics on a substrate by impressing a voltage between a can, the thin metal film, and the ground at the time of vacuum-depositing the thin metal film on the substrate made of a polymeric material and traveling along the circumferential surface of the cylindrical can. CONSTITUTION:The filmy long-sized substrate 2 consisting of a polymeric material is traveled along the circumferential surface of the cylindrical can 4 in the direction as shown by the arrow from a feed roll 1 through a free roller 3. The vapor of a Co-Cr alloy from a vaporization source 5 is ionized by the electrode 10 impressed by a DC voltage or a high-frequency voltage, and deposited on the substrate 2 traveling on the surface of the can 4. In this case, a voltage is impressed between a free roller 6 and the can 4 by a DC power source 8, and a negative voltage against the ground is respectively impressed by a DC power source 9 on the can 4 and the vapor-deposited thin metal film being in contact with the roller 6. The sum of both voltages is used for accelerating the Co-Cr charged particles from the vaporization source 5, and a high- quality thin Co-Cr alloy film is formed on the substrate 2 at a high rate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高分子材料より成る基板上に金属薄膜を連続
的に形成する金属薄膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a metal thin film, which involves continuously forming a metal thin film on a substrate made of a polymeric material.

従来の技術 高分子材料より成る基板上に金属薄膜を連続的に形成す
る方法としては、メッキ法、スパッタ法、真空蒸着法等
がある。特に、基板を円筒状キャンの周面に沿わせて走
行さぜつつ金属薄膜を形成する連続真空蒸着法は量産性
の点で優れている。真空蒸着法が量産性の点で優れてい
るのは、その高蒸発速度によっている。真空蒸着法によ
れば100OA/秒以上の膜堆積速度が容易に得られる
2. Description of the Related Art Methods for continuously forming a thin metal film on a substrate made of a polymeric material include plating, sputtering, vacuum evaporation, and the like. In particular, a continuous vacuum deposition method in which a thin metal film is formed by moving a substrate along the circumferential surface of a cylindrical can is excellent in terms of mass production. The advantage of vacuum evaporation in terms of mass productivity is its high evaporation rate. According to the vacuum evaporation method, a film deposition rate of 100 OA/sec or more can be easily obtained.

このような高堆積速度で膜厚が数100Å以上の金属薄
膜を形成する場合には、蒸発源からのふく射熱や蒸発原
子の凝縮熱等の原因により、基板の熱変形や熱分解を生
じ、いわゆる熱負けを生じて、安定した金属薄膜を形成
する事ができない。
When forming a thin metal film with a thickness of several hundred angstroms or more at such a high deposition rate, thermal deformation and thermal decomposition of the substrate occur due to radiant heat from the evaporation source, condensation heat of evaporated atoms, etc. Heat loss occurs and a stable metal thin film cannot be formed.

従って数10OA以上の金属薄膜を形成する場合には、
これらの熱的ダメージを避けるために、基板を円筒状キ
ャンの周面に強くはりつけて、基板の受けた熱を効率的
に円筒状キャン本体に逃がすことが行われている。基板
をはりつけるひとつの方法として、基板上に形成した金
属薄膜と円筒状キャンとの間に電位差を付与し、その間
に働く静電引力を利用する方法がある。この方法によれ
ば、高分子基板上に金属薄膜を単層あるいは多層に形成
する事が容易である。
Therefore, when forming a metal thin film of several tens of OA or more,
In order to avoid such thermal damage, the substrate is firmly attached to the circumferential surface of the cylindrical can to efficiently release the heat received by the substrate to the cylindrical can body. One method for attaching a substrate is to apply a potential difference between a metal thin film formed on the substrate and a cylindrical can, and to utilize the electrostatic attraction that acts between them. According to this method, it is easy to form a single layer or multilayer metal thin film on a polymer substrate.

一方、真空蒸着法において形成される薄膜の種々の特性
を向上させる一つの方法として、イオンブレーティング
法がある。イオンブレーティング法は、蒸発原子の内で
自然的あるいは積極的にイオン化したものを電界によっ
て加速し高エネルギー化して基板に衝突させ薄膜を形成
するものである。一般的には、基板と薄膜との付着強度
の向上、薄膜のちみつ化、結晶性の向上環の効果がある
と言われている。
On the other hand, ion blating is one method for improving various properties of thin films formed by vacuum evaporation. The ion blating method is a method in which vaporized atoms that are naturally or actively ionized are accelerated by an electric field to increase their energy and collide with a substrate to form a thin film. Generally, it is said to have the effect of improving the adhesion strength between the substrate and the thin film, turning the thin film into honey, and improving crystallinity.

発明が解決しようとする問題点 イオンブレーティング法等では荷電粒子(イオンあるい
は電子)を加速するための電極が必要である。そこで発
明者らは、基板を円筒状キャンにはりつけるために印加
している電圧を荷電粒子の加速に用いる事を考えた。即
ち、金属薄膜を加速電極として負の電圧を印加し、荷電
粒子加速と基板はりつけというふたつの働きを同時にさ
せる事である。しかし、荷電粒子を加速するためには比
較的高電圧が必要である一方、基板をはりつけるための
電圧は基板の絶縁耐力の問題から比較的低電圧であるた
め、それぞれの効果を同時に得る事は困難であった。
Problems to be Solved by the Invention Ion blating methods require electrodes for accelerating charged particles (ions or electrons). Therefore, the inventors considered using the voltage applied to attach the substrate to the cylindrical can to accelerate the charged particles. That is, by applying a negative voltage to a metal thin film as an accelerating electrode, the two functions of accelerating charged particles and bonding the substrate can be performed simultaneously. However, while a relatively high voltage is required to accelerate charged particles, the voltage required to bond the substrate is relatively low due to the dielectric strength of the substrate, so it is difficult to obtain both effects at the same time. It was difficult.

問題点を解決するための手段 円筒状キャンの周面に沿って走行しつつある高分子材料
から成る基板上に、真空蒸着法によって金属薄膜を形成
する際、前記円筒状キャンと大地との間、前記円筒状キ
ャンと前記金属薄膜との間、および前記金属薄膜と大地
との間に各々電位差を付与する。
Means for Solving the Problems When a thin metal film is formed by vacuum evaporation on a substrate made of a polymeric material running along the circumferential surface of a cylindrical can, there is a gap between the cylindrical can and the ground. , a potential difference is applied between the cylindrical can and the metal thin film, and between the metal thin film and the ground.

作用 本発明によれば、円筒状キャンと金属薄膜との間に付与
した電位差により基板と円筒状キャンとのはりつきを一
定に確保するとともに、円筒状キセノと大地との間に付
与した電位差によりイオンブレーティング法等を行う際
の荷電粒子加速電圧を得る事が可能になる。
According to the present invention, the potential difference applied between the cylindrical can and the metal thin film ensures constant adhesion between the substrate and the cylindrical can, and the potential difference applied between the cylindrical xeno and the earth causes ions to be It becomes possible to obtain a charged particle acceleration voltage when performing a brating method or the like.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

第1図は、本発明の一実施例における金属薄膜の製造方
法に用いる真空蒸着装置の内部構造の概略構成図である
。高分子材料より成る基板2は、供給ロール1より巻き
出され、フリーローラー3を経て、円筒状キャン4の周
面に沿って矢印の向きに走行する。この基板2上に蒸発
源5によって金属薄膜が形成される。基板2上に形成さ
れた金属薄膜は、ツリーローラー6を経て巻き取りロー
ル7に巻き取られる。フリーローラー6と円筒状キャン
4との間に電源8により電圧が印加されているとともに
円筒状キャン4と大地の間に電源9により電圧が印加さ
れている。フリーローラー6を介して基板2上の金属薄
膜と円筒状キャン4との間に電位差を付与し、基板2の
金属薄膜の形成されている部分を円筒状キャン4の周面
にはりつかせる。第1図のような構成によれば基板2上
の金属薄膜と大地との間には電源8の発生する電圧と電
源9の発生する電圧の和の電圧が印加された事になる。
FIG. 1 is a schematic diagram of the internal structure of a vacuum evaporation apparatus used in a method for manufacturing a metal thin film in an embodiment of the present invention. A substrate 2 made of a polymer material is unwound from a supply roll 1, passes through a free roller 3, and runs along the circumferential surface of a cylindrical can 4 in the direction of the arrow. A metal thin film is formed on this substrate 2 by the evaporation source 5 . The metal thin film formed on the substrate 2 passes through a tree roller 6 and is wound onto a winding roll 7. A voltage is applied between the free roller 6 and the cylindrical can 4 by a power source 8, and a voltage is applied by a power source 9 between the cylindrical can 4 and the ground. A potential difference is applied between the metal thin film on the substrate 2 and the cylindrical can 4 via the free roller 6, and the portion of the substrate 2 on which the metal thin film is formed sticks to the circumferential surface of the cylindrical can 4. According to the configuration shown in FIG. 1, a voltage equal to the sum of the voltage generated by the power source 8 and the voltage generated by the power source 9 is applied between the metal thin film on the substrate 2 and the ground.

これが荷電粒子の加速電圧となる。蒸発源から蒸発した
原子の内でイオン化しているものは一般的には少ない。
This becomes the acceleration voltage for charged particles. Generally, few of the atoms evaporated from the evaporation source are ionized.

しかし蒸発源を加熱する方式が電子ビーム加熱方式の場
合は多少多くなる。このような状態でもイオンブレーテ
ィング法等の効果はあるが、さらに効果を高めるために
、第2図のように、蒸発源5と円筒状キャン4との間に
電極10を設け、直流あるいは高周波電圧を印加し、原
子のイオン化を行うことは有効である。直流と高周波と
では高周波の方が高真空中でもイオン化させやすい。蒸
発中にガスを導入すれば、イオン化はさらに容易となり
イオンブレーティング法等の効果を高めることが可能で
ある。
However, if the method of heating the evaporation source is an electron beam heating method, the number will increase somewhat. Even in such a state, the ion brating method is effective, but in order to further enhance the effect, an electrode 10 is provided between the evaporation source 5 and the cylindrical can 4 as shown in FIG. It is effective to apply a voltage to ionize atoms. Between direct current and high frequency, high frequency is easier to ionize even in high vacuum. If a gas is introduced during evaporation, ionization becomes easier and the effects of ion blating methods and the like can be enhanced.

ここで、電源8及び9の極性は加速したい荷電粒子の極
性に応じて選ぶことができる。即ち、電子を加速する場
合には円筒状キャン4あるいは金属薄膜の電位を大地に
対して正となるようにし、イオンを加速する場合には逆
に負とするわけである。この際、基板を円筒状キャン4
にはりつけるための金属薄膜の円筒状キャン4に対する
電位は正負どちらでもよいが、電子を加速する場合には
正、イオンを加速する場合には負の方が望ましい。
Here, the polarities of the power sources 8 and 9 can be selected depending on the polarity of the charged particles to be accelerated. That is, when accelerating electrons, the potential of the cylindrical can 4 or the metal thin film is made positive with respect to the ground, and when accelerating ions, it is made negative. At this time, attach the board to the cylindrical can 4
The potential of the metal thin film to be attached to the cylindrical can 4 may be either positive or negative, but it is desirable that it be positive when accelerating electrons, and negative when accelerating ions.

次に具体的な実施例について説明する。Next, specific examples will be described.

実施例1 第1図に示されるような真空蒸着装置にて、膜厚が10
μmのポリイミドフィルム上に膜厚3000AのCo−
Cr垂直磁気異方性膜を形成した。円筒状キャン4は昇
温可能なものであり、蒸発源5は電子ビーム加熱方式で
ある。蒸着中の真空度は5X10−6Torr、円筒状
キャン4の温度は250℃、Co−Cr膜の堆積速度は
4000A/秒である。電源8により円筒状キャン4と
Co−Cr膜との間に円筒状キャンが高電位になるよう
に直流200Vを印加した。電源9により円筒状キャン
4と大地との間に大地が高電位になるように直流500
Vを印加した。比較のために円筒状キャン4と大地とを
同電位になるよう短絡させた場合についても行った。何
れの場合も、熱負けや基板の絶縁破壊な(安定にCo−
Crpが形成できた。
Example 1 A film with a thickness of 10
3000A thick Co-
A Cr perpendicular magnetic anisotropy film was formed. The cylindrical can 4 can be heated, and the evaporation source 5 uses an electron beam heating method. The degree of vacuum during vapor deposition was 5×10 −6 Torr, the temperature of the cylindrical can 4 was 250° C., and the deposition rate of the Co—Cr film was 4000 A/sec. A DC voltage of 200 V was applied between the cylindrical can 4 and the Co--Cr film using a power source 8 so that the cylindrical can had a high potential. The power source 9 supplies 500 d.c. current between the cylindrical can 4 and the ground so that the ground has a high potential.
V was applied. For comparison, a case was also conducted in which the cylindrical can 4 and the ground were short-circuited so that they had the same potential. In either case, heat loss or dielectric breakdown of the board (stable Co-
Crp was formed.

実施例2 第2図に示されるような真空蒸着装置にて、膜厚が10
μmのポリイミドフィルム上に膜厚3000AのCo−
Cr垂直磁気異方性膜を形成した。円筒状キャン4は昇
温可能なものであり、蒸発源5は電子ビーム加熱方式で
ある。蒸着中の真空度は5X10−6Torr、円筒状
キャン4の温度は250℃、Co−Cr膜の堆積速度は
4000A/秒である。電源8により円筒状キャン4と
C0−Cr Ilgとの間に円筒状キャンが高電位にな
るように直流200〜′を印加した。電源9により円筒
状キャン4と大地との間に大地が高電位になるように直
流500vを印加した。放電電極10に周波数13.5
6MHzの高周波電圧を印加した。
Example 2 A film with a thickness of 10
3000A thick Co-
A Cr perpendicular magnetic anisotropy film was formed. The cylindrical can 4 can be heated, and the evaporation source 5 uses an electron beam heating method. The degree of vacuum during vapor deposition was 5×10 −6 Torr, the temperature of the cylindrical can 4 was 250° C., and the deposition rate of the Co—Cr film was 4000 A/sec. A direct current of 200~' was applied between the cylindrical can 4 and the C0-Cr Ilg by the power source 8 so that the cylindrical can had a high potential. A DC voltage of 500 V was applied between the cylindrical can 4 and the ground using a power source 9 so that the ground had a high potential. Frequency 13.5 to discharge electrode 10
A high frequency voltage of 6 MHz was applied.

蒸着中の真空度は5X10−6Torrである。比較の
ために、真空槽内にArガスを導入し真空度を5×10
→Torrとした場合についても行った。何れの場合も
放電光が観察されたがArガスを導入した場合が明るか
った。熱負けや基板の絶縁破壊なく安定にCo−Cr膜
が形成できた。
The degree of vacuum during deposition is 5×10 −6 Torr. For comparison, Ar gas was introduced into the vacuum chamber and the degree of vacuum was set to 5×10.
→We also conducted the case where Torr was set. Although discharge light was observed in both cases, it was brighter when Ar gas was introduced. A Co--Cr film could be stably formed without heat loss or dielectric breakdown of the substrate.

実施例3 第1図に示されるような真空蒸着装置にて、膜厚が10
μmのポリイミドフィルム上に膜厚200AのTi下地
層を介して実施例1と同様に膜厚3000AのCo−C
r垂直磁気異方性膜を形成した。金属下地層が無い場合
と同様に安定にC。
Example 3 A film with a thickness of 10
Co-C with a thickness of 3000A was applied on a polyimide film of 3000A in the same manner as in Example 1 through a Ti underlayer with a thickness of 200A.
A perpendicular magnetic anisotropy film was formed. C stably as in the case without metal underlayer.

−Cr膜が形成できた。-A Cr film was formed.

以上3種の具体実施例により形成したCo−Cr膜につ
いて特性を比較した。Co−Cr膜は高密度記録を可能
とする垂直磁気記録媒体として注目されているものであ
り、膜面に対して垂直方向に磁化容易軸を有するもので
ある。Co −Cr aはちょう密六方構造を有する結
晶でありそのC軸が磁化容易軸となっている。Co −
Cr lI’Jを評価するひとつの方法として、C軸が
膜面に対して垂直方向にどれだけ配向しているかを調べ
ることがなされている。一般に、配向性はX線回折によ
り(002)面についてのロッキング曲線を得てその半
値幅(Δθ50)によって評価されている。即ち、八〇
50が大ならば配向性は悪(、小ならば良いとされてい
る。各Co−Cr膜のΔ050の測定結果を第1表に示
した。
The characteristics of the Co--Cr films formed according to the above three specific examples were compared. A Co--Cr film is attracting attention as a perpendicular magnetic recording medium that enables high-density recording, and has an axis of easy magnetization perpendicular to the film surface. Co-Cra is a crystal having a close-packed hexagonal structure, and its C axis is the axis of easy magnetization. Co-
One method of evaluating Cr lI'J is to examine how much the C axis is oriented in the direction perpendicular to the film surface. In general, orientation is evaluated by obtaining a rocking curve for the (002) plane by X-ray diffraction and determining its half-width (Δθ50). That is, it is said that if 8050 is large, the orientation is bad (and if it is small, it is good. Table 1 shows the measurement results of Δ050 of each Co--Cr film.

(以下余白) 第1表 第1表より、Co−Cr膜の大地に対する電位差が負で
大きい程、イオンが多い程配向性が高いことがわかる。
(The following is a margin) Table 1 From Table 1, it can be seen that the larger the negative potential difference of the Co--Cr film with respect to the ground, and the larger the number of ions, the higher the orientation.

また、Ti下地層のような金属薄膜上にCo−Cr膜を
形成する際も同様であることがわかる。実施例3の方が
実施例1より配向性が高いのはTi下地層の働きによる
ものである。
Furthermore, it can be seen that the same holds true when a Co--Cr film is formed on a metal thin film such as a Ti underlayer. The fact that the orientation of Example 3 is higher than that of Example 1 is due to the action of the Ti underlayer.

一般に、基板に入射する粒子のエネルギーが高いき結晶
性に優れた膜が得られることが知られているが、以上の
ようにイオン加速により配向性が向上する結果はこれと
一致している。配向性以外では、高加速電圧のもの程、
傷が入りに(い事も確認できた。
It is generally known that a film with excellent crystallinity can be obtained when the energy of particles incident on a substrate is high, and the above result of improved orientation due to ion acceleration is consistent with this. Other than orientation, the higher the acceleration voltage, the more
I could also confirm that there were some scratches.

実施例4 第3図に示されるような真空蒸着装置にて、膜厚が10
μmのポリイミドフィルム上に膜厚3000AのCo−
Cr垂直磁気異方性膜を形成した。円筒状キャン4は昇
温可能なものであり、蒸発源5は電子ビーム加熱方式で
ある。蒸着中の真空度は5X10−6Torr、円筒状
キャン4の温度は250℃、Co−Cr膜の堆積速度は
4000A/秒である。電源8により円筒状キャン4と
Co−Cr膜との間にCo−Cr膜が高電位になるよう
に直流200vを印加し、電源9により円筒状キャン4
と大地との間に円筒状キャン4が高電位になるように直
流100vを印加した。その結果、基板の熱負けや絶縁
破壊なく安定にCo−Cr膜が形成できた。形成したC
o−Cr膜は具体実施例1のものより高い抗磁力を示し
た。一般に、基板温度が高い程高い抗磁力が得られるこ
とから、本実施例では電子衝撃により基板温度が実効的
に上昇したと考えられる。
Example 4 Using a vacuum evaporation apparatus as shown in FIG.
3000A thick Co-
A Cr perpendicular magnetic anisotropy film was formed. The cylindrical can 4 can be heated, and the evaporation source 5 uses an electron beam heating method. The degree of vacuum during vapor deposition was 5×10 −6 Torr, the temperature of the cylindrical can 4 was 250° C., and the deposition rate of the Co—Cr film was 4000 A/sec. A power supply 8 applies 200 V of DC between the cylindrical can 4 and the Co-Cr film so that the Co-Cr film has a high potential, and a power supply 9 applies a DC voltage of 200 V between the cylindrical can 4 and the Co-Cr film.
A DC voltage of 100 V was applied between the cylindrical can 4 and the ground so that the cylindrical can 4 had a high potential. As a result, a Co--Cr film could be stably formed without heat loss or dielectric breakdown of the substrate. Formed C
The o-Cr film exhibited higher coercive force than that of Example 1. Generally, the higher the substrate temperature is, the higher the coercive force can be obtained, so it is considered that in this example, the substrate temperature was effectively increased by the electron bombardment.

以上の4種の実施例ではCo−Cr膜の製造についての
ものになっているが、°基板材料、蒸発材料、蒸着中の
基板温度、蒸着中の真空度、導入ガスの種類、イオン化
促進の方法、印加電圧及び電圧印加方法等については特
に限定されるものではない。ただし、基板材料が導電性
である場合は、円筒状キャンの周面に絶縁層を設けるこ
とが必要である。
The above four examples relate to the production of Co-Cr films; The method, applied voltage, voltage application method, etc. are not particularly limited. However, if the substrate material is conductive, it is necessary to provide an insulating layer on the circumferential surface of the cylindrical can.

発明の効果 以上述べたごと(本発明によれば、基板と円筒状キャン
とのはりつき状態を一定に確保しながら、同時にイオン
ブレーティング法等の効果を得ることが可能であり、特
性の優れた金属薄膜を長尺にわたって安定に製造するこ
とができる。
Effects of the Invention As stated above (according to the present invention, it is possible to maintain a constant state of adhesion between the substrate and the cylindrical can, and at the same time obtain the effects of the ion blating method, etc.). A long metal thin film can be stably produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における金属薄膜の製造方法
に用いる真空蒸着装置の内部構造の概略構成図、第2図
は本発明の他の実施例における金属薄膜の製造方法に用
いる真空蒸着装置の内部構造の概略構成図、第3図は本
発明の更に他の実施例における金属薄膜の製造方法に用
いる真空蒸着装置の内部構造の概略構成図である。 1・・・・供給ロール、2・・・・基板、3・・・・フ
リーローラー、4・・・・円筒状キャン、5・・・・蒸
発源、6・・・・フリーローラー、7・・・・巻き取り
ロール、8.9・・・・電源、10・・・・電極。 代理人の氏名 弁理士 中尾敏男 ほか]名第1図 第 2 図
FIG. 1 is a schematic diagram of the internal structure of a vacuum evaporation apparatus used in a method for producing a metal thin film in one embodiment of the present invention, and FIG. 2 is a vacuum evaporation device used in a method for producing a metal thin film in another embodiment of the present invention. Schematic diagram of the internal structure of the apparatus. FIG. 3 is a schematic diagram of the internal structure of a vacuum evaporation apparatus used in a method for manufacturing a metal thin film in yet another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Supply roll, 2... Substrate, 3... Free roller, 4... Cylindrical can, 5... Evaporation source, 6... Free roller, 7... ... Winding roll, 8.9 ... Power supply, 10 ... Electrode. Name of agent: Patent attorney Toshio Nakao et al. Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)円筒状キャンの周面に沿って走行しつつある高分
子材料から成る基板上に、真空蒸着法によって金属薄膜
を形成する際、前記円筒状キャンと大地との間、前記円
筒状キャンと前記金属薄膜との間、および前記金属薄膜
と大地との間に各々電位差を付与する事を特徴とする金
属薄膜の製造方法。
(1) When a thin metal film is formed by vacuum evaporation on a substrate made of a polymeric material that is running along the circumferential surface of a cylindrical can, the space between the cylindrical can and the ground, and the metal thin film, and between the metal thin film and the ground, respectively.
(2)円筒状キャンと大地との間に電位差を付与する際
、前記円筒状キャンの電位が大地に対して負である事を
特徴とする特許請求の範囲第1項記載の金属薄膜の製造
方法。
(2) Manufacturing the metal thin film according to claim 1, characterized in that when applying a potential difference between the cylindrical can and the ground, the potential of the cylindrical can is negative with respect to the ground. Method.
(3)円筒状キャンと前記金属薄膜との間に電位差を付
与する際、前記金属薄膜の電位が前記円筒状キャンに対
して負である事を特徴とする特許請求の範囲第1項又は
第2項記載の金属薄膜の製造方法。
(3) When applying a potential difference between the cylindrical can and the metal thin film, the potential of the metal thin film is negative with respect to the cylindrical can. 2. The method for producing a metal thin film according to item 2.
(4)円筒状キャンと蒸発源との間に存在する蒸発粒子
の一部を、高周波あるいは直流電圧によってイオン化す
る事を特徴とする特許請求の範囲第1項記載の金属薄膜
の製造方法。
(4) The method for manufacturing a metal thin film according to claim 1, wherein a part of the evaporated particles existing between the cylindrical can and the evaporation source is ionized by high frequency or DC voltage.
JP31104586A 1986-12-29 1986-12-29 Production of thin metal film Pending JPS63169374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31104586A JPS63169374A (en) 1986-12-29 1986-12-29 Production of thin metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31104586A JPS63169374A (en) 1986-12-29 1986-12-29 Production of thin metal film

Publications (1)

Publication Number Publication Date
JPS63169374A true JPS63169374A (en) 1988-07-13

Family

ID=18012447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31104586A Pending JPS63169374A (en) 1986-12-29 1986-12-29 Production of thin metal film

Country Status (1)

Country Link
JP (1) JPS63169374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036104A (en) * 2011-08-10 2013-02-21 Toray Advanced Film Co Ltd Method and apparatus for forming thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036104A (en) * 2011-08-10 2013-02-21 Toray Advanced Film Co Ltd Method and apparatus for forming thin film

Similar Documents

Publication Publication Date Title
US4354909A (en) Process for production of magnetic recording medium
US5087476A (en) Method of producing thin film
EP0035870B1 (en) Method of producing a magnetic recording medium
EP0035894B1 (en) Process for producing a magnetic recording medium
JP2001351795A (en) Method and device for eliminating static electricity from long film depositing base substance
JPS63169374A (en) Production of thin metal film
JPH0318253B2 (en)
JPS62219235A (en) Production of magnetic recording medium
JP2679260B2 (en) Thin film manufacturing method
JPS6249974B2 (en)
JPS5812134A (en) Production of magnetic recording medium
JPS59172163A (en) Production of vertical magnetic recording medium
JPS61227231A (en) Production of magnetic recording body
JPH02239428A (en) Production of metal thin film
JPS59129944A (en) Method and device for manufacturing magnetic recording medium
JPS6151336B2 (en)
JP2830478B2 (en) Vacuum deposition equipment
JPH0121540B2 (en)
JPS62266731A (en) Manufacturing device for perpendicular magnetic recording medium
JPH03209611A (en) Method and apparatus for producing thin-film magnetic head
JPH08194944A (en) Method and system for producing magnetic recording medium
JPS6037526B2 (en) Method for manufacturing magnetic recording media
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPH0320815B2 (en)
JPH0450651B2 (en)