US9045819B2 - Method for forming thin film while providing cooling gas to rear surface of substrate - Google Patents
Method for forming thin film while providing cooling gas to rear surface of substrate Download PDFInfo
- Publication number
- US9045819B2 US9045819B2 US13/132,023 US200913132023A US9045819B2 US 9045819 B2 US9045819 B2 US 9045819B2 US 200913132023 A US200913132023 A US 200913132023A US 9045819 B2 US9045819 B2 US 9045819B2
- Authority
- US
- United States
- Prior art keywords
- substrate
- gas
- film forming
- cooling
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
Definitions
- the present invention relates to a method for forming a thin film.
- a thin film technology is widely used to enhance device performances and reduce device sizes. Realizing thin-film devices brings direct merits to users, and in addition, plays an important role from an environmental point of view, such as protection of earth resources and a reduction in power consumption.
- the thin film technology it is essential to respond to demands from industrial aspects, such as increases in efficiency, stability, and productivity of thin film formation and a reduction in cost of the thin film formation.
- a high-deposition-rate film forming technology is essential.
- the film forming method such as vacuum deposition, sputtering, ion plating, and CVD, an increase in deposition rate is being promoted.
- the take-up type thin film forming method is a method for pulling out an elongated substrate, rolled around a pull-out roll, to a transfer system, forming a thin film on the substrate travelling in a transfer process, and taking up the substrate by a take-up roll.
- a high-deposition-rate film forming method such as vacuum deposition using an electron beam
- Widely used as a method for cooling down the substrate is a method for providing the substrate along a cylindrical can disposed on a passage of the transfer system and transferring the heat of the substrate to the cylindrical can.
- this cooling method by securing thermal contact between the substrate and the cylindrical can, the heat of the substrate can be transferred to the cylindrical can having a high heat capacity. With this, the temperature increase of the substrate can be suppressed, and the temperature of the substrate can be kept at a specific temperature.
- a gas cooling method for introducing a gas into between the substrate and the cylindrical can is used under a vacuum atmosphere (see PTL 1, for example). In accordance with this method, the thermal contact between the substrate and the cylindrical can can be secured via the gas, and the temperature increase of the substrate can be suppressed.
- a cooling belt may be used as means for cooling down the substrate.
- a cooling belt may be used as means for cooling down the substrate.
- forming the film with the substrate moving linearly is advantageous from a viewpoint of the use efficiency of a film forming material.
- it is effective to use the cooling belt as the substrate cooling means.
- another cooling belt is further provided inside the cooling belt, or a cooling mechanism using a liquid cooling medium is provided inside the cooling belt. With this, cooling efficiency can be improved, and the temperature increase of the substrate material can be suppressed (see PTL 2, for example).
- the amount of gas introduced into the vacuum chamber is increased, the degree of vacuum deteriorates (the atmospheric pressure in the vacuum chamber increases) by the cooling gas leaking from between the cooling body and the substrate, and this causes the deterioration of the film quality, abnormal discharge of a process, and the like. Therefore, the amount of gas introduced into the vacuum chamber is limited. Moreover, increasing the introduction amount of gas requires the increase in size of an exhaust pump, and this increases a facility cost.
- the present invention was made to solve the above problems, and an object of the present invention is to provide a thin film forming method for realizing gas cooling at a low cost by simple facilities while suppressing the deterioration of the degree of vacuum and the reduction in quality of the thin film, the gas cooling being necessary to carry out the film formation at a high film formation rate.
- a thin film forming method of the present invention is a method for depositing a film forming material in a vacuum on a substrate having a front surface and a rear surface to form a thin film, the method including: a first providing step of providing a first cooling surface in a first thin film forming region such that the first cooling surface is close to the rear surface; a first thin film forming step of forming the thin film on the front surface of the substrate and in the first thin film forming region; and a first cooling step of cooling down the substrate by introducing a cooling gas into between the first cooling surface and the rear surface during the first thin film forming step, the cooling gas containing a gas (hereinafter may be referred to as a “reactive gas”) which reacts with the film forming material.
- a gas hereinafter may be referred to as a “reactive gas”
- a one-layer thin film can be formed on the front surface by carrying out the first thin film forming step once. Moreover, by carrying out the first thin film forming step plural times with respect to a predetermined portion of the front surface, a multi-layer thin film can be formed on the predetermined portion.
- the reactive gas introduced when forming a first layer of the thin film be smaller in amount than the reactive gas introduced when forming a second layer of the thin film. As described below, the amount of reactive gas introduced when forming the first layer of the thin film may be zero.
- the reaction between the substrate exposed before forming the thin film and the reactive gas can be prevented when forming the first layer of the thin film. If the substrate reacts with the reactive gas, the front surface of the substrate may change in color, or the strength of the substrate may deteriorate.
- the cooling gas be not introduced into between the first cooling surface and the rear surface, or the cooling gas mainly containing a gas (hereinafter may be referred to as an “unreactive gas”) which does not react with the film forming material be introduced into between the first cooling surface and the rear surface; and during the first thin film forming step of forming the second and subsequent layers of the thin film, the first cooling step be carried out.
- the substrate and the reactive gas contact each other in a case where the substrate has a property of reacting with the reactive gas (especially in a case where the substrate is a metal foil), they reacts with each other (the substrate oxidizes if the reactive gas contains oxygen), and the substrate deteriorates.
- the deterioration of the substrate is avoidable.
- the front surface of the substrate is already covered with the first layer of the thin film. Therefore, the front surface of the substrate and the reactive gas do not contact. On this account, the reactive gas can be introduced without causing the deterioration of the substrate.
- the cooling gas mainly containing the unreactive gas is preferably constituted by only the unreactive gas but may be a mixture of the unreactive gas and the reactive gas. In the latter case, the cooling gas may contain a small amount of reactive gas, like an impurity gas.
- the cooling gas mainly containing the unreactive gas contains the unreactive gas at more than 95 volume %, preferably 99 volume % or higher, and further preferably 99.9 volume % or higher, and the rest is the reactive gas.
- the thin film is formed on the front surface of the substrate by the above steps.
- the thin film can also be formed on the rear surface of the substrate by carrying out the same steps as above with respect to the rear surface of the substrate.
- the thin film forming method of the present invention further includes: a second providing step of providing a second cooling surface in a second thin film forming region such that the second cooling surface is close to the front surface; a second thin film forming step of forming the thin film on the rear surface of the substrate and in the second thin film forming region; and a second cooling step of cooling down the substrate by introducing the cooling gas into between the second cooling surface and the front surface during the second thin film forming step, the cooling gas containing the gas which reacts with the film forming material, and with this, the thin film can be formed on each of both surfaces of the substrate.
- the multi-layer thin film can be formed on each of both surfaces of the substrate.
- the reactive gas introduced when forming the first layer of the thin film be smaller in amount than the reactive gas introduced when forming the second layer of the thin film. With this, the reaction between the substrate exposed before forming the thin film and the reactive gas can be suppressed when forming the first layer of the thin film. If the substrate reacts with the reactive gas, the front surface of the substrate may change in color, and the strength of the substrate may deteriorate.
- the cooling gas be not introduced into between the first cooling surface and the rear surface, or the cooling gas containing only the gas which does not react with the film forming material be introduced into between the first cooling surface and the rear surface; during the second thin film forming step of forming the first layer of the thin film on the rear surface, the cooling gas be not introduced into between the second cooling surface and the front surface, or the cooling gas mainly containing the gas which does not react with the film forming material be introduced into between the second cooling surface and the front surface; after the formation of the first layer of the thin film on each of both surfaces of the substrate and during the first thin film forming step of forming the second and subsequent layers of the thin film on the front surface, the first cooling step be carried out; and during the first thin film forming step of forming the second and subsequent layers of the thin film on the rear surface, the second cooling step be carried out.
- the second cooling step be carried out.
- the metal foil may be used as the substrate.
- the metal foil that is a material having high reactivity is used, the deterioration of the substrate due to the introduction of the reactive gas as the cooling gas can be avoided.
- the reactive gas is not especially limited as long as it reacts with the film forming material.
- examples are an oxygen gas and a nitrogen gas.
- each of the hydrocarbon gas and the hydrogen gas does not normally react with the film forming material, it may react with the film forming material under special conditions, such as an atmosphere in which plasma is generated.
- the reactive gas containing oxygen is preferable.
- the oxygen easily reacts with the film forming material.
- the oxygen is removed by reacting with the vapor of the film forming material. Therefore, the deterioration of the degree of vacuum due to the introduction of the cooling gas can be suppressed most efficiently.
- introducing the reactive gas as the cooling gas only the reactive gas may be introduced, or a mixture of the reactive gas and the unreactive gas may be introduced.
- the unreactive gas is not especially limited.
- examples of the unreactive gas are a carbon dioxide gas, an argon gas, a helium gas, a neon gas, a xenon gas, and a krypton gas.
- a total amount of the cooling gas introduced when forming the first layer of the thin film be smaller than a total amount of the cooling gas introduced when forming any one of the second and subsequent layers of the thin film. If only the unreactive gas is introduced as the cooling gas when forming the first layer of the thin film, the floating vapor of the film forming material and the cooling gas does not react with each other, and the cooling gas is not removed. Therefore, the degree of vacuum tends to deteriorate.
- the total amount of the cooling gas introduced when forming the first layer of the thin film is reduced, and the total amount of the cooling gas introduced when forming each of the second and subsequent layers of the thin film is comparatively increased. With this, the cooling performance can be secured while avoiding the deterioration of the degree of vacuum.
- a film deposition rate when forming the first layer of the thin film be lower than the film deposition rate when forming any one of the second and subsequent layers of the thin film.
- the cooling gas is not introduced when forming the first layer of the thin film or in a case where the total amount of the cooling gas introduced is reduced when forming the first layer of the thin film, the substrate may not be adequately cooled down. Therefore, by decreasing the film deposition rate when forming the first layer of the thin film, the heat load applied to the substrate is reduced. If excessive heat load is applied to the substrate, the physical property of the substrate deteriorates. Therefore, when the cooling performance is low, it is preferable that the heat load applied to the substrate be reduced by reducing the film deposition rate.
- the thin film formed by the present invention may be formed only by the thin film material or may be formed by the thin film material and oxygen. The latter case is preferable since the change in quality of the thin film is small even by the introduction of the oxygen as the cooling gas.
- the gas which reacts with the film forming material is introduced as the cooling gas. Therefore, even if the cooling gas leaks from between the cooling body and the substrate, all or a part of the leaked cooling gas reacts with, for example, the vapor of the film forming material in the vacuum chamber. With this, since the cooling gas is consumed and removed from the atmosphere, the deterioration of the degree of vacuum due to the introduction of the cooling gas can be suppressed. Therefore, the gas cooling necessary for the film formation at a high film formation rate can be realized at low cost using simple equipment while securing adequate cooling performance and suppressing the deterioration of the degree of vacuum and the reduction in quality of the thin film due to the deterioration of the degree of vacuum. In addition, in accordance with the present invention, the deterioration of the substrate and the reduction in quality of the thin film due to high reactivity of the introduced cooling gas can be prevented.
- FIG. 1 is a configuration diagram of a film forming apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a perspective plan view of a cooling body of FIG. 1 .
- FIG. 3 is a cross-sectional view taken along line A-A of FIG. 2 and showing the cooling body
- FIG. 4( a ) is another configuration diagram of the cooling body of FIG. 1 .
- FIG. 4( b ) is a perspective view of a gas nozzle of FIG. 4( a ).
- FIG. 5 is yet another configuration diagram of the cooling body of FIG. 1 .
- FIG. 6 is a configuration diagram of the film forming apparatus according to Embodiment 2 of the present invention.
- FIG. 7 is a configuration diagram of the film forming apparatus according to Embodiment 3 of the present invention.
- FIG. 8 is a configuration diagram of the film forming apparatus according to Embodiment 4 of the present invention.
- FIG. 1 is a configuration diagram of a film forming apparatus 20 according to Embodiment 1 of the present invention.
- the film forming apparatus 20 according to Embodiment 1 of the present invention is configured such that cooling bodies 1 , a substrate 21 , a first core roller 23 , a plurality of feed rollers 24 , a metal mask 25 , a second core roller 26 , a film forming source 27 , shielding plates 29 , and film forming reaction gas introduction tubes 30 are accommodated in an internal space of a vacuum chamber 22 that is a pressure-resistant container-like member.
- Exhaust units 37 are externally provided under the vacuum chamber 22 to keep the inside of the vacuum chamber 22 in a pressure reduced state suitable for thin film formation.
- the exhaust units 37 are constituted by various vacuum exhaust systems, each including an oil diffusion pump, a cryopump, a turbo-molecular pump, or the like as a main pump.
- an oil diffusion pump each having a pump bore of 14 inches are included as the exhaust units 37 .
- separate exhaust units may be respectively connected to an upper space and lower space of the vacuum chamber 22 .
- the substrate 21 is a band-shaped elongated substrate, and examples of a material thereof are various metal foils, such as aluminum foils, copper foils, nickel foils, titanium foils, and stainless steel foils, various polymer films, such as polyethylene terephthalate, polyethylene naphthalate, polyamide, and polyimide, and a complex of the polymer film and the metal foil.
- the material of the substrate 21 is not limited to the above, and the band-shaped elongated substrate may be formed by using the other material.
- the substrate 21 be 50 to 1,000 mm in width and 3 to 150 ⁇ m in thickness. If the width of the substrate 21 is smaller than 50 mm, gas loss is large in a width direction of the substrate 21 during gas cooling. If the thickness of the substrate 21 is smaller than 3 ⁇ m, heat deformation of the substrate 21 tends to occur due to an extremely small heat capacity of the substrate 21 . However, the present invention can be applied to both cases.
- a transfer speed of the substrate 21 differs depending on the type of the thin film to be formed and conditions for the film formation, but is set to 0.1 to 500 m/min in Embodiment 1.
- a tension applied in the traveling direction of the substrate 21 being transferred is suitably selected depending on the material and thickness of the substrate 21 and process conditions, such as the film formation rate (film deposition rate).
- the first core roller 23 , the second core roller 26 , and the plurality of feed rollers 24 are roller-like members provided to be rotatable about corresponding shaft centers in the vacuum chamber 22 .
- the substrate 21 on which the film is not yet formed winds around the first core roller 23 , and the first core roller 23 supplies the substrate 21 to the closest feed roller 24 .
- the plurality of feed rollers 24 guide the substrate 21 , supplied from the core roller 23 , to a region where the film formation is carried out and further guide the substrate 21 , on which the film is formed in the middle of transfer, to the second core roller 26 .
- the second core roller 26 can be rotated by a drive unit (not shown).
- the second core roller 26 takes up and stores the substrate 21 on which the film is formed.
- the feed rollers 24 are provided between a first opening 31 a and a second opening 31 b on a transfer passage of the substrate 21 so as to be located around the core roller 26 (inverted structure). With this configuration, a surface of the substrate 21 which surface faces the film forming source 27 can be inverted. Therefore, when the substrate 21 passes the first opening 31 a , the deposition can be carried out on a front surface of the substrate 21 . When the substrate 21 passes the second opening 31 b , the deposition can be carried out on a rear surface of the substrate 21 . Therefore, in accordance with the deposition apparatus 20 , the deposited films can be continuously formed on both surfaces of the substrate 21 while maintaining the vacuum state in the vacuum chamber 22 .
- the metal mask 25 is formed at a center portion of the vacuum chamber 22 to have an inverted V shape.
- the metal mask 25 is provided parallel to the transfer passage of the substrate 21 so as to be close to a film formation surface (the front surface or the rear surface) of the travelling substrate 21 .
- the first opening 31 a and the second opening 31 b are respectively formed at a center of a left wing portion of the metal mask 25 and a center of a right wing portion of the metal mask 25 .
- the front surface of the substrate 21 denotes a surface on which the film is formed while the substrate 21 passes the opening 31 a of the metal mask 25 but is not formed while the substrate 21 passes the opening 31 b of the metal mask 25 .
- the rear surface of the substrate 21 denotes a surface on which the film is not formed while the substrate 21 passes the opening 31 a of the metal mask 25 but is formed while the substrate 21 passes the opening 31 b of the metal mask 25 .
- the film forming source 27 is provided at a position opposed to a concave portion of the metal mask 25 , that is, the film forming source 27 is provided in a space located on a vertically lower side of a lowermost portion of each of the openings 31 a and 31 b .
- One shielding plate 29 is joined to a lower end of the left wing portion of the metal mask 25 and an inner wall of the vacuum chamber 22
- another shielding plate 29 is joined to a lower end of the right wing portion of the metal mask 25 and the inner wall of the vacuum chamber 22 .
- the internal space of the vacuum chamber 22 is divided into an upper space 22 a and a lower space 22 b .
- a thin film forming region is formed in the lower space 22 b of the vacuum chamber 22 , and a region where deposition particles of a film forming material 18 emitted from the film forming source 27 contact the front surface or rear surface of the substrate 21 can be limited to the opening 31 a or 31 b .
- the first opening 31 a defines a first thin film forming region where the thin film is formed on the front surface of the substrate
- the second opening 31 b defines a second thin film forming region where the thin film is formed on the rear surface of the substrate.
- the film forming source 27 includes a container-like member 19 whose vertically upper portion opens and the film forming material 18 stored in the container-like member 19 .
- a heating unit (not shown), such as an electron gun, is provided in the vicinity of the film forming source 27 to heat and evaporate the film forming material 18 in the film forming source 27 .
- an evaporation crucible is used as the container-like member 19 .
- the film forming source 27 is not limited to the above, and various film forming sources may be used. For example, an evaporation source using resistance heating, induction heating, electron beam heating, or the like, an ion plating source, a sputtering source, or a CVD source may be used. Moreover, a combination of an ion source and a plasma source may be used as the film forming source 27 .
- film forming reaction gas introduction tubes 30 that are tubular members are respectively provided parallel to the left wing portion and right wing portion of the metal mask 25 .
- Each of upper end portions of the film forming reaction gas introduction tubes 30 is positioned in a space located on a vertically upper side of the evaporation crucible 19 and is positioned lower than the lowermost portion of the opening 31 a or 31 b of the metal mask 25 .
- Each of lower end portions of the film forming reaction gas introduction tubes 30 penetrates through the side wall of the vacuum chamber 22 to be connected to an external film forming reaction gas supplying unit (not shown), such as a gas bomb or a gas generator.
- a film forming reaction gas such as oxygen or nitrogen, is suitably supplied from the film forming reaction gas supplying unit through the film forming reaction gas introduction tubes 30 to the vapor of the film forming material 18 .
- the deposition particles of the film forming material 18 emitted from the film forming source 27 react with the film forming reaction gas to become oxide, nitride, or oxynitride and adhere to the front surface or rear surface of the substrate 21 .
- the adhered deposition particles are deposited to form the thin film on the front surface or rear surface of the substrate 21 .
- an oxygen gas is used as the film forming reaction gas.
- one cooling body 1 is provided between auxiliary rollers 28 to be close to a film non-formation surface of the traveling substrate 21 , the auxiliary rollers 28 being respectively arranged on an upper side and lower side of the opening 31 a of the metal mask 25
- another cooling body 1 is provided between auxiliary rollers 28 to be close to the film non-formation surface of the traveling substrate 21 , the auxiliary rollers 28 being respectively arranged on an upper side and lower side of the opening 31 b of the metal mask 25
- a pair of auxiliary rollers 28 are provided on a front side and rear side of the cooling body 1 along the transfer passage of the substrate 21 .
- the auxiliary rollers 28 contact the film non-formation surface of the substrate 21 .
- the material of the cooling body 1 is not especially limited.
- Examples of the material of the cooling body 1 are metals, such as copper, aluminum, and stainless steel, which can secure a worked shape, carbon, various ceramics, and engineering plastics.
- the metal such as copper or aluminum, having high heat conductivity, since such metal is unlikely to generate dust and excels in heat resistance and the temperature of such metal is easily uniformized.
- the cooling body 1 is cooled down by a cooling medium.
- the cooling medium is normally a liquid or a gas and is typically water.
- a cooling medium channel (not shown) is provided to contact the cooling body 1 or embedded in the cooling body 1 .
- the cooling medium passes through this channel to cool down the cooling body 1 .
- the material of the pipe is not especially limited, and a copper pipe, a stainless steel pipe, or the like may be used.
- the pipe may be welded to the cooling body 1 .
- the cooling medium channel may be formed by directly forming on the cooling body 1 a hole through which the cooling medium flows.
- FIG. 2 is a perspective plan view of the cooling body 1 when viewed from the film forming source 27 toward the vicinity of the opening 31 a or 31 b in FIG. 1 .
- FIG. 3 is a cross-sectional view taken along line A-A of FIG. 2 and showing the cooling body 1 .
- the cooling body 1 includes a manifold 32 , a large number of fine holes 33 extending from the manifold 32 to a cooling surface 11 , and a cooling gas introducing port 35 connected to the manifold 32 .
- the cooling gas introducing port 35 is connected to an external cooling gas supply source (not shown).
- the fine holes 33 connect the manifold 32 and the cooling surface (surface closer to the substrate 21 ) 11 of the cooling body 1 .
- the area of the surface of the cooling surface 11 is larger than the area of each of the openings 31 a and 31 b of the metal mask 25 .
- the cooling body 1 is provided such that the cooling surface 11 is opposed to the film non-formation surface of the substrate 21 and covers the entire opening 31 a or 31 b .
- the cooling gas is introduced from the cooling gas supply source (not shown) through the cooling gas introducing port 35 , the manifold 32 , the fine holes 33 , and the cooling surface 11 into between the cooling body 1 (or the cooling surface 11 ) and the substrate 21 .
- the introduced gas transfers the cold of the cooling body 1 to the substrate 21 to cool down the substrate 21 .
- the cooling gas supply source are a gas bomb and a gas generator.
- used as the cooling gas is an argon gas (unreactive gas) and/or the oxygen gas (reactive gas) that is the same as the film forming reaction gas.
- the temperature increase of the substrate 21 due to the radiation heat from the film forming source 27 and the heat energy of the deposition particles can be suppressed by cooling down the substrate 21 by the gas cooling. Therefore, the thin film can be stably formed.
- the configuration of the cooling body 1 is not limited to the above and may be the configuration shown in FIG. 4 or 5 .
- FIG. 4( a ) is another configuration diagram of the cooling body 1 of FIG. 1 .
- FIG. 4 ( b ) is a perspective view of gas nozzles 34 of FIG. 4( a ).
- a plurality of gas nozzles 34 each having a plurality of outlets 34 a and a flute-like shape are embedded in the cooling body 1 and are respectively connected to a plurality of cooling gas introducing ports 35 .
- FIG. 5 is yet another configuration diagram of the cooling body 1 of FIG. 1 .
- the cooling body 1 of FIG. 5 is different from the cooling body 1 of FIG. 3 in that two exhaust ports 36 are connected to the manifold 32 of the cooling body 1 so as to sandwich the cooling gas introducing port 35 . With this, a part of the cooling gas remaining between the cooling body 1 and the substrate 21 can be suctioned.
- the flow rate of the gas introduced into between the cooling body 1 and the substrate 21 can be increased under the same vacuum chamber pressure. Thus, the cooling efficiency can be further improved, and the temperature increase of the cooling gas can be suppressed.
- the gas introducing method is not limited to the above method, and any other method may be used as long as the cooling gas as a heat transfer medium can be controlled and introduced into between the cooling body 1 and the substrate 21 .
- a one-layer thin film or a multi-layer thin film can be formed on each of both surfaces of the substrate 21 .
- the one-layer thin film is formed on each of both surfaces of the substrate 21 .
- a two-layer thin film is formed on each of both surfaces of the substrate 21 .
- FIG. 6 is a configuration diagram of a film forming apparatus 40 according to Embodiment 2 of the present invention.
- the film forming apparatus 40 according to Embodiment 2 of the present invention is different from the apparatus shown in FIG. 1 in that the shape of a metal mask 45 is different, and openings 31 c , 31 d , 31 e , and 31 f of the metal mask 45 and the positions of the cooling bodies 1 are different.
- the same reference signs are used for the same components as in FIG. 1 , and explanations thereof are omitted.
- the metal mask 45 is formed at a center portion of the vacuum chamber 22 to have a substantially W shape.
- the metal mask 45 is provided parallel to the substrate 21 so as to be close to the film formation surface of the traveling substrate 21 .
- a concave portion of a center portion of the metal mask 45 has a sharply-angled shape. Bottom portions of the sharply-angled shape are respectively joined to bottom portions of wing portions located on left and right sides of the concave portion by the shielding plates 29 . Convex portions are formed on the left and right sides by two wing portions. Openings 31 d and 31 e are formed on the metal mask 45 at the same positions as in FIG. 1 , and openings 31 c and 31 f are respectively formed at centers of the left and right wing portions.
- the cooling bodies 1 are respectively provided at the openings 31 c , 31 d , 31 e , and 31 f so as to be opposed to the film non-formation surface of the substrate 21 .
- the thickness of the film formed on each of both surfaces of the substrate 21 by one round trip of the substrate 21 can become about twice the thickness of the film formed by the film forming apparatus 20 of FIG. 1 .
- the efficiency of the film formation can be increased.
- FIG. 7 is a configuration diagram of a film forming apparatus 60 according to Embodiment 3 of the present invention.
- the transfer passage of the substrate 21 in the vicinity of an opening 31 g is defined by an endless belt 70 .
- exhaust units 37 a and 37 b are respectively connected to the upper space 22 a and lower space 22 b of the vacuum chamber 22 (however, as with Embodiment 1, the exhaust units may be connected to only the lower space 22 b in Embodiment 3). Details will be explained below.
- the same reference signs are used for the same components as in FIG. 1 , and explanations thereof are omitted.
- a part of the transfer passage of the substrate 21 is defined by the endless belt 70 so as to extend along an outer peripheral surface of the endless belt 70 .
- the endless belt 70 is provided to extend between the cooling surface 11 and the substrate 21 .
- Through holes are formed on the endless belt 70 so as to extend in a thickness direction of the endless belt 70 .
- the substrate 21 is guided from the first core roller 23 through an upstream feed roller 24 , an upstream auxiliary roller 78 , the endless belt 70 , a downstream gap adjustment roller 77 , and a downstream auxiliary roller 78 to the second core roller 26 .
- a pair of auxiliary rollers 78 are respectively provided upstream and downstream of the endless belt 70 along the transfer passage of the substrate 21 .
- Each of the auxiliary rollers 78 is located on the transfer passage of the substrate 21 and at a position closest to the endless belt 70 . With this, a tension can be applied to the substrate 21 to prevent a distance between the substrate 21 and the endless belt 70 from increasing too much. As a result, the substrate 21 is appropriately in close contact with the endless belt 70 .
- a shielding plate 79 is provided between the film forming source 27 and the endless belt 70 .
- the thin film forming region on the surface of the substrate 21 is defined by the opening 31 g of the shielding plate 79 .
- a region which is not shielded by the shielding plate 79 is the thin film forming region on the surface of the substrate 21 , the thin film forming region being a region to which the material particles from the film forming source 27 can reach.
- the exhaust unit 37 a is connected to the upper space 22 a of the vacuum chamber 22
- the exhaust unit 37 b is connected to the lower space 22 b of the vacuum chamber 22 .
- the degree of vacuum in the upper space 22 a and the degree of vacuum in the lower space 22 b can be set to be different from each other. Therefore, to achieve excellent thin film quality, the degree of vacuum in the lower space 22 b including the thin film forming region can be set to be lower than the degree of vacuum in the upper space 22 a .
- Various vacuum pumps such as oil diffusion pumps, cryopumps, and turbo-molecular pumps, can be used as the exhaust units 37 a and 37 b . In the case of introducing a helium gas as the cooling gas, the oil diffusion pump and the turbo-molecular pump are preferable.
- FIG. 7 shows the cryopump or the turbo-molecular pump.
- the endless belt 70 will be explained in more detail.
- the endless belt 70 hangs between two cans 71 and travels by driving the cans 71 by a motor or the like.
- the transfer passage of the substrate 21 in the vicinity of the opening 31 g is defined along the outer peripheral surface of the endless belt 70 .
- a traveling speed of the endless belt 70 during the film formation is equal to the transfer speed of the substrate 21 by a substrate transfer mechanism including the core roller and the feed roller.
- the traveling speed of the endless belt 70 and the transfer speed of the substrate 21 may be slightly different from each other.
- the material of the endless belt 70 is not especially limited. In light of the heat resistance, a metal, such as stainless steel, titanium, molybdenum, copper, or titanium, is excellent.
- the endless belt 70 has a thickness of, for example, 0.1 to 1.0 mm. The endless belt 70 having such thickness is unlikely to deform by the radiation heat and the heat of vapor flow during the film formation and is soft such that the can 71 having a comparatively small diameter can be used.
- the endless belt 70 may include a resin layer formed on an outer peripheral surface contacting the substrate 21 .
- a metal belt lined by resin may be used as the endless belt 70 .
- the resin layer having excellent flexibility is provided on the surface of the endless belt 70 , the contact property between the endless belt 70 and the substrate 21 improves in a section where the endless belt 70 contacts the can 71 . Therefore, the cooling efficiency of the substrate 21 based on direct contact between the endless belt 70 and the substrate 21 improves.
- the substrate 21 is less likely to slide on the endless belt 70 , it is possible to prevent the rear surface of the substrate 21 from being damaged.
- the substrate 21 may be attached to the endless belt 70 by utilizing electrostatic force.
- the endless belt 70 is in close contact with the can 71 and is cooled down by the can 71 . With this, the effect of cooling the substrate 21 based on the direct contact between the endless belt 70 and the substrate 21 can be improved.
- a plurality of through holes are formed on the endless belt 70 so as to be lined up in a longitudinal direction (rotation direction) of the endless belt 70 at regular intervals. With this, the substrate 21 can be cooled down uniformly. Further, through holes are formed on the endless belt 70 along a plurality of columns in a width direction of the endless belt 70 at regular intervals. With this, the substrate 21 can be cooled down uniformly in both the longitudinal direction and the width direction. Therefore, uneven cooling is unlikely to occur on the surface of the substrate 21 , and an adequate cooling effect for the substrate 21 can be achieved.
- the arrangement of the through holes is not limited to the above and can be suitably changed.
- a groove-like through hole may be formed.
- the number of columns of the through holes is not limited to 2 or 3 and may be four or more, or may be 20 or more depending on circumstances.
- gap adjustment rollers 77 configured to adjust the width of the gap between the endless belt 70 and the cooling body 1 are provided on the cooling surface 11 of the cooling body 1 so as to slightly project from the cooling surface 11 .
- the width of the gap between the cooling surface 11 and the endless belt 70 can be maintained constant by the gap adjustment rollers 77 with high accuracy. As a result, it is possible to prevent the endless belt 70 from being damaged by the contact with the cooling surface 11 .
- the gap between the cooling surface 11 and the endless belt 70 is extremely reduced, and the pressure in the gap is maintained, the cooling gas is easily introduced into the through holes. In this case, since the adequate cooling effect can be obtained by a small amount of cooling gas, it is advantageous to suppress the pressure increase in the vacuum chamber 22 .
- gap adjustment roller 77 a roller made of a metal, such as stainless steel or aluminum, may be used.
- the surface of the gap adjustment roller 17 may be formed by rubber or plastic.
- the diameter of the gap adjustment roller 17 is set, for example, in a range from 5 to 100 mm in order to obtain adequate strength and not to take too much installation space.
- the one-layer thin film or the multi-layer thin film can be formed on one surface of the substrate 21 .
- the one-layer thin film is formed on one surface of the substrate 21 .
- the two-layer thin film can be formed on one surface of the substrate 21 .
- the multi-layer thin film can be arbitrarily formed on one surface of the substrate 21 .
- FIG. 8 is a configuration diagram of a film forming apparatus 80 according to Embodiment 4 of the present invention.
- the film forming apparatus 80 according to Embodiment 4 of the present invention is apparatus including only one opening and configured to form the film only on one surface of the substrate.
- the film forming apparatus 80 is different from that in FIG. 1 in that the inverted structure constituted by the feed rollers 24 , the metal mask 25 , the film forming reaction gas introduction tube 30 , and the like are not included.
- the same reference signs are used for the same components as in FIG. 1 , and explanations thereof are omitted.
- a shielding plate 89 is provided between the film forming source 27 and the substrate 21 .
- the thin film forming region on the surface of the substrate 21 is defined by an opening 31 h of the shielding plate 89 .
- a region which is not shielded by the shielding plate 89 is the thin film forming region on the surface of the substrate 21 , the thin film forming region being a region to which the material particles from the film forming source 27 can reach.
- the film forming reaction gas introduction tube 30 since the film forming reaction gas introduction tube 30 is not used, only the film forming material 18 adheres to the surface of the substrate 21 to form the thin film.
- the thin film can be formed by, for example, the oxide of the film forming material 18 by using the film forming reaction gas introduction tube 30 .
- the one-layer thin film can be formed only on one surface of the substrate 21 .
- the one-layer thin film is formed on one surface of the substrate 21 .
- the transfer direction of the substrate 21 is inverted, and the film formation is carried out again while transferring the substrate 21 from the second core roller 26 to the first core roller 23 .
- the two-layer thin film can be formed on one surface of the substrate 21 .
- the multi-layer thin film having an arbitrary thickness can be formed on one surface of the substrate 21 .
- Example 1 a silicon multi-layer thin film having a thickness of about 8 ⁇ m was formed on each of both surfaces of a current collector by vacuum deposition using the film forming apparatus 20 shown in FIG. 1 based on Embodiment 1.
- Used as the substrate 21 of the current collector was a roughened copper foil (produced by Furukawa Circuit Foil Co., Ltd., Thickness of 18 ⁇ m, Width of 100 mm).
- Used as the film forming material 18 was silicon.
- the cooling body 1 was formed by aluminum.
- the length of the cooling surface 11 in the width direction of the substrate 21 was 90 mm.
- the substrate transfer mechanism of the film forming apparatus 20 can carry out the round trip of the substrate.
- the substrate transfer mechanism can form a one-layer silicon thin film having a thickness of about 0.5 ⁇ m on each of both surfaces of the substrate 21 . Therefore, in Example 1, by repeatedly carrying out a film forming step of the round trip 16 times on the basis that the one-way trip was counted as once, the silicon multi-layer thin film having a thickness of about 8 ⁇ m was stacked and formed on each of both surfaces of the substrate 21 .
- the cooling body 1 was provided in the vacuum chamber 22 having a volume of 0.4 m 3 so as to be spaced apart from the substrate 21 by about 1 mm.
- the cooling body 1 was cooled down by cooling water of 10° C.
- the metal mask 25 having the openings, each of which was 200 mm in length in the traveling direction and 85 mm in length in the width direction, was provided so as to be spaced apart from the substrate 21 by about 2 mm.
- the film forming reaction gas was not introduced.
- silicon was molten by a 270-degree deflection electron beam evaporation source (produced by JEOL Ltd.) that was the heating unit.
- the molten silicon was irradiated with an electron beam having an accelerating voltage of ⁇ 10 kV and an emission current of 520 to 700 mA, and the generated vapor was supplied to the substrate 21 that was the copper foil.
- the thin film formation of a first layer on each of both surfaces of the substrate 21 was carried out by the emission current of 520 mA, the substrate transfer speed of 0.8 m/minute, and the film deposition rate of 35 nm/second without introducing the cooling gas.
- the thin film formation of second to sixteenth layers on each of both surfaces of the substrate 21 was carried out by an average emission current of 700 mA, the substrate transfer speed of 2.4 m/minute, and the film deposition rate of 100 nm/second. At this time, 120 sccm of the oxygen gas that was the cooling gas was introduced to each of two gaps between the cooling surface 11 and the substrate 21 .
- Example 1 high-temperature silicon deposition particles moved through the openings 31 a and 31 b of the metal mask 25 to adhere to the substrate 21 .
- the substrate 21 was cooled down by the cooling gas from the film non-formation surface side.
- the degree of vacuum in the vacuum chamber 22 was 0.003 Pa when the melting of the silicon was terminated and a molten surface was stabilized, about 0.004 Pa when the first layer of the silicon multi-layer thin film was formed, and about 0.012 Pa when the second to sixteenth layers were formed.
- the degree of vacuum in the vacuum chamber 22 was about 0.082 Pa. It was found from the above that the deterioration of the degree of vacuum was suppressed by introducing the oxygen gas as the cooling gas during the thin film formation as compared to a case where the film formation was not carried out. This may be because the oxygen gas was consumed by the reaction between the floating silicon vapor and the introduced oxygen gas and this improves the degree of vacuum.
- the influence on the substrate that is the copper foil by the introduction of the oxygen gas as the cooling gas was examined by discoloration of the copper foil confirmed visually and a stress-stretch property.
- the stress-stretch property (S-S curve) was measured by pulling a copper foil test piece at a rate of 50 mm/min, the copper foil test piece including a narrow-width portion having a width of 6 mm and a length of 40 mm.
- the strength of the substrate used was about 10 N/mm before the application of the heat load. It was found that the strength of the copper foil substrate subjected to a temperature higher than 400° C. significantly deteriorated.
- Example 1 since the film deposition rate when forming the first layer was about one third of the film deposition rate when forming the second to sixteenth layers, the heat load received by the substrate 21 that is the copper foil when forming the first layer was half the heat load or smaller when forming the second to sixteenth layers. On this account, even though the cooling gas was not introduced when forming the first layer, significant deterioration of the substrate 21 that was the copper foil due to the temperature increase did not occur. Moreover, since the oxygen gas as the cooling gas was introduced only when forming the second to sixteenth layers, the first layer was not oxidized and obtained a stable quality. Further, the heat load when forming the second to sixteenth layers was higher than the heat load when forming the first layer. However, since the cooling gas was introduced to adequately cool down the copper foil when forming the second to sixteenth layers, significant deterioration of the substrate 21 that was the copper foil due to the temperature increase did not occur.
- Example 1 since the oxygen gas as the cooling gas was introduced only when forming the second to sixteenth layers, the deterioration due to the oxidation of the exposed surface of the substrate 21 that was the copper foil was prevented.
- Example 1 most of the oxygen gas for cooling reacted with the silicon vapor during the film formation to be removed from the space of the vacuum chamber 22 . Therefore, the reduction in the degree of vacuum in the vacuum chamber 22 due to the introduction of the cooling gas was suppressed.
- the deterioration of the copper foil due to the temperature increase can be evaluated by, for example, the change in a mechanical physical value by the above-described pulling test.
- the copper foil deteriorated by heat shows the increase in stretch by a pulling load, the reduction in breaking strength, and the like. Since the silicon thin film used in a polar plate of a lithium secondary battery expands when absorbing lithium, the deterioration of these properties leads to the deformation or breakdown of the polar plate.
- Example 2 a silicon oxide multi-layer thin film having a thickness of about 15 ⁇ m was formed on each of both surfaces of the current collector by vacuum deposition using the film forming apparatus 40 shown in FIG. 6 based on Embodiment 2.
- Used as the substrate 21 of the current collector was a roughened copper foil (produced by Furukawa Circuit Foil Co., Ltd., Thickness of 18 ⁇ m, Width of 100 mm).
- Used as the film forming material 18 was silicon.
- the cooling body 1 was formed by aluminum whose surface was subjected to a black alumite treatment. The length of the cooling surface 11 in the width direction of the substrate 21 was 90 mm.
- the substrate transfer mechanism of the film forming apparatus 40 can carry out round trip of the substrate.
- the substrate transfer mechanism can form a one-layer silicon oxide thin film having a thickness of about 1 ⁇ m on each of both surfaces of the substrate 21 . Therefore, in Example 2, by repeatedly carrying out the film forming step of the round trip 15 times on the basis that the one-way trip was counted as once, the silicon oxide multi-layer thin film having a thickness of about 15 ⁇ m was stacked and formed on each of both surfaces of the substrate 21 .
- the cooling body 1 was provided in the vacuum chamber 22 having a volume of 0.4 m 3 so as to be spaced apart from the substrate 21 by about 0.5 mm.
- the cooling body 1 was cooled down by the cooling water of 10° C.
- the metal mask 45 having the openings, each of which was 150 mm in length in the traveling direction and 85 mm in length in the width direction, was provided so as to be spaced apart from the substrate 21 by about 2 mm.
- Example 2 before the silicon deposition particles adhered to the substrate 21 that was the copper foil, the silicon deposition particles were oxidized by introducing the oxygen gas into the openings 31 of the metal mask 45 from the film forming reaction gas introduction tube 30 provided on the film formation surface side of the substrate 21 . With this, the thin film was formed by the silicon oxide.
- silicon was molten by the 270-degree deflection electron beam evaporation source (produced by JEOL Ltd.) that was the heating unit.
- the molten silicon was irradiated with the electron beam having the accelerating voltage of ⁇ 10 kV and the emission current of 700 to 950 mA, and the generated vapor was supplied to the substrate 21 that was the copper foil.
- the thin film formation of the first layer on each of both surfaces of the substrate 21 was carried out by the emission current of 700 mA and the substrate transfer speed of 1.8 m/minute.
- 30 sccm of the oxygen gas as the film forming reaction gas was introduced from the film forming reaction gas introduction tube 30 (not shown) into each of the openings 31 c , 31 d , 31 e , and 31 f of the metal mask 45 , and the thin film formation of the first layer was carried out by the film deposition rate of 100 nm/second.
- 9 sccm of the argon gas as the cooling gas was introduced into each of four gaps between the cooling surface 11 and the substrate 21 .
- the thin film formation of the second to fifteenth layers on each of both surfaces of the substrate 21 was carried out by the average emission current of 950 mA, the substrate transfer speed of 3.6 m/minute, and the film deposition rate of 200 nm/second.
- 30 sccm of the oxygen gas as the film forming reaction gas was introduced from the film forming reaction gas introduction tube 30 into each of the openings 31 c , 31 d , 31 e , and 31 f of the metal mask 25 .
- 60 sccm of the oxygen gas and 9 sccm of the argon gas as the cooling gas were introduced to each of four gaps between the cooling surface 11 and the substrate 21 .
- Example 2 high-temperature silicon deposition particles oxidized by the oxygen gas as the film forming reaction gas passed through the openings 31 c , 31 d , 31 e , and 31 f of the metal mask 45 to adhere to the substrate 21 .
- the substrate 21 was cooled down by the argon gas from the film non-formation surface side.
- the substrate was cooled down by the argon gas and the oxygen gas from the film non-formation surface side.
- the degree of vacuum in the vacuum chamber 22 was 0.003 Pa when the melting of the silicon was terminated and the molten surface was stabilized, about 0.020 Pa when the first layer of the silicon oxide multi-layer thin film was formed, and about 0.028 Pa when the second to fifteenth layers were formed.
- the degree of vacuum in the vacuum chamber 22 was about 0.094 Pa.
- the oxidation degree x was 0.22 in a case where the cooling gas was not introduced (the introduction amount was 0 sccm)
- the oxidation degree x was 0.23 in a case where 280 sccm of the oxygen gas was introduced as the cooling gas. It was found from the above that the rate of rise of the oxidation degree x due to the introduction of the oxygen gas as the cooling gas was 0.0036 per 100 scm of the cooling gas.
- the rate of rise of the oxidation degree x due to the introduction of the oxygen gas as the cooling gas was just about one tenth of the rate of rise of the oxidation degree x due to the introduction of the oxygen gas as the film forming reaction gas.
- the influence on the quality of the thin film due to the introduction of the oxygen gas as the cooling gas was extremely slight.
- the oxidation degree x was measured.
- the oxidation degree x of the thin film obtained when the oxygen gas was introduced as the cooling gas and the oxidation degree x of the thin film obtained when the oxygen gas was not introduced as the cooling gas were substantially the same as each other. This also indicated that the quality of the thin film did not deteriorate due to the introduction of the oxygen gas as the cooling gas.
- the cooling gas having leaked from between the cooling surface 11 and the substrate 21 slightly increased the oxidation degree of the silicon oxide multi-layer thin film but did not significantly change the quality of the thin film, and the thin film was formed stably.
- the reason for this is not adequately clear, but the effect becomes larger if the gap between the metal mask 45 and the substrate 21 is narrower.
- the gap between the metal mask 45 and the substrate 21 is narrow, most of the cooling gas having leaked from between the cooling surface 11 and the substrate 21 does not flow to the lower space 22 b of the vacuum chamber 22 but spreads in the upper space 22 a of the vacuum chamber 22 .
- the oxidation degree of the silicon oxide multi-layer thin film is substantially determined by the oxygen gas introduced as the film forming reaction gas.
- Example 2 since the film deposition rate when forming the first layer was half the film deposition rate when forming the second to fifteenth layers, the heat load received by the substrate 21 that was the copper foil when forming the first layer was significantly smaller than the heat load when forming the second to fifteenth layers. On this account, only a small amount of argon gas as the cooling gas was introduced when forming the first layer, and significant deterioration of the substrate 21 that was the copper foil did not occur. Moreover, since the oxygen gas as the cooling gas was introduced only when forming the second to fifteenth layers, the first layer was low in the oxidation degree and obtained a stable quality. Further, the heat load when forming the second to fifteenth layers was higher than the heat load when forming the first layer. However, since a comparatively large amount of cooling gas was introduced to adequately cool down the copper foil, significant deterioration of the substrate 21 that was the copper foil due to the temperature increase did not occur.
- Example 2 since the oxygen gas as the cooling gas was introduced only when forming the second to sixteenth layers, the deterioration due to the oxidation of the exposed surface of the substrate 21 that was the copper foil was prevented.
- Example 2 In accordance with Example 2, most of the oxygen gas for cooling reacted with the silicon vapor during the film formation to be removed from the space of the vacuum chamber 22 . Therefore, the reduction in the degree of vacuum in the vacuum chamber 22 due to the introduction of the cooling gas was suppressed.
- the oxygen gas that is the same as the film forming reaction gas is used as the cooling gas during the thin film formation of the second and subsequent layers.
- Examples 1 and 2 have explained the thin film forming method of the present invention.
- the present invention is not limited to this.
- the same effects as above can be obtained by the other thin film forming method using as the cooling gas a gas which reacts with the film forming material.
- the film is formed on the substrate transferred linearly.
- the present invention is not limited to this.
- the film may be formed on the substrate 21 while causing the substrate 21 to travel along a cylindrical cooling can that is the cooling body 1 .
- the cooling gas can be supplied through holes or grooves formed on the surface of the cylindrical cooling can.
- the argon gas and the oxygen gas are used as the cooling gas.
- an inactive gas such as a helium gas, a neon gas, a xenon gas, or a krypton gas, or a hydrogen gas may be used as the cooling gas when and after forming the first layer.
- various hydrocarbon gases and nitrogen gases may be suitably selected and used as the cooling gas when forming the first layer or as the cooling gas when forming the second and subsequent layers depending on the substrate material and the film forming material.
- the method for forming the negative electrode for the lithium ion secondary battery has been explained as one specific application example.
- the present invention is not limited to this.
- a polar plate for an electrochemical capacitor can be formed by a similar configuration.
- the present invention is applicable to various fields, such as transparent electrode films, capacitors, decoration films, solar batteries, magnetic tape, gas barrier films, various sensors, various optical films, and hard protective membranes, which require high-speed stable film formation
- the cooling gas as the floating gas does not exist, and the deterioration of the degree of vacuum can be prevented.
- the gas cooling necessary for the film formation at a high film formation rate can be realized at low cost using simple equipment while securing adequate cooling performance and suppressing the deterioration of the degree of vacuum and the reduction in quality of the thin film due to the deterioration of the degree of vacuum.
- the deterioration of the substrate and the reduction in quality of the thin film by the introduced cooling gas can be prevented.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
-
- 1 cooling body
- 18 film forming material
- 19 evaporation crucible
- 20, 40, 60 film forming apparatus
- 21 substrate
- 22 vacuum chamber
- 22 a upper space
- 22 b lower space
- 23 core roller A
- 24 feed roller
- 25, 45 metal mask
- 26 core roller B
- 27 film forming source
- 29 shielding plate
- 30 film forming reaction gas introduction tube
- 31 a, 31 b, 31 c, 31 d, 31 e, 31 f, 31 g opening
- 32 manifold
- 33 fine hole
- 34 gas nozzle
- 34 a outlet
- 35 cooling gas introducing port
- 36 exhaust port
- 37, 37 a, 37 b exhaust unit
- 70 endless belt
- 71 can
- 77 gap adjustment roller
- 78 auxiliary roller
- 79 shielding plate
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-314025 | 2008-12-10 | ||
JP2008314025 | 2008-12-10 | ||
PCT/JP2009/006741 WO2010067603A1 (en) | 2008-12-10 | 2009-12-10 | Method for forming thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110281029A1 US20110281029A1 (en) | 2011-11-17 |
US9045819B2 true US9045819B2 (en) | 2015-06-02 |
Family
ID=42242596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/132,023 Expired - Fee Related US9045819B2 (en) | 2008-12-10 | 2009-12-10 | Method for forming thin film while providing cooling gas to rear surface of substrate |
Country Status (4)
Country | Link |
---|---|
US (1) | US9045819B2 (en) |
JP (1) | JP4562811B2 (en) |
CN (1) | CN102245800B (en) |
WO (1) | WO2010067603A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200123648A1 (en) * | 2017-12-27 | 2020-04-23 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Vacuum sputtering apparatus and its vacuum atmosphere exchange device |
US11492695B2 (en) | 2018-06-13 | 2022-11-08 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
US12091739B2 (en) | 2018-06-13 | 2024-09-17 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
US12091744B2 (en) | 2018-06-13 | 2024-09-17 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235968A (en) * | 2009-03-30 | 2010-10-21 | Sumitomo Metal Mining Co Ltd | Vacuum treatment apparatus |
KR101288129B1 (en) | 2011-07-13 | 2013-07-19 | 삼성디스플레이 주식회사 | Vapor deposition apparatus, method for vapor deposition and method for manufacturing organic light emitting display apparatus |
KR101328980B1 (en) * | 2011-07-13 | 2013-11-13 | 삼성디스플레이 주식회사 | Vapor deposition apparatus, method for vapor deposition and method for manufacturing organic light emitting display apparatus |
DE102013204730A1 (en) | 2013-03-18 | 2014-09-18 | Wacker Chemie Ag | Method of depositing polycrystalline silicon |
EP2784176B1 (en) * | 2013-03-28 | 2018-10-03 | Applied Materials, Inc. | Deposition platform for flexible substrates |
CA3072149A1 (en) * | 2017-08-10 | 2019-02-14 | Toyobo Co., Ltd. | Gas barrier film production method |
DE102018111105A1 (en) * | 2018-05-09 | 2019-11-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus for coating a band-shaped substrate |
JP7054055B2 (en) * | 2018-05-23 | 2022-04-13 | 住友金属鉱山株式会社 | Outgassing rolls, their manufacturing methods, and processing equipment using outgassing rolls |
US11193198B2 (en) * | 2018-12-17 | 2021-12-07 | Applied Materials, Inc. | Methods of forming devices on a substrate |
TWI839613B (en) * | 2020-06-04 | 2024-04-21 | 美商應用材料股份有限公司 | Temperature-controlled shield for an evaporation source, material deposition apparatus and method for depositing a material onto a substrate |
CN113308676B (en) * | 2021-05-25 | 2023-02-24 | 西安微电子技术研究所 | Cavity treatment method for aluminum-silicon-copper thick metal film physical vapor deposition |
CN113463021B (en) * | 2021-06-30 | 2023-05-30 | 武汉华星光电半导体显示技术有限公司 | Cooling device and cooling method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4428980A (en) * | 1981-07-31 | 1984-01-31 | Ulvac Seimaku Kabushiki Kaisha | Method for forming an inhomogeneous optical layer |
EP0311302A1 (en) | 1987-10-07 | 1989-04-12 | THORN EMI plc | Apparatus and method for the production of a coating on a web |
JPH04369531A (en) | 1991-06-18 | 1992-12-22 | Kubota Corp | Apparatus for manufacturing thermosetting resin foamed plate |
JPH06145982A (en) | 1992-11-06 | 1994-05-27 | Matsushita Electric Ind Co Ltd | Thin film forming device |
US20050008778A1 (en) * | 2001-11-27 | 2005-01-13 | Koji Utsugi | Device and method for vacuum film formation |
JP2005054212A (en) | 2003-08-07 | 2005-03-03 | Toray Ind Inc | Method and apparatus for manufacturing base material with thin film deposited thereon |
JP2006089782A (en) * | 2004-09-22 | 2006-04-06 | Mitsubishi-Hitachi Metals Machinery Inc | Substrate cooling apparatus and substrate cooling method |
JP4369531B2 (en) | 2008-02-20 | 2009-11-25 | パナソニック株式会社 | Thin film forming apparatus and thin film forming method |
US20100272901A1 (en) | 2007-12-05 | 2010-10-28 | Yasuharu Shinokawa | Thin film forming apparatus and thin film forming method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8025985B2 (en) * | 2005-08-11 | 2011-09-27 | E. I. Du Pont De Nemours And Company | Porous metallized sheets coated with an inorganic layer having low emissivity and high moisture vapor permeability |
-
2009
- 2009-12-10 WO PCT/JP2009/006741 patent/WO2010067603A1/en active Application Filing
- 2009-12-10 CN CN200980149376.6A patent/CN102245800B/en not_active Expired - Fee Related
- 2009-12-10 JP JP2010519296A patent/JP4562811B2/en not_active Expired - Fee Related
- 2009-12-10 US US13/132,023 patent/US9045819B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4428980A (en) * | 1981-07-31 | 1984-01-31 | Ulvac Seimaku Kabushiki Kaisha | Method for forming an inhomogeneous optical layer |
EP0311302A1 (en) | 1987-10-07 | 1989-04-12 | THORN EMI plc | Apparatus and method for the production of a coating on a web |
JPH04369531A (en) | 1991-06-18 | 1992-12-22 | Kubota Corp | Apparatus for manufacturing thermosetting resin foamed plate |
JPH06145982A (en) | 1992-11-06 | 1994-05-27 | Matsushita Electric Ind Co Ltd | Thin film forming device |
US20050008778A1 (en) * | 2001-11-27 | 2005-01-13 | Koji Utsugi | Device and method for vacuum film formation |
JP2005054212A (en) | 2003-08-07 | 2005-03-03 | Toray Ind Inc | Method and apparatus for manufacturing base material with thin film deposited thereon |
JP2006089782A (en) * | 2004-09-22 | 2006-04-06 | Mitsubishi-Hitachi Metals Machinery Inc | Substrate cooling apparatus and substrate cooling method |
US20100272901A1 (en) | 2007-12-05 | 2010-10-28 | Yasuharu Shinokawa | Thin film forming apparatus and thin film forming method |
JP4369531B2 (en) | 2008-02-20 | 2009-11-25 | パナソニック株式会社 | Thin film forming apparatus and thin film forming method |
Non-Patent Citations (2)
Title |
---|
Machine Translation of JP 2005054212 A. * |
Machine Translation of JP 2006089782 A. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200123648A1 (en) * | 2017-12-27 | 2020-04-23 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Vacuum sputtering apparatus and its vacuum atmosphere exchange device |
US11492695B2 (en) | 2018-06-13 | 2022-11-08 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
US12091739B2 (en) | 2018-06-13 | 2024-09-17 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
US12091744B2 (en) | 2018-06-13 | 2024-09-17 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
Also Published As
Publication number | Publication date |
---|---|
CN102245800B (en) | 2013-07-24 |
WO2010067603A1 (en) | 2010-06-17 |
US20110281029A1 (en) | 2011-11-17 |
CN102245800A (en) | 2011-11-16 |
JP4562811B2 (en) | 2010-10-13 |
JPWO2010067603A1 (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9045819B2 (en) | Method for forming thin film while providing cooling gas to rear surface of substrate | |
US9340865B2 (en) | Thin film-manufacturing apparatus,thin film-manufacturing method,and substrate-conveying roller | |
US8697582B2 (en) | Substrate conveying roller, thin film manufacturing device, and thin film manufacturing method | |
US20100272901A1 (en) | Thin film forming apparatus and thin film forming method | |
CN101946021B (en) | Thin film forming apparatus and thin film forming method | |
JP5895179B2 (en) | Substrate transport roller, thin film manufacturing apparatus, and thin film manufacturing method | |
JP5807216B2 (en) | Thin film manufacturing method | |
US20120009349A1 (en) | Thin film forming device and thin film forming method | |
JP5058396B1 (en) | Thin film manufacturing method and manufacturing apparatus | |
US20100272887A1 (en) | Thin film forming apparatus and thin film forming method | |
US20150333289A1 (en) | Method for producing transparent gas barrier film, apparatus for producing transparent gas barrier film, and organic electroluminescence device | |
JP2011058079A (en) | Apparatus and method for forming thin film | |
JP2009209438A (en) | Thin film forming apparatus | |
TW202417665A (en) | Processing apparatus for processing a flexible substrate and methods therefor | |
JP2010255045A (en) | Thin-film-forming apparatus and thin-film-forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PANASONIC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONDA, KAZUYOSHI;SHINOKAWA, YASUHARU;YAGI, HIROMASA;AND OTHERS;SIGNING DATES FROM 20110405 TO 20110408;REEL/FRAME:026682/0581 |
|
AS | Assignment |
Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:034194/0143 Effective date: 20141110 Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:034194/0143 Effective date: 20141110 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20190602 |
|
AS | Assignment |
Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED APPLICATION NUMBERS 13/384239, 13/498734, 14/116681 AND 14/301144 PREVIOUSLY RECORDED ON REEL 034194 FRAME 0143. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:056788/0362 Effective date: 20141110 |