JPS6316555A - Manufacture of non-sintered type electrode - Google Patents

Manufacture of non-sintered type electrode

Info

Publication number
JPS6316555A
JPS6316555A JP61159001A JP15900186A JPS6316555A JP S6316555 A JPS6316555 A JP S6316555A JP 61159001 A JP61159001 A JP 61159001A JP 15900186 A JP15900186 A JP 15900186A JP S6316555 A JPS6316555 A JP S6316555A
Authority
JP
Japan
Prior art keywords
tank
nickel
nickel hydroxide
salt
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61159001A
Other languages
Japanese (ja)
Other versions
JPH079809B2 (en
Inventor
Hiroshi Kawano
川野 博志
Shoichi Ikeyama
正一 池山
Yasuko Ito
康子 伊藤
Munehisa Ikoma
宗久 生駒
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61159001A priority Critical patent/JPH079809B2/en
Publication of JPS6316555A publication Critical patent/JPS6316555A/en
Publication of JPH079809B2 publication Critical patent/JPH079809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To stabilize the density of a filled active material and its utilization so as to lessen the variation in the capacity of a battery by using a mixture of two kind of nickel hydroxide powders obtained by fixing the concentration of supplied salt, the flow (residence period in a tank), and the temperature in the tank, and changing the PH relue in the tank. CONSTITUTION:In a step for successively taking nickel hydroxide out formed by thoroughly stirring solutions of nickel salt and caustic alkali together in the same tank, two kind of nickel hydroxide powders having different tapping densities and particle sizes are thus obtained by fixing the concentration of supplyed salt, the flow (residence period in a tank), and the temperature in the tank, and changing the PH value in the tank. By mixing them, the filling rate approaches the closest level and the tapping density is made large. The tapping density can thus be stabilized so that variation in the filling density is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池用ニッケル正極に適用しうる非
焼結式電極の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a non-sintered electrode applicable to a nickel positive electrode for an alkaline storage battery.

従来の技術 従来この種のアルカリ蓄電池用ニッケル正極に使用する
非焼結式ニッケル正極は、水酸化ニッケル粉末を活物質
として直接使用する正極にはニッケル塩水溶液に化学量
論的に過剰で一定量のか性アルカリを加え、水酸化二・
フケルとして沈澱析出させて製造する方法、すなわち、
水酸化ニッケルをバッチ式で製造している。この方法に
よると、製造工程が連続化されないため、製造コストが
高くなる欠点を有している。また、電池用活物質として
特性の優れたものにするため、結晶をある程度成長させ
、安定化する目的で一定時間熟成する必要がある。この
方法にかわり、本発明者等は連続的に水酸化ニッケルを
製造する方法を提案してきた。すなわち、同一槽内へ、
ニッケル塩溶液とか性アルカリ溶液を導入して十分撹拌
しながら、供給塩濃度、供給塩流量、槽内温度及び槽内
PH値を一定に保持して、上部より形成された水酸化ニ
ッケルを取り出す方法を提案した。この方法によると連
続的に水酸化ニッケルを製造することが可能になるが、
この材料を用いて電池用電極として評価した場合、活物
質の充てん密度、活物質利用率の変動する範囲が大きく
なることが明らかになった。
Conventional technology Conventionally, the non-sintered nickel positive electrode used in this type of nickel positive electrode for alkaline storage batteries uses nickel hydroxide powder directly as an active material. Add caustic alkali and dihydroxide
A method of manufacturing by precipitation as a fluorine, that is,
Nickel hydroxide is manufactured in a batch process. According to this method, the manufacturing process is not continuous, so it has the disadvantage of increasing manufacturing costs. In addition, in order to make the material excellent in properties as an active material for batteries, it is necessary to grow crystals to a certain extent and mature for a certain period of time for the purpose of stabilization. In place of this method, the present inventors have proposed a method for continuously producing nickel hydroxide. In other words, into the same tank,
A method of introducing a nickel salt solution or an alkaline solution, stirring thoroughly, keeping the supply salt concentration, supply salt flow rate, tank temperature, and tank pH value constant, and taking out the nickel hydroxide formed from the upper part. proposed. This method makes it possible to continuously produce nickel hydroxide, but
When this material was evaluated as a battery electrode, it became clear that the range of variation in the packing density of the active material and the active material utilization rate became large.

発明が解決しようとする問題点 このような従来の構成では、長期間作動させた場合、安
定な水酸化ニッケル粉末が得られにくい。
Problems to be Solved by the Invention With such a conventional configuration, it is difficult to obtain stable nickel hydroxide powder when operated for a long period of time.

すなわち、前述した連続的に水酸化ニッケルを製造する
方法で、供給塩濃度、供給塩流量、槽内温度及び槽内P
H値の4項目条件を固定して得られた水酸化ニッケルを
使用して構成したニッケル正極は、放電容量のバラツキ
が大きくなることが認められた。水酸化ニッケルを製造
する装置を短時間作動させた場合はこの傾向は少なかっ
たが、長期に亘って作動させた場合の変動が大きくなっ
た。
That is, in the method of continuously producing nickel hydroxide described above, the concentration of the supplied salt, the flow rate of the supplied salt, the temperature in the tank, and the P in the tank
It was found that the nickel positive electrode constructed using nickel hydroxide obtained by fixing the four H value conditions had a large variation in discharge capacity. This tendency was small when the equipment for producing nickel hydroxide was operated for a short time, but the fluctuations became large when the equipment was operated for a long time.

この原因としてはP)(値の変動幅が増大することによ
り、形成された水酸化ニッケル粉末のタッピング密度が
変化して、電極にした場合、活物質充てん密度、充てん
容量、活物質利用率などが変動することが明らかになっ
た。したがって、長期間作動させた場合でも水酸化ニッ
ケル粉末のタッピング密度を一定にする必要がある。し
かし、PH値の変動幅を長期間安定させることは現実的
には不可能に近いという問題があった。
The reason for this is P) (As the value fluctuation range increases, the tapping density of the formed nickel hydroxide powder changes, and when used as an electrode, the active material filling density, filling capacity, active material utilization rate, etc.) It has become clear that the tapping density of nickel hydroxide powder fluctuates.Therefore, it is necessary to keep the tapping density of nickel hydroxide powder constant even during long-term operation.However, it is realistic to stabilize the fluctuation range of the PH value over a long period of time. The problem was that it was almost impossible.

本発明はこのような問題点を解決するもので、電極を構
成した場合の活物質充てん密度、活物質利用率などを安
定させ、電池容量の変動を少なくすることを目的とする
ものである。
The present invention is intended to solve these problems, and aims to stabilize the active material packing density, active material utilization rate, etc. when forming an electrode, and reduce fluctuations in battery capacity.

問題点を解決するための手段 この問題点を解決するために本発明は、非焼結式ニッケ
ル正極の活物質である水酸化ニッケルの製法として、ニ
ッケル塩の水溶液とか性アルカリ水溶液とを同一槽内に
導入して十分撹拌し、形成された水酸化ニッケルを連続
的に取り出す工程において、供給塩濃度、供給塩流量(
槽内滞溜時間)及び槽内温度を固定して、槽内PH値を
変化させて得られた2種類の水酸化ニッケル粉末を得る
ものである。この方法によりタッピング密度1粒度分布
の異なる粉末が得られ、2種類の粉末を混合することに
より、最密光てんに近くなり、タッピング密度が大きく
なる。したがって、夕・ンピング密度は高位安定化が可
能になり、電極を構成した場合、充てん密度の変動が少
なくできるものである。
Means for Solving the Problem In order to solve this problem, the present invention provides a method for producing nickel hydroxide, which is the active material of a non-sintered nickel positive electrode, by combining an aqueous solution of nickel salt and an aqueous alkaline solution in the same tank. In the process of introducing nickel hydroxide into the solution and thoroughly stirring it, and then continuously taking out the formed nickel hydroxide, the concentration of the supplied salt, the flow rate of the supplied salt (
Two types of nickel hydroxide powders are obtained by fixing the tank residence time) and the tank temperature and changing the tank pH value. By this method, powders with different tapping densities and particle size distributions can be obtained, and by mixing two types of powders, the powder approaches the closest density and the tapping density increases. Therefore, the packing density can be stabilized at a high level, and when the electrode is constructed, fluctuations in the packing density can be reduced.

作  用 この構成により、タッピング密度が両者の各々のタッピ
ング密度より大きくなった結果を第1図に示す。この図
において、Aの粉末として、タッピング密度が1.65
 、1.76f//ccのものにBの粉末(タッピング
密度1.40!j/cc)を10重量%混合したタッピ
ング密度はそれぞれ1.89 、1.9B7/ccK増
大した。したがって、Aの粉末が設定値より低いタッピ
ング密度が得られた場合にはBの粉末を一定量混合する
ことにより、所定のタッピング密度が得られる。
Effect: With this configuration, the tapping density is greater than each of the two tapping densities, as shown in FIG. 1. In this figure, for powder A, the tapping density is 1.65.
, 1.76 f//cc mixed with 10% by weight of powder B (tapping density 1.40!j/cc) increased the tapping density by 1.89 and 1.9B7/ccK, respectively. Therefore, when powder A has a tapping density lower than the set value, a predetermined tapping density can be obtained by mixing a certain amount of powder B.

以下、本発明を実施例で詳述する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 水酸化ニッケルを製造する析出槽としては、100Jの
タンクを用いて、ニッケル塩、か性アルカリ水溶液とし
ては各々180g/lのニッケル金属を溶解した硝酸ニ
ッケルと、2o重量%の水酸化ナトリウム水溶液を用い
た。このタンク内へ6肖酸ニツケルの水溶液を1.5J
/hrの一定量で導入し、槽内温度を40℃一定に保ち
、十分撹拌しながら、水酸化ナトリウムの水溶液を一定
範囲内のPH値を保持するために間欠的に添加した。ま
た、形成された水酸化ニッケルは上部よりオーバフロー
させて取り出した。この方法により得られた水酸化ニッ
ケルを電池用活物質として評価した場合、P)(値が1
0.6±0.1の範囲が良好であることは、すでに本発
明者等が提案している。このPH値の範囲内で1ケ月間
連続作動させた結果、得られた水酸化ニッケル粉末のタ
ッピング密度は、1.7〜1.96I/cc  の範囲
で変動したこの粉末をAとする。また、PH値を10.
8±0.1の範囲で1ケ月作動させた水酸化ニッケル粉
末のタッピング密度は1.36〜1.42!j/CCで
比較的安定な数値が得られた。これをB粉末とする。以
上のようにして得られたA、B2種類の粉末を第1表に
示す重量比率で混合した時の夕・ソピング密度を示す。
Example A 100 J tank was used as a precipitation tank for producing nickel hydroxide, and nickel salt and caustic alkali aqueous solution were each mixed with nickel nitrate in which 180 g/l of nickel metal was dissolved, and 20% by weight of sodium hydroxide. An aqueous solution was used. Add 1.5J of an aqueous solution of nickel 6-phosphate into this tank.
/hr, the temperature inside the tank was kept constant at 40° C., and while stirring sufficiently, an aqueous solution of sodium hydroxide was added intermittently to maintain the pH value within a certain range. Further, the formed nickel hydroxide was taken out by overflowing from the upper part. When the nickel hydroxide obtained by this method was evaluated as an active material for batteries, the value of P) (1
The present inventors have already proposed that the range of 0.6±0.1 is good. As a result of continuous operation for one month within this pH value range, the tapping density of the obtained nickel hydroxide powder varied within the range of 1.7 to 1.96 I/cc, and this powder is designated as A. Also, the pH value was set to 10.
The tapping density of nickel hydroxide powder operated for one month in the range of 8±0.1 was 1.36 to 1.42! A relatively stable value was obtained for j/CC. This is called Powder B. The powder density when the two types of powders A and B obtained as described above were mixed at the weight ratio shown in Table 1 is shown.

つぎに、第1表2〜5に示す混合粉末4種類と、Aの粉
末単独でタッピング密K 1.95 、1.9211.
85 、1.76 、1.70 の6種類の合計9種類
の粉末を用いて、電極を試作して特性を比較した。
Next, using the four mixed powders shown in Tables 2 to 5 and the powder A alone, tapping density K 1.95, 1.9211.
Prototype electrodes were manufactured using 6 types of powders, 85%, 1.76%, and 1.70%, and their characteristics were compared.

9種類の粉末それぞれ100!iに対して、金属コバル
)El混合して、水を加えペースト状にし、発泡状ニッ
ケル多孔体(多孔度96%)に充てんし、乾燥後、一定
条件で加圧プレスを行ない非焼結式ニッケル正極を得た
。この正極を用い、負極として公知のカドミウム負極と
組み合せ、公称容量700mAh のAAサイズの密閉
形ニッケルカドミウム蓄電池を構成した。
100 each for 9 types of powder! For i, mix El (metallic cobal), add water to make a paste, fill it into a foamed nickel porous body (porosity 96%), and after drying, press under certain conditions to create a non-sintered type. A nickel positive electrode was obtained. This positive electrode was used in combination with a known cadmium negative electrode as a negative electrode to construct an AA size sealed nickel-cadmium storage battery with a nominal capacity of 700 mAh.

この電池を20℃一定温度で0.10で20時間充電し
、0.20で放電を繰りかえした。2サイクル目の放電
容量(終止電圧を1vにした場合)で電池特性を評価し
た。これらの結果を第2表に示す。
This battery was charged at a constant temperature of 20°C for 20 hours at a temperature of 0.10, and discharged at a temperature of 0.20. The battery characteristics were evaluated based on the discharge capacity at the second cycle (when the final voltage was set to 1 V). These results are shown in Table 2.

第2表の結果より明らかなように、A粉末単独で使用し
た場合、電極への活物質充てん密度は660〜605 
mAh/cc  になり、電池の放電容量は801〜8
62 mAh の範囲で変動し、前者は±3.9%、後
者は±3.7%の変動幅が生じた。しかし、本発明によ
ると電極への活物質充てん密度は692〜60smAh
/cc  になり、電池の放電容量は844〜866m
Ah  の範囲で変動し、変動幅はいずれも±1.3%
になり、容逼変動が少ない品質の安定した電池が得られ
た。
As is clear from the results in Table 2, when powder A is used alone, the packing density of the active material in the electrode is 660 to 605.
mAh/cc, and the discharge capacity of the battery is 801~8
It varied within a range of 62 mAh, with a variation range of ±3.9% for the former and ±3.7% for the latter. However, according to the present invention, the active material filling density in the electrode is 692 to 60 smAh.
/cc, and the discharge capacity of the battery is 844 to 866 m.
It fluctuates within the range of Ah, and the fluctuation range is ±1.3% in both cases.
As a result, a battery with stable quality and less fluctuation in capacity was obtained.

実施例においては、容量変動の少なくすることを目的に
して示したが、本発明は単独の条件で析出させた水酸化
ニッケルよりもさらに大きなタッピング密度を有する粉
末が得られる。この粉末を用いることにより、充てん密
度の大きな電極が得られ、高容量の電池が可能になるこ
とも示唆している。また実施例では一種類の水酸化ニッ
ケル粉末を製造する場合、ニッケル塩濃度、ニッケル塩
供給量(析出槽内に滞溜している時間)及び析出温度を
固定して比較したが、これらの条件を変更することは可
能である。しかしその時にはPH値も連動して変化させ
る必要がある。したがってPH値だけを規正することは
困難で、4項目を関連づけて決定する必要がある。一方
、使用するニッケル塩の種類を変更しても、上記4項目
を限定することにより、最適条件が存在することを確認
した。したがって、本発明は水溶性のニッケル塩、たと
えば硫酸ニッケル、塩化ニッケルでも適用できる。さら
に、実施例においては発泡状ニッケル多孔体へ充てんし
て電極を構成する例を示したが、金属基板としてニッケ
ルネット、エキスバンドメタルなどの両面に塗着する方
法により得られるニッケル正極、及び多数の細孔を有す
る金属ケース内へ充てんして得られるポケット式ニッケ
ル極においても本発明は有効な手段であった。
In the examples, the purpose was to reduce the variation in capacity, but the present invention provides a powder having an even greater tapping density than nickel hydroxide precipitated under single conditions. It is also suggested that by using this powder, electrodes with high packing density can be obtained, making it possible to create high-capacity batteries. In addition, in the example, when manufacturing one type of nickel hydroxide powder, the nickel salt concentration, nickel salt supply amount (time spent in the precipitation tank), and precipitation temperature were fixed, but these conditions It is possible to change. However, at that time, it is necessary to change the pH value as well. Therefore, it is difficult to regulate only the PH value, and it is necessary to determine the PH value in association with the four items. On the other hand, it was confirmed that even if the type of nickel salt used was changed, optimal conditions existed by limiting the above four items. Therefore, the present invention is also applicable to water-soluble nickel salts such as nickel sulfate and nickel chloride. Furthermore, in the example, an example was shown in which an electrode was constructed by filling a foamed nickel porous material, but a nickel positive electrode obtained by coating both sides of a nickel net, expanded metal, etc. as a metal substrate, and a large number of The present invention was also an effective means for a pocket-type nickel electrode obtained by filling a metal case with pores.

発明の効果 以上のように本発明によれば、Aの条件で1ケ月連続作
動させて得られたタッピング密度の変動した水酸化ニッ
ケルに別の条件Bで製造した水酸化ニッケルを混合する
ことにより、タッピング密度が高位平準化する。従って
電池に構成した場合は放電容量も高位平準化するという
効果が得られる。
Effects of the Invention As described above, according to the present invention, by mixing nickel hydroxide produced under different conditions B with nickel hydroxide with varying tapping density obtained by continuous operation for one month under conditions A. , the tapping density is leveled to a high level. Therefore, when configured in a battery, the effect of leveling out the discharge capacity to a high level can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタッピング密度の異なる水酸化ニッケルの混合
比率とタッピング密度との関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a diagram showing the relationship between the mixing ratio of nickel hydroxides having different tapping densities and the tapping density. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (2)

【特許請求の範囲】[Claims] (1)水酸化ニッケル粉末を主体とする粉末混合物を乾
燥状態もしくはペースト状態で金属基板または支持体内
部に充てんした非焼結式ニッケル正極であって、使用す
る水酸化ニッケル粉末が、ニッケル塩の水溶液とか性ア
ルカリ水溶液を同一槽内に導入して十分撹拌し、形成さ
れた水酸化ニッケルを連続的に取り出す工程において、
供給塩濃度、供給塩流量(槽内滞溜時間)及び槽内温度
を固定して、槽内PHを変化させて得られた2種類の水
酸化ニッケルを混合して用いることを特徴とする非焼結
式電極の製造法。
(1) A non-sintered nickel positive electrode in which a powder mixture mainly composed of nickel hydroxide powder is filled in a metal substrate or support in a dry or paste state, and the nickel hydroxide powder used is a nickel salt. In the process of introducing an aqueous solution or a caustic alkali aqueous solution into the same tank, thoroughly stirring it, and continuously taking out the formed nickel hydroxide,
A non-containing method characterized by using a mixture of two types of nickel hydroxide obtained by changing the pH in the tank while fixing the supply salt concentration, the supply salt flow rate (residence time in the tank), and the tank temperature. Manufacturing method for sintered electrodes.
(2)ニッケル塩が硝酸ニッケルであって、硝酸ニッケ
ル水溶液濃度、供給量及び槽内温度が一定の時、PH値
が10.4〜10.6と10.7〜10.9の2種類の
PH値で制御して得られた水酸化ニッケルを混合して使
用する特許請求の範囲第1項に記載の非焼結式電極の製
造法。
(2) When the nickel salt is nickel nitrate, and the concentration of the nickel nitrate aqueous solution, the supply amount, and the temperature in the tank are constant, there are two types of pH values: 10.4 to 10.6 and 10.7 to 10.9. The method for manufacturing a non-sintered electrode according to claim 1, wherein nickel hydroxide obtained by controlling the pH value is mixed and used.
JP61159001A 1986-07-07 1986-07-07 Non-sintered electrode manufacturing method Expired - Lifetime JPH079809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61159001A JPH079809B2 (en) 1986-07-07 1986-07-07 Non-sintered electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159001A JPH079809B2 (en) 1986-07-07 1986-07-07 Non-sintered electrode manufacturing method

Publications (2)

Publication Number Publication Date
JPS6316555A true JPS6316555A (en) 1988-01-23
JPH079809B2 JPH079809B2 (en) 1995-02-01

Family

ID=15684061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159001A Expired - Lifetime JPH079809B2 (en) 1986-07-07 1986-07-07 Non-sintered electrode manufacturing method

Country Status (1)

Country Link
JP (1) JPH079809B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0523284A2 (en) * 1991-07-08 1993-01-20 Matsushita Electric Industrial Co., Ltd. Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
EP0649818A1 (en) 1993-10-20 1995-04-26 Nikko Rica Co., Ltd. Method for the preparation of nickel hydroxide particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0523284A2 (en) * 1991-07-08 1993-01-20 Matsushita Electric Industrial Co., Ltd. Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
US5700596A (en) * 1991-07-08 1997-12-23 Matsushita Electric Industrial Co., Ltd. Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
EP0649818A1 (en) 1993-10-20 1995-04-26 Nikko Rica Co., Ltd. Method for the preparation of nickel hydroxide particles

Also Published As

Publication number Publication date
JPH079809B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
EP0337029A2 (en) Nickel electrode for alkaline battery and battery using said nickel electrode
JPH09139206A (en) Method of manufacturing high dense nickel hydroxide that is used for rechargeable alkali storage battery
JPH09237630A (en) Active material and positive electrode for alkali storage battery
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
EP0809309A1 (en) Positive plate active material for alkaline storage battery and positive electrode
JPH10125318A (en) Positive active material and positive electrode for alkaline storage battery
JPH1160245A (en) Production of double structured nickel hydroxide
JPH0350384B2 (en)
JPS6316555A (en) Manufacture of non-sintered type electrode
JPH1167200A (en) Manufacture of high-density nickel hydroxide active material
JP3463337B2 (en) Method for producing nickel hydroxide for positive electrode material
JPS6316556A (en) Manufacture of non-sintered type electrode
JP3594322B2 (en) Non-sintered nickel positive electrode for alkaline storage battery and method for producing the same
JPH01187765A (en) Manufacture of nickel electrode for alkaline battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS64787B2 (en)
JP3287165B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JP2765028B2 (en) Sealed alkaline battery
JPH05254847A (en) Production of nickel hyroxide powder for nickel electrode
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH02109261A (en) Active material for nickel electrode, nickel electrode, and alkaline battery using this electrode
JPH0917429A (en) Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
JP3407983B2 (en) Method for producing non-sintered positive electrode for alkaline storage battery
JPH0613075A (en) Nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term