JP2013036104A - Method and apparatus for forming thin film - Google Patents

Method and apparatus for forming thin film Download PDF

Info

Publication number
JP2013036104A
JP2013036104A JP2011174493A JP2011174493A JP2013036104A JP 2013036104 A JP2013036104 A JP 2013036104A JP 2011174493 A JP2011174493 A JP 2011174493A JP 2011174493 A JP2011174493 A JP 2011174493A JP 2013036104 A JP2013036104 A JP 2013036104A
Authority
JP
Japan
Prior art keywords
film
roller
cooling
refrigerant
cooling roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011174493A
Other languages
Japanese (ja)
Inventor
Yukinori Ueda
征典 植田
Norio Tanaka
範夫 田中
Yuji Tsutsumida
裕二 堤田
Takushi Uchida
卓志 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Film Co Ltd
Original Assignee
Toray Advanced Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Advanced Film Co Ltd filed Critical Toray Advanced Film Co Ltd
Priority to JP2011174493A priority Critical patent/JP2013036104A/en
Publication of JP2013036104A publication Critical patent/JP2013036104A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a thin film, in which a direct-current voltage is stably applied to a cooling roller to sufficiently cool the film to thereby prevent the thermal deformation of the film, in a film forming method of continuously feeding an insulating film in a reduced pressure atmosphere and vapor-depositing the thin film on the insulating film.SOLUTION: In the method for forming a thin film, a liquid having a volume resistivity of 1 MΩ-m or more and a kinetic viscosity in the range of +25 to -30°C of 200 mm/s or less is used as a coolant introduced into the cooling roller, thereby stably applying the voltage to the cooling roller and bringing the film into intimate contact with the cooling roller by electrostatic attraction to form the thin film.

Description

本発明は、減圧雰囲気内で絶縁性のフィルムを連続的に繰り出し、フィルムを冷却用ローラに密着させ冷却しながら前記フィルムに薄膜を蒸着する薄膜形成方法および薄膜形成装置に関する。   The present invention relates to a thin film forming method and a thin film forming apparatus for continuously feeding an insulating film in a reduced-pressure atmosphere, depositing a thin film on the film while closely contacting the film with a cooling roller and cooling the film.

巻出しロールから連続的に繰り出した長尺の原料フィルムを冷却用ローラに巻き付けながら、前記冷却用ローラに対向配置される蒸発源からの蒸発物質を原料フィルム上に蒸着させ、蒸着後の原料フィルムを巻取りローラで巻き取る薄膜形成装置が知られている。(例えば特許文献1参照)
この種の薄膜形成装置においては、蒸着時におけるフィルムの熱変形を防止するため、フィルムを冷却用ローラの周面に密着させて冷却しながら成膜処理を行うようにしている。冷却用ロールは常にフィルムを一定に冷却するため、冷却媒体(冷媒)を循環させている。したがってフィルムの熱変形を防止するためには、冷却ローラに対するフィルムの密着作用をいかに確保するかが重要な問題となっている。
While winding a long raw material film continuously drawn out from an unwinding roll around a cooling roller, the evaporation material from the evaporation source disposed opposite to the cooling roller is vapor-deposited on the raw material film, and the raw material film after vapor deposition 2. Description of the Related Art A thin film forming apparatus that winds a film with a winding roller is known. (For example, see Patent Document 1)
In this type of thin film forming apparatus, in order to prevent thermal deformation of the film at the time of vapor deposition, the film forming process is performed while the film is in close contact with the peripheral surface of the cooling roller and cooled. The cooling roll circulates a cooling medium (refrigerant) in order to constantly cool the film. Therefore, in order to prevent thermal deformation of the film, how to ensure the adhesion of the film to the cooling roller is an important issue.

そこで、特許文献1に記載の薄膜形成装置においては、冷却ローラと巻取りロールとの間にフィルムの成膜面に接触する補助ローラを配置し、この補助ローラと冷却ローラとの間に直流電圧を印加することで、フィルムを冷却ローラに対して静電気的に密着させる方法が開示されている。これにより冷却ローラに対するフィルムの密着作用が得られるため、蒸着時におけるフィルムの熱変形が効果的に防止される。また特許文献2は冷却ローラへ導入する冷媒にエチレングリコールやシリコーンオイルを用いた記載がある。   Therefore, in the thin film forming apparatus described in Patent Document 1, an auxiliary roller that is in contact with the film-forming surface of the film is disposed between the cooling roller and the take-up roll, and a DC voltage is provided between the auxiliary roller and the cooling roller. A method is disclosed in which the film is electrostatically adhered to the cooling roller by applying. As a result, the adhesion of the film to the cooling roller is obtained, so that thermal deformation of the film during vapor deposition is effectively prevented. Patent Document 2 describes that ethylene glycol or silicone oil is used as a refrigerant to be introduced into the cooling roller.

特開2006−152448号公報JP 2006-152448 A 特開2010−242217号公報JP 2010-242217 A

しかしながら特許文献1に記載の構成とするためには冷却用ローラと補助ローラを支持筐体のアース電位から電気的に切り離し、絶縁化する必要がある。しかし冷却用ローラはフィルムを冷却するため、冷媒を循環させる必要があり、冷却用ローラを機械構造的に絶縁支持しても、内部を循環する冷媒と配管設備を通じてアースへ電流が流れてしまい、冷却用ローラへ安定的に直流電圧を印加することが困難となる。例えば特許文献2に記載の冷媒材料であるエチレングリコールは不凍液として一般に広く用いられているが、主として水と希釈して粘度を下げた状態で使用される。(希釈しないと粘度が高く循環困難となる)。しかし水−エチレングリコール溶液は導電性流体であるため冷却用ローラの冷媒とした場合、冷却用ローラと補助ローラの間に直流電源を接続して電圧を印加すると、冷却用ローラ内部のエチレングリコール溶液から金属配管や金属継手を伝ってアースへ向けて電流が流れてしまい、電流地落状態となって電圧は0Vとなってしまう。   However, in order to achieve the configuration described in Patent Document 1, it is necessary to electrically insulate the cooling roller and the auxiliary roller from the ground potential of the support housing. However, since the cooling roller cools the film, it is necessary to circulate the refrigerant. Even if the cooling roller is mechanically insulated and supported, an electric current flows to the ground through the refrigerant circulating through the inside and the piping equipment, It becomes difficult to apply a DC voltage stably to the cooling roller. For example, ethylene glycol, which is a refrigerant material described in Patent Document 2, is generally widely used as an antifreeze solution, but is mainly used in a state where the viscosity is lowered by diluting with water. (If not diluted, the viscosity is high and circulation is difficult). However, since the water-ethylene glycol solution is a conductive fluid, when it is used as a refrigerant for the cooling roller, if a voltage is applied by connecting a DC power source between the cooling roller and the auxiliary roller, the ethylene glycol solution inside the cooling roller Current flows through the metal pipes and metal joints toward the earth, and the current becomes ground-down and the voltage becomes 0V.

この問題を防止するために冷媒の循環器や金属配管経路自体を冷却用ローラと共に絶縁化し、アースと電気的に切り離す方法があるが、冷媒の接液部をすべて絶縁化するには絶縁材料の制約や過大な絶縁設備構造を必要とするため現実的ではない。よって冷却用ローラと補助ローラへ電圧を印加するためには絶縁性流体の冷媒が望まれていた。前記冷媒の体積抵抗は高抵抗であるほど望ましく、体積抵抗が下がるほど冷却用ローラから冷媒を伝いアースに向かって電流が流れ、電流量が直流電源の電流容量に達すると印加した電圧が降下しはじめ、徐々に密着力が低下して蒸着フィルムに熱変形が発生してしまう。この場合は電流出力損失に耐えられるような電流容量の大きな直流電源に変更する必要があるが、体積抵抗が下がるほど大容量の直流電源が必要とされるため、電源コストが非常に高くなってしまう。 よって小型直流電源を用いることが出来るような、1MΩ・m以上の高抵抗な冷媒が望まれていた。
また冷媒の冷却能力は主に熱伝導度と循環量で決定されるが、冷媒に絶縁性が必要な場合、水を混合出来ない為、低温では高粘度となってしまうものが多かった。そして高粘度冷媒の循環は冷媒循環機ポンプの負荷が過大となり、また循環量が下がって冷却効率も下がってしまう課題があった。よって通常フィルム冷却に必要とされる冷媒温度である+25℃から−30℃の範囲において、絶縁性を有した上で低粘度な冷媒が望まれていた。
In order to prevent this problem, there is a method to insulate the refrigerant circulator and metal piping path itself together with the cooling roller and electrically disconnect it from the ground. It is not realistic because it requires constraints and excessive insulation equipment structure. Therefore, in order to apply a voltage to the cooling roller and the auxiliary roller, an insulating fluid refrigerant has been desired. The higher the volume resistance of the refrigerant, the better. The lower the volume resistance, the more current flows from the cooling roller through the refrigerant to the ground, and when the amount of current reaches the current capacity of the DC power supply, the applied voltage drops. Initially, the adhesive force gradually decreases and thermal deformation occurs in the deposited film. In this case, it is necessary to change to a DC power supply with a large current capacity that can withstand the current output loss. However, since the DC power supply with a large capacity is required as the volume resistance decreases, the power supply cost becomes very high. End up. Therefore, a refrigerant having a high resistance of 1 MΩ · m or more that can use a small DC power source has been desired.
In addition, the cooling capacity of the refrigerant is mainly determined by the thermal conductivity and the amount of circulation. However, when the refrigerant requires insulation, water cannot be mixed, and therefore, the viscosity is often high at low temperatures. The circulation of the high-viscosity refrigerant has a problem in that the load of the refrigerant circulator pump becomes excessive, and the circulation rate is reduced to lower the cooling efficiency. Therefore, in the range of + 25 ° C. to −30 ° C., which is a refrigerant temperature normally required for film cooling, a low viscosity refrigerant having insulating properties has been desired.

例えば特許文献2に記載のシリコーンオイルは絶縁性流体であるが、低温での粘度上昇が大きく、低温時の冷却性能に問題があるものが多く、冷媒の高粘度化による冷媒循環量低下でもフィルムは熱変形を生じてしまう課題があった。よって本発明は上述の問題に鑑みてなされ、簡易な設備で冷却ローラへ安定して直流電圧を印加し、フィルムを十分冷却することによってフィルムの熱変形を防止し薄膜を形成することを課題とする。   For example, the silicone oil described in Patent Document 2 is an insulating fluid, but has a large viscosity increase at low temperatures and many problems with cooling performance at low temperatures. Had the problem of causing thermal deformation. Therefore, the present invention has been made in view of the above problems, and it is an object to form a thin film by preventing a thermal deformation of the film by applying a DC voltage stably to a cooling roller with simple equipment and sufficiently cooling the film. To do.

本発明は上記目的を達成し、絶縁性のフィルムへ薄膜を形成する薄膜形成方法であって、
真空チャンバとこの真空チャンバの内部でフィルムを搬送する搬送手段と、前記フィルムと密着して当該フィルムを冷却するための冷却用ローラと、前記冷却用ローラに対向配置され当該フィルムに薄膜を成膜する成膜手段と、前記フィルムの成膜面に接触して当該フィルムの走行をガイドする補助ローラと、前記冷却用ローラと前記補助ローラとの間に直流電圧を印加する電圧印加手段とを有する絶縁性フィルムの薄膜形成手段において、前記冷却用ローラは支持部材によって前記真空チャンバと電気的に絶縁された状態で保持され、ローラ内に体積抵抗率が1MΩ・m以上であって、+25℃から−30℃までの範囲における動粘度が200mm2/s以下である液体の冷却媒体を環流させることを特徴とする。また前記冷却媒体がポリシロキサンを主体とした液体であることを特徴とする。
The present invention achieves the above object and is a thin film forming method for forming a thin film on an insulating film,
A vacuum chamber, transport means for transporting the film inside the vacuum chamber, a cooling roller for closely cooling the film in close contact with the film, and a thin film formed on the film disposed opposite to the cooling roller Forming film forming means, an auxiliary roller for contacting the film forming surface of the film to guide the film traveling, and a voltage applying means for applying a DC voltage between the cooling roller and the auxiliary roller. In the insulating film thin film forming means, the cooling roller is held in a state electrically insulated from the vacuum chamber by a support member, and has a volume resistivity of 1 MΩ · m or more in the roller, from + 25 ° C. A liquid cooling medium having a kinematic viscosity of 200 mm 2 / s or less in a range up to −30 ° C. is circulated. The cooling medium is a liquid mainly composed of polysiloxane.

以上述べたように、本発明の薄膜形成方法によって、冷却ローラを簡易な構造で絶縁化することが出来るため、安価で安定して直流電圧を印加でき、フィルムを十分冷却することによってフィルムの熱変形を防止して成膜することが可能となる。   As described above, since the cooling roller can be insulated with a simple structure by the thin film forming method of the present invention, a DC voltage can be applied stably at a low cost, and the film heat can be obtained by sufficiently cooling the film. It becomes possible to form a film while preventing deformation.

本発明における薄膜形成方法の構成と直流バイアス電源の接続構成を示す図。The figure which shows the structure of the thin film formation method in this invention, and the connection structure of DC bias power supply. 図1の中央より巻出し側ローラへ向かって直角方向から見た状態で、冷却用ローラの断面構造と冷媒の循環経路について示した図。The figure which showed about the cross-sectional structure of the roller for cooling, and the circulation path | route of a refrigerant | coolant in the state seen from the orthogonal | vertical direction toward the unwinding side roller from the center of FIG.

以下、本発明の実施形態について図面を参照して説明する。本実施形態では、薄膜形成手段として成膜源に蒸着物質の蒸発源が用いられる一般的な薄膜形成方法を例に挙げて説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, a general thin film forming method in which an evaporation source of vapor deposition material is used as a film forming source as the thin film forming means will be described as an example.

図1は本実施形態の薄膜形成装置1の概略構成図である。薄膜形成装置1は、真空チャンバ10と、フィルム13の搬送手段である巻出しロール11と搬送ローラ14と冷却用ローラ15と、補助ローラ18と巻取りロール12とを備える。またフィルムに薄膜を成膜する成膜手段である蒸着物質の蒸発源16とを備えている。真空チャンバ10の内部空間は、仕切り板19により巻出しローラ14、補助ローラ18が設置される室と、蒸発源16が配置される室とに仕切られている。両室はそれぞれ真空ポンプ50に接続され、所定の真空度に減圧排気されている。   FIG. 1 is a schematic configuration diagram of a thin film forming apparatus 1 of the present embodiment. The thin film forming apparatus 1 includes a vacuum chamber 10, an unwinding roll 11 that is a transporting means for the film 13, a transporting roller 14, a cooling roller 15, an auxiliary roller 18, and a winding roll 12. Further, an evaporation source 16 for vapor deposition material, which is a film forming means for forming a thin film on the film, is provided. The internal space of the vacuum chamber 10 is partitioned by a partition plate 19 into a chamber in which the unwinding roller 14 and the auxiliary roller 18 are installed, and a chamber in which the evaporation source 16 is disposed. Both chambers are each connected to a vacuum pump 50 and evacuated to a predetermined degree of vacuum.

フィルム13は所定幅に裁断された長尺の絶縁性フィルムからなり、本実施形態では、PP(ポリプロピレン)フィルム、PET(ポリエチレンテレフタレート)フィルム、PPS(ポリフェニレンサルファイド)フィルム、ナイロンフィルム、ポリイミドフィルム等のプラスチックフィルムが用いられるが、これ以外にも他の絶縁性フィルムや紙シート等が適用可能である。   The film 13 is made of a long insulating film cut to a predetermined width. In the present embodiment, a PP (polypropylene) film, a PET (polyethylene terephthalate) film, a PPS (polyphenylene sulfide) film, a nylon film, a polyimide film, etc. A plastic film is used, but other insulating films, paper sheets, and the like are applicable.

フィルム13は巻出しロール11から繰り出され、複数の搬送ローラ14、冷却用ローラ15、補助ローラ18を介して巻取りロール12に巻き取られるようになっている。
図2は図1において中央付近から各ローラに対し直角方向から見た構成を示している。真空チャンバ10は移動台車30と対向して密着し、シール部材23にてシールすることで内部に真空閉鎖空間を形成する。移動台車30には図1にも示した巻出しロール11、搬送ローラ14、冷却ローラ15、補助ローラ18(図示無し)、巻取りロール12(図示無し)が設置され、ベアリング22を介して回転自在に支持されている。移動台車30は成膜時には真空チャンバ10へ密着し、成膜終了後の大気圧復帰状態中に真空チャンバ10から離れる方向に移動することができ、移動後には巻出しロール11、巻取りロール12を取り外し、取り付けすることができる。また図2では冷却用ローラ15の内部構造を示す。冷却用ローラ15は内筒25の外側に外筒24を有する2重構造の筒状で、鉄あるいはステンレス等の金属からなる。移動台車18には冷媒循環器26が設置してあり、冷媒循環器26から内筒25の一方の端部へ冷媒供給管20を接続し、冷却用ローラ15の内筒25へ冷媒を導入する。内筒25へ導入された冷媒はもう一方の端部から外筒24側へ循環し、冷却用ローラ15の表面を冷却する。循環した冷媒は導入端側の外筒端部から排出され、冷媒排出管21を通って冷媒循環器26へ戻る。冷媒循環器26の内部には熱交換器(図示無し)および循環ポンプ27および循環ポンプ27を駆動するモータ28が設置され、戻った冷媒を所定の温度へ再冷却し、再び冷媒供給管20から吐出させる。このように冷媒を冷却用ローラ15へ繰り返し循環させることにより、冷却用ローラ15の表面温度を所定の温度に冷却し、調整する。
図1あるいは図2に示す蒸発源16は、蒸着物質を収容するとともに、蒸着物質を抵抗加熱、誘導加熱、電子ビーム加熱等の公知の手法で加熱蒸発させる機構を備えている。この蒸発源16は冷却用ローラ15の下方に配置され、蒸着物質の蒸気を対向する冷却用ローラ15上のフィルム13上へ付着させ被膜を形成する。蒸着物質としてはAl、Co、Cu、Ni、Ti等の金属元素単体のほか、Al−Zn、Cu−Zn、Fe−Co等の二種以上の金属あるいは多元系合金が適用される。蒸発源16は1個でも良く、あるいは複数設けられてもよい。またフィルム13上に形成された蒸着被膜と冷却ローラ15とが、電気的に短絡しないように、フィルム13の走行方向に対する両端エッジは未蒸着部分を形成することが好ましい。また未蒸着幅は5〜10mm程度が好ましい。
冷却用ローラ15と補助ローラ18は図2の絶縁支持部材51によって移動台車プレートと端部支持プレート31から絶縁支持され、両ローラは機械構造としてアース電位に対して電気的に独立して切り離される。絶縁支持部材51の材質は絶縁性のセラミックやエンジニアリングプラスチックが好適であり、特にナイロン樹脂、ポリアセタール樹脂、フッ素樹脂などが好適である。本発明の絶縁性冷媒を用いることによって冷媒排出管21や冷媒循環器26を大がかりに絶縁化することなく前記絶縁支持部材51を組み込むだけで冷却ローラ15を簡易に絶縁化することができる。
The film 13 is unwound from the unwinding roll 11 and is wound on the winding roll 12 via a plurality of conveying rollers 14, a cooling roller 15, and an auxiliary roller 18.
FIG. 2 shows a configuration when viewed from a direction perpendicular to the respective rollers from the vicinity of the center in FIG. The vacuum chamber 10 is in close contact with the movable carriage 30 and sealed with a seal member 23 to form a vacuum closed space inside. The moving carriage 30 is provided with the unwinding roll 11, the conveying roller 14, the cooling roller 15, the auxiliary roller 18 (not shown), and the winding roll 12 (not shown) shown in FIG. It is supported freely. The movable carriage 30 is in close contact with the vacuum chamber 10 at the time of film formation, and can move in a direction away from the vacuum chamber 10 during the return to atmospheric pressure after completion of film formation. After the movement, the unwinding roll 11 and the winding roll 12 are moved. Can be removed and installed. FIG. 2 shows the internal structure of the cooling roller 15. The cooling roller 15 is a double-structured cylinder having an outer cylinder 24 outside the inner cylinder 25, and is made of a metal such as iron or stainless steel. The moving carriage 18 is provided with a refrigerant circulator 26. The refrigerant supply pipe 20 is connected from the refrigerant circulator 26 to one end of the inner cylinder 25, and the refrigerant is introduced into the inner cylinder 25 of the cooling roller 15. . The refrigerant introduced into the inner cylinder 25 circulates from the other end to the outer cylinder 24 side, and cools the surface of the cooling roller 15. The circulated refrigerant is discharged from the outer cylinder end on the introduction end side, returns to the refrigerant circulator 26 through the refrigerant discharge pipe 21. Inside the refrigerant circulator 26, a heat exchanger (not shown), a circulation pump 27, and a motor 28 for driving the circulation pump 27 are installed, the returned refrigerant is re-cooled to a predetermined temperature, and again from the refrigerant supply pipe 20. Discharge. Thus, the surface temperature of the cooling roller 15 is cooled to a predetermined temperature and adjusted by repeatedly circulating the refrigerant to the cooling roller 15.
The evaporation source 16 shown in FIG. 1 or FIG. 2 includes a mechanism for containing a vapor deposition material and heating and evaporating the vapor deposition material by a known method such as resistance heating, induction heating, or electron beam heating. The evaporation source 16 is disposed below the cooling roller 15, and deposits vapor of the vapor deposition material on the film 13 on the opposing cooling roller 15 to form a film. As the deposition material, not only a single metal element such as Al, Co, Cu, Ni, Ti, but also two or more kinds of metals such as Al—Zn, Cu—Zn, Fe—Co, or multi-component alloys are applied. One evaporation source 16 may be provided, or a plurality of evaporation sources 16 may be provided. Moreover, it is preferable that the both-ends edge with respect to the running direction of the film 13 forms an undeposited part so that the vapor deposition film formed on the film 13 and the cooling roller 15 are not electrically short-circuited. The undeposited width is preferably about 5 to 10 mm.
The cooling roller 15 and the auxiliary roller 18 are insulated and supported from the moving carriage plate and the end support plate 31 by the insulating support member 51 shown in FIG. 2, and both rollers are electrically separated from the ground potential as a mechanical structure. . The material of the insulating support member 51 is preferably an insulating ceramic or engineering plastic, and in particular, nylon resin, polyacetal resin, fluororesin, or the like is preferable. By using the insulating refrigerant of the present invention, the cooling roller 15 can be easily insulated simply by incorporating the insulating support member 51 without insulating the refrigerant discharge pipe 21 and the refrigerant circulator 26 on a large scale.

さらに図1、図2へ示すとおり、冷却用ローラ15と補助ローラ18の間へ電圧印加手段である直流バイアス電源17を接続し、両ローラ間に直流電圧を印加する。例えば図2には直流バイアス電源17からブラシ29を介して冷却ローラ15へ電気接続する状況を示している。補助ローラ18は図示しないが電気接続は冷却ローラ15と同様であり直流バイアス電源17の一方の極性が接続されている。冷却用ローラ15への接続は正極側でも負極側でも良いが、正極側へ接続する方が好適である。よって補助ローラは負極側へ接続することが好適で、アース電位と接続することがバイアス電位レベルの安定面から好適であるが、アース電位と接続しなくても使用できる。フィルム13は蒸発源16から飛翔した蒸着物質蒸気によって成膜されると、冷却用ローラ15へ印加された電圧と補助ローラ18と接触する成膜面との間に発生する静電引力によって電気的に吸着され密着し、冷却されることとなる。なお直流バイアス電源17は、出力固定式、出力可変式のいずれであっても良い。また、冷却用ローラ15に印加した電圧を維持するためには冷却ローラ15自体の絶縁状態が維持される必要がある。冷媒循環器26から冷却用ローラ15へ循環させる冷媒は一般には水溶性不凍液が用いられるが、水溶性不凍液は導電性があるため、水溶性不凍液から冷媒供給管20や冷媒排出管21あるいは図示しない配管用金属継手などを通じてアース側へ電流漏れが発生し、冷却用ローラ15への印加電圧が維持できない状態となる。よって本発明では絶縁性流体の冷媒を用いることにより冷却用ローラ15の絶縁性を確保する。冷媒の絶縁性は体積抵抗率が1MΩ・m以上であることが望ましく、1MΩ・mより低いと冷却ローラ15への電圧印加時に冷媒を通じて電流がアースへ向かって流れてしまい、直流バイアス電源17に必要以上に過大な電流容量の電源を用いなければならなくなってしまう。また冷媒供給管20および冷媒排出管21はゴムホースなど絶縁材料製の配管とし、前記絶縁配管を冷媒循環器26へ接続することによって、冷媒循環器26の接液部がアース電位であっても問題無く本発明の効果を得ることができる。   Further, as shown in FIGS. 1 and 2, a DC bias power source 17 as a voltage applying means is connected between the cooling roller 15 and the auxiliary roller 18, and a DC voltage is applied between both rollers. For example, FIG. 2 shows a state where the DC bias power supply 17 is electrically connected to the cooling roller 15 via the brush 29. Although the auxiliary roller 18 is not shown, the electrical connection is the same as that of the cooling roller 15, and one polarity of the DC bias power source 17 is connected. The cooling roller 15 may be connected to the positive electrode side or the negative electrode side, but it is preferable to connect to the positive electrode side. Therefore, it is preferable to connect the auxiliary roller to the negative electrode side, and it is preferable to connect to the ground potential from the viewpoint of stability of the bias potential level, but the auxiliary roller can be used without being connected to the ground potential. When the film 13 is formed by vapor deposition material that flies from the evaporation source 16, the film 13 is electrically generated by electrostatic attraction generated between the voltage applied to the cooling roller 15 and the film formation surface that contacts the auxiliary roller 18. It is adsorbed and adhered to the surface and cooled. The DC bias power supply 17 may be either a fixed output type or a variable output type. In order to maintain the voltage applied to the cooling roller 15, it is necessary to maintain the insulation state of the cooling roller 15 itself. The coolant circulated from the coolant circulator 26 to the cooling roller 15 is generally a water-soluble antifreeze. However, since the water-soluble antifreeze is conductive, the coolant supply pipe 20 and the coolant discharge pipe 21 are not shown from the water-soluble antifreeze. Current leakage occurs to the ground side through a pipe metal joint or the like, and the voltage applied to the cooling roller 15 cannot be maintained. Therefore, in the present invention, the insulating property of the cooling roller 15 is ensured by using an insulating fluid refrigerant. The insulation of the refrigerant preferably has a volume resistivity of 1 MΩ · m or more, and if it is lower than 1 MΩ · m, a current flows to the ground through the refrigerant when a voltage is applied to the cooling roller 15, and the DC bias power supply 17 is connected. It becomes necessary to use a power supply with an excessively large current capacity. Further, the refrigerant supply pipe 20 and the refrigerant discharge pipe 21 are pipes made of an insulating material such as a rubber hose. By connecting the insulation pipe to the refrigerant circulator 26, there is a problem even if the liquid contact part of the refrigerant circulator 26 is at ground potential. The effects of the present invention can be obtained.

また冷媒の粘度については低温で高粘度となるものはモータ28の負荷が過大となり、循環ポンプ27で送液する流量が低下しフィルムへの冷却効率が下がるため、ジメチルポリシロキサンの低粘度品を絶縁性流体として用いることが好適である。ジメチルポリシロキサンは(C2H6OSi)nで示されるもので、シロキサン結合が2000以下のものがオイルの性質を示すが、低分子量のものほど低粘度となる、本発明に用いる冷媒としては動粘度が200m/s以下のものを使用することが好ましい。これは前記のとおりフィルム冷却不足が発生し、フィルムが熱変形してしまう問題が発生するためである。 As for the viscosity of the refrigerant, if the viscosity is high at low temperature, the load of the motor 28 is excessive, the flow rate of liquid fed by the circulation pump 27 is reduced, and the cooling efficiency to the film is lowered. It is preferable to use it as an insulating fluid. Dimethylpolysiloxane is represented by (C 2 H 6 OSi) n, and those having a siloxane bond of 2000 or less exhibit oil properties, but the lower the molecular weight, the lower the viscosity, the refrigerant used in the present invention. It is preferable to use one having a kinematic viscosity of 200 m 2 / s or less. This is because the film cooling is insufficient as described above, and the film is thermally deformed.

(実施例1)
図1および図2の構成の蒸着機を用い、冷媒循環器26の冷媒の材料には松村石油株式会社製 バーレルシリコーンフールドM−2(シ゛メチルポリシロキサン主体の冷媒)を用いた。本冷媒の体積抵抗率について川口電機製作所製、液体用電極LP−05を用いて測定したところ、温度25℃で1TΩ・mであった。また草野科学社製のJIS K−2283およびJIS Z-8803に準拠した毛細管粘度計を用いて粘度を測定し、冷媒密度から動粘度を算出したところ、25℃で2.0mm2/s、−30℃で6.5mm2/sであった。本冷媒を用いて冷却用ローラ15の内部へ冷媒循環させ、冷却ローラ15の表面温度が−30℃になるよう、冷媒循環器26の温度制御を行った。冷媒循環器26の温度制御は冷媒排出管21内に温度センサーを設置し、本位置の冷媒温度が−30℃になるように温度制御するものである。直流バイアス電源17は高砂製作所製直流電源KX-100H(100W)を用いて接続し、冷却用ローラ15へ+100Vを印加した。フィルムはOPP(延伸ポリプロピレン)フィルム(東レ株式会社製 商品名トレファン)の3μm厚みのものを使用し、速度400m/分で搬送させながら蒸発源16からアルミニウムを蒸発させ、10nm膜厚の成膜を行った。その結果、フィルムには熱変形なく品位の良い成膜ができた。直流バイアス電源17の電圧表示値は100Vであり、電流表示値は0.01A以下であった。また冷媒循環器26の循環ポンプ27のモータ28の使用電流値を測定し、使用電流値/最大許容電流値×100=負荷率(%)としてモータの負荷率を確認したところ、約30%であり、冷媒循環温度も−30℃で安定していたため、冷媒循環器26は冷媒流量の低下も少なく良好に運転できていることを確認した。
Example 1
The vapor deposition machine having the configuration shown in FIGS. 1 and 2 was used, and Barrel silicone field M-2 (a refrigerant mainly composed of dimethylpolysiloxane) manufactured by Matsumura Oil Co., Ltd. was used as the refrigerant material of the refrigerant circulator 26. The volume resistivity of the refrigerant was measured using a liquid electrode LP-05 manufactured by Kawaguchi Electric Mfg. Co., Ltd. and found to be 1 TΩ · m at a temperature of 25 ° C. The viscosity was measured using a capillary viscometer compliant with JIS K-2283 and JIS Z-8803 manufactured by Kusano Kagakusha, and the kinematic viscosity was calculated from the refrigerant density. As a result, 2.0 mm 2 / s at −25 ° C., − It was 6.5 mm 2 / s at 30 ° C. The refrigerant was circulated into the cooling roller 15 using this refrigerant, and the temperature of the refrigerant circulator 26 was controlled so that the surface temperature of the cooling roller 15 was −30 ° C. The temperature of the refrigerant circulator 26 is controlled by installing a temperature sensor in the refrigerant discharge pipe 21 so that the refrigerant temperature at this position becomes −30 ° C. The DC bias power supply 17 was connected using a DC power supply KX-100H (100 W) manufactured by Takasago Seisakusho, and +100 V was applied to the cooling roller 15. The film is an OPP (stretched polypropylene) film (trade name Treffan manufactured by Toray Industries, Inc.) having a thickness of 3 μm, and the aluminum is evaporated from the evaporation source 16 while being conveyed at a speed of 400 m / min. Went. As a result, the film could be formed with good quality without thermal deformation. The voltage display value of the DC bias power supply 17 was 100 V, and the current display value was 0.01 A or less. In addition, the current value of the motor 28 of the circulation pump 27 of the refrigerant circulator 26 was measured, and the load factor of the motor was confirmed by using current value / maximum allowable current value × 100 = load factor (%). In addition, since the refrigerant circulation temperature was stable at −30 ° C., it was confirmed that the refrigerant circulator 26 was able to operate well with little decrease in the refrigerant flow rate.

(実施例2)
冷媒の絶縁抵抗の下限を確認するため、実施例1の冷媒にカーボンパウダーを添加した。三菱化学社製カーボンブラック #3030BをバーレルシリコーンフールドM−2へ22重量%混入したところ、体積抵抗率が1MΩ・mとなった。本冷媒を冷媒循環器26へ導入し、その他は実施例1と同様の条件でアルミニウム薄膜を成膜した。その結果、フィルムには軽微な熱変形が見られたが、必要品位レベルを満足する成膜であった。直流バイアス電源17の電圧表示値は100Vであり、電流表示値は0.1Aであった。冷媒循環器26のモータ負荷率や冷媒循環温度も実施例1と同等であった。
(Example 2)
In order to confirm the lower limit of the insulation resistance of the refrigerant, carbon powder was added to the refrigerant of Example 1. When 22 wt% of carbon black # 3030B manufactured by Mitsubishi Chemical Corporation was mixed into barrel silicone field M-2, the volume resistivity was 1 MΩ · m. This refrigerant was introduced into the refrigerant circulator 26, and an aluminum thin film was formed under the same conditions as in Example 1. As a result, although slight thermal deformation was observed in the film, the film was formed to satisfy the required quality level. The voltage display value of the DC bias power supply 17 was 100 V, and the current display value was 0.1 A. The motor load factor of the refrigerant circulator 26 and the refrigerant circulation temperature were also the same as in Example 1.

(実施例3)
冷媒の材料に松村石油株式会社製 バーレルシリコーンフールドM−50 を用い、その他の条件は実施例1と同等の条件で成膜した。冷媒材料は実施例1と同様のジメチルポリシロキサンであり体積抵抗率も同等であるが、動粘度は実施例1と同様の方法で測定した結果、25℃で50mm2/sであり−30℃では約200mm2/sであった。成膜した結果、フィルムには軽微な熱変形が見られたが、必要品位レベルを満足する成膜であった。直流バイアス電源17の電圧表示値は100Vであり、電流表示値は0.01A以下であったが、冷媒循環器26のモータ負荷率は約90%であり、これ以上の上昇はモータの破損が懸念された。冷媒循環温度は−30℃から約−20℃までをハンチングしながら変動しているため、冷媒流量が若干低下した状態で冷媒循環運転していると判断した。
(Example 3)
A burrel silicone field M-50 manufactured by Matsumura Oil Co., Ltd. was used as the refrigerant material, and the other conditions were the same as in Example 1. The refrigerant material is the same dimethylpolysiloxane as in Example 1 and the volume resistivity is the same, but the kinematic viscosity is 50 mm 2 / s at 25 ° C. and −30 ° C. as measured by the same method as in Example 1. Then, it was about 200 mm 2 / s. As a result of film formation, although slight thermal deformation was observed in the film, the film formation satisfied the required quality level. The voltage display value of the DC bias power supply 17 is 100 V, and the current display value is 0.01 A or less. However, the motor load factor of the refrigerant circulator 26 is about 90%. I was concerned. Since the refrigerant circulation temperature fluctuated while hunting from −30 ° C. to about −20 ° C., it was determined that the refrigerant circulation operation was performed with the refrigerant flow rate slightly reduced.

(比較例1)
実施例1の冷媒へカーボンパウダーを23重量%まで添加したところ、体積抵抗が100kΩ・mまで低下した。本冷媒を冷媒循環器26へ導入し、その他は実施例1と同様の条件でアルミニウム薄膜を成膜した。その結果、フィルムの中央にフィルム走行方向に平行な線状の熱変形が見られ、必要品位レベルを満足しなかった。直流バイアス電源17の電圧表示値は79Vであり、電流表示値は1.26Aであった。冷媒循環器26のモータ負荷率や冷媒循環温度も実施例1と同等であった。
(Comparative Example 1)
When carbon powder was added to the refrigerant of Example 1 up to 23% by weight, the volume resistance decreased to 100 kΩ · m. This refrigerant was introduced into the refrigerant circulator 26, and an aluminum thin film was formed under the same conditions as in Example 1. As a result, linear thermal deformation parallel to the film running direction was observed at the center of the film, and the required quality level was not satisfied. The voltage display value of the DC bias power supply 17 was 79V, and the current display value was 1.26A. The motor load factor of the refrigerant circulator 26 and the refrigerant circulation temperature were also the same as in Example 1.

(比較例2)
冷媒の材料には濃度80%のエチレングリコール冷媒を用い、その他の条件は実施例1と同等の条件で成膜を実施した。本冷媒はエチレングリコール80%と水、防錆剤からなり体積抵抗値を実施例1と同様の方法で測定したところ、25℃で10Ω・mであった。また動粘度を実施例1と同様の方法で測定したところ、25℃で4mm2/sであり、−30℃で約100mm2/sであった。成膜を実施した結果、フィルム全面においてフィルム走行方向に平行な線状の熱変形が発生し、きわめて品位の悪い成膜となった。直流バイアス電源17の電圧表示値は3V、電流表示値は2.5Aであり、直流バイアス電源17の電流容量上限まで電流が流れ、電圧が大きく低下した。冷媒循環器26のモータ負荷率はモータ使用電流値から測定したところ50%まで上昇したが設備上の問題はなく、冷媒循環温度は−30℃で一定であった。
(Comparative Example 2)
An ethylene glycol refrigerant having a concentration of 80% was used as a refrigerant material, and film formation was performed under the same conditions as in Example 1 for other conditions. This refrigerant was composed of 80% ethylene glycol, water, and a rust inhibitor, and its volume resistance value was measured by the same method as in Example 1. As a result, it was 10 Ω · m at 25 ° C. The kinematic viscosity was measured by the same method as in Example 1. As a result, it was 4 mm 2 / s at 25 ° C. and about 100 mm 2 / s at −30 ° C. As a result of film formation, linear thermal deformation parallel to the film running direction occurred on the entire film surface, resulting in extremely poor quality film formation. The voltage display value of the DC bias power supply 17 was 3 V and the current display value was 2.5 A. The current flowed to the upper limit of the current capacity of the DC bias power supply 17 and the voltage was greatly reduced. When the motor load factor of the refrigerant circulator 26 was measured from the motor operating current value, it increased to 50%, but there was no problem in equipment, and the refrigerant circulation temperature was constant at -30 ° C.

(比較例3)
冷媒の材料に松村石油株式会社製 バーレルシリコーンフールドM−100 を用い、その他の条件は実施例1と同等の条件で成膜した。冷媒材料は実施例1と同様のジメチルポリシロキサンであり体積抵抗率も同等であるが、動粘度は実施例1と同様の方法で測定した結果、25℃で100mm2/s、−30℃で約300mm2/sであった。その結果、フィルムの中央にフィルム走行方向に平行な線状の熱変形が見られ、必要品位レベルを満足しなかった。直流バイアス電源17の電圧表示値は100Vであり、電流表示値は0.01A以下であったが、冷媒循環器26のモータ負荷率は約98%であり、連続運転するには危険な状態であった。冷媒循環温度は−15℃から約+10℃までをハンチングしながら変動した。
(Comparative Example 3)
A burrel silicone field M-100 manufactured by Matsumura Oil Co., Ltd. was used as the refrigerant material, and the other conditions were the same as in Example 1. The refrigerant material is the same dimethylpolysiloxane as in Example 1 and has the same volume resistivity. However, the kinematic viscosity was measured by the same method as in Example 1, and as a result, it was 100 mm 2 / s at 25 ° C. and −30 ° C. It was about 300 mm 2 / s. As a result, linear thermal deformation parallel to the film running direction was observed at the center of the film, and the required quality level was not satisfied. The voltage display value of the DC bias power supply 17 is 100 V and the current display value is 0.01 A or less, but the motor load factor of the refrigerant circulator 26 is about 98%, which is dangerous for continuous operation. there were. The refrigerant circulation temperature fluctuated while hunting from −15 ° C. to about + 10 ° C.

本発明は成膜形成装置として蒸着機やCVD成膜装置の利用に限らず、薄膜付きフィルムの搬送・冷却工程全般などにも適用でき、さらにこれらの適用範囲に限定されるものではない。   The present invention is not limited to the use of a vapor deposition apparatus or a CVD film forming apparatus as a film forming apparatus, but can be applied to the entire process of transporting and cooling a film with a thin film, and is not limited to these application ranges.

1 薄膜形成装置
10 真空チャンバ
11 巻出しロール
12 巻取りロール
13 フィルム
14 搬送ローラ
15 冷却用ローラ
16 蒸発源
17 直流バイアス電源
18 補助ローラ
19 仕切り板
20 冷媒供給管
21 冷媒排出管
22 ベアリング
23 シール部材
24 外筒
25 内筒
26 冷媒循環器
27 循環ポンプ
28 モータ
29 ブラシ
30 移動台車
31 端部支持プレート
50 真空ポンプ
51 絶縁支持部材
DESCRIPTION OF SYMBOLS 1 Thin film forming apparatus 10 Vacuum chamber 11 Unwinding roll 12 Winding roll 13 Film 14 Conveying roller 15 Cooling roller 16 Evaporating source 17 DC bias power supply 18 Auxiliary roller 19 Partition plate 20 Refrigerant supply pipe 21 Refrigerant discharge pipe 22 Bearing 23 Seal member 24 outer cylinder 25 inner cylinder 26 refrigerant circulator 27 circulating pump 28 motor 29 brush 30 moving carriage 31 end support plate 50 vacuum pump 51 insulating support member

Claims (3)

真空チャンバとこの真空チャンバの内部でフィルムを搬送する搬送手段と、前記フィルムと密着して当該フィルムを冷却するための冷却用ローラと、前記冷却用ローラに対向配置され当該フィルムに薄膜を成膜する成膜手段と、前記フィルムの成膜面に接触して当該フィルムの走行をガイドする補助ローラと、前記冷却用ローラと前記補助ローラとの間に直流電圧を印加する電圧印加手段とを有する絶縁性フィルムの薄膜形成手段において、前記冷却用ローラは支持部材によって前記真空チャンバと電気的に絶縁された状態で保持され、ローラ内に体積抵抗率が1MΩ・m以上であって、+25℃から−30℃までの範囲における動粘度が200mm2/s以下である液体の冷却媒体を環流させることを特徴とする薄膜形成方法。 A vacuum chamber, transport means for transporting the film inside the vacuum chamber, a cooling roller for closely cooling the film in close contact with the film, and a thin film formed on the film disposed opposite to the cooling roller Forming film forming means, an auxiliary roller for contacting the film forming surface of the film to guide the film traveling, and a voltage applying means for applying a DC voltage between the cooling roller and the auxiliary roller. In the insulating film thin film forming means, the cooling roller is held in a state electrically insulated from the vacuum chamber by a support member, and has a volume resistivity of 1 MΩ · m or more in the roller, from + 25 ° C. A method of forming a thin film, comprising circulating a liquid cooling medium having a kinematic viscosity of 200 mm 2 / s or less in a range up to -30 ° C. 前記冷却媒体がポリシロキサン構造を主体とする液体であることを特徴とする請求
項1に記載の薄膜形成方法。
The thin film forming method according to claim 1, wherein the cooling medium is a liquid mainly composed of a polysiloxane structure.
真空チャンバとこの真空チャンバの内部で絶縁性のフィルムを搬送する搬送手段と、前記フィルムと密着して当該フィルムを冷却するための冷却媒体を環流させた冷却用ローラと、前記冷却用ローラに対向配置され当該フィルムに薄膜を成膜する成膜手段と、前記フィルムの成膜面に接触して当該フィルムの走行をガイドする補助ローラと、前記冷却用ローラと前記補助ローラとの間に直流電圧を印加する電圧印加手段とを備えた薄膜形成装置において、前記冷却ローラへ導入する冷却媒体の体積抵抗率が1MΩ・m以上であって、+25℃から−30℃までの範囲における動粘度が200mm2/s以下である液体を用いることを特徴とする薄膜形成装置。
A vacuum chamber, transport means for transporting an insulating film inside the vacuum chamber, a cooling roller in close contact with the film and circulating a cooling medium for cooling the film, and opposed to the cooling roller A direct-current voltage between a film forming means arranged to form a thin film on the film, an auxiliary roller that contacts the film forming surface of the film and guides the running of the film, and the cooling roller and the auxiliary roller In the thin film forming apparatus having a voltage applying means for applying a voltage, the volume resistivity of the cooling medium introduced into the cooling roller is 1 MΩ · m or more, and the kinematic viscosity in the range from + 25 ° C. to −30 ° C. is 200 mm. A thin film forming apparatus characterized by using a liquid of 2 / s or less.
JP2011174493A 2011-08-10 2011-08-10 Method and apparatus for forming thin film Pending JP2013036104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174493A JP2013036104A (en) 2011-08-10 2011-08-10 Method and apparatus for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174493A JP2013036104A (en) 2011-08-10 2011-08-10 Method and apparatus for forming thin film

Publications (1)

Publication Number Publication Date
JP2013036104A true JP2013036104A (en) 2013-02-21

Family

ID=47885972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174493A Pending JP2013036104A (en) 2011-08-10 2011-08-10 Method and apparatus for forming thin film

Country Status (1)

Country Link
JP (1) JP2013036104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113459496A (en) * 2021-07-07 2021-10-01 江苏普清净化科技有限公司 Tectorial membrane device is used in production of effectual PE film of tectorial membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147023A (en) * 1983-02-10 1984-08-23 Matsushita Electric Ind Co Ltd Preparation of thin film of metal
JPS63169374A (en) * 1986-12-29 1988-07-13 Matsushita Electric Ind Co Ltd Production of thin metal film
JPH04120272A (en) * 1990-09-10 1992-04-21 Matsushita Electric Ind Co Ltd Thin film forming device
JPH04259374A (en) * 1991-02-08 1992-09-14 Matsushita Electric Ind Co Ltd Vacuum depositing device
JPH08209346A (en) * 1994-11-02 1996-08-13 Mitsubishi Chem Corp Conductive cooling roll and production of vapor deposited film
JP2004287314A (en) * 2003-03-25 2004-10-14 Seiko Epson Corp Liquid developer
JP2005146401A (en) * 2003-11-20 2005-06-09 Ulvac Japan Ltd Coiling type vacuum vapor deposition method and coiling type vacuum vapor deposition apparatus
JP2010242217A (en) * 2009-03-18 2010-10-28 Toray Ind Inc Apparatus and method for producing sheet with thin film, and cylindrical roll used for the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147023A (en) * 1983-02-10 1984-08-23 Matsushita Electric Ind Co Ltd Preparation of thin film of metal
JPS63169374A (en) * 1986-12-29 1988-07-13 Matsushita Electric Ind Co Ltd Production of thin metal film
JPH04120272A (en) * 1990-09-10 1992-04-21 Matsushita Electric Ind Co Ltd Thin film forming device
JPH04259374A (en) * 1991-02-08 1992-09-14 Matsushita Electric Ind Co Ltd Vacuum depositing device
JPH08209346A (en) * 1994-11-02 1996-08-13 Mitsubishi Chem Corp Conductive cooling roll and production of vapor deposited film
JP2004287314A (en) * 2003-03-25 2004-10-14 Seiko Epson Corp Liquid developer
JP2005146401A (en) * 2003-11-20 2005-06-09 Ulvac Japan Ltd Coiling type vacuum vapor deposition method and coiling type vacuum vapor deposition apparatus
JP2010242217A (en) * 2009-03-18 2010-10-28 Toray Ind Inc Apparatus and method for producing sheet with thin film, and cylindrical roll used for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113459496A (en) * 2021-07-07 2021-10-01 江苏普清净化科技有限公司 Tectorial membrane device is used in production of effectual PE film of tectorial membrane

Similar Documents

Publication Publication Date Title
US11833580B2 (en) Deposition of reactive metals with protection layer for high volume manufacturing
CN108886282B (en) Fluid cooled active component, motor and drive system
Suzuki et al. Tribological characteristics of imidazolium-based room temperature ionic liquids under high vacuum
JP4369531B2 (en) Thin film forming apparatus and thin film forming method
US9045819B2 (en) Method for forming thin film while providing cooling gas to rear surface of substrate
CN109881166B (en) Sputtering cathode, sputtering device, and method for producing film-formed body
JP2013036104A (en) Method and apparatus for forming thin film
JP4366450B2 (en) Thin film forming apparatus and thin film forming method
JP4601381B2 (en) Pressure gradient ion plating film deposition system
KR20190065233A (en) Deposition apparatus, method of coating flexible substrate, and flexible substrate with coating
JP2023078132A (en) Roller device for guiding flexible substrate, use of roller device for transporting flexible substrate, vacuum processing apparatus, and method of processing flexible substrate
JP4613046B2 (en) Pressure gradient ion plating film deposition system
JP4601385B2 (en) Pressure gradient ion plating film deposition system
JP4601379B2 (en) Pressure gradient ion plating film deposition system
JP6795819B2 (en) Processing roller and its manufacturing method and processing equipment
JP4613048B2 (en) Pressure gradient ion plating film deposition system
US20220356028A1 (en) Roller for transporting a flexible substrate, vacuum processing apparatus, and methods therefor
JP2006111942A (en) Pressure gradient type ion-plating film-forming apparatus
JP6233262B2 (en) Long film transport and cooling roll, and long film processing apparatus equipped with the roll
JPH01182621A (en) Electrolytic corrosion preventive roller bearing
US20240238867A1 (en) Deposition of reactive metals with protection layer for high volume manufacturing
WO2016156860A1 (en) Electrical contacts
JP2020152957A (en) Surface treatment apparatus for long-sized film
CN114381698B (en) Film forming apparatus
JP2006124731A (en) Pressure gradient type ion plating film deposition apparatus and film deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216