JPS63164013A - Magneto-resistance type thin film magnetic head - Google Patents

Magneto-resistance type thin film magnetic head

Info

Publication number
JPS63164013A
JPS63164013A JP31218886A JP31218886A JPS63164013A JP S63164013 A JPS63164013 A JP S63164013A JP 31218886 A JP31218886 A JP 31218886A JP 31218886 A JP31218886 A JP 31218886A JP S63164013 A JPS63164013 A JP S63164013A
Authority
JP
Japan
Prior art keywords
mre
bias
magnetic
bias conductor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31218886A
Other languages
Japanese (ja)
Inventor
Takahisa Aoi
青井 孝久
Yuji Nagata
裕二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31218886A priority Critical patent/JPS63164013A/en
Publication of JPS63164013A publication Critical patent/JPS63164013A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • G11B5/3987Specially shaped layers with provision for closing the magnetic flux during operation

Abstract

PURPOSE:To prevent the production of a magnetic wall in the operating region in an MRE by arranging the magneto-resistance element (MRE) having a minute gap very close to a closed magnetic path and a bias conductor to the lower face without being protruded from the MRE in the projection of the shape. CONSTITUTION:A sense current in the MRE 58 is fed from lead terminals 62, 63 and since a gap G is provided, the current flows only through a straight line part 59 of the MRE 58. A bias conductor 54 is arranged to the lower face of the MRE 58 while clipping an insulation film and the bias magnetic field to the MRE 58 is generated by giving a DC bias current from the lead terminals 52, 53. Thus, the sensitivity and linearity of the straight line part 59 of the MRE 58 are improved. The bias current flows through the straight line part 55 only by the presence of the gap (g) of the bias conductor 54 and does not flows through L-shaped parts 56, 57. The background part of the MRE 58 is smoothed by the shape of the bias conductor 54. Moreover, when the MRE 58 is not produced from the shape and size of the bias conductor 54, no step difference nor ruggedness is caused and stable magnetic wall structure is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は薄膜微細加工技術を駆使して、狭トラツク、狭
ギャップさらにはマルチトラック化を実現できる磁気抵
抗型薄膜磁気ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetoresistive thin film magnetic head that can realize narrow tracks, narrow gaps, and even multi-tracks by making full use of thin film microfabrication technology.

従来の技術 最近、磁気記録装置において、トラック密度の向上に伴
うトラック幅の短縮と磁気テープ走行速度の低速化など
から、再生ヘッドとして磁気抵抗素子(以後MREと呼
ぶ)′ff:使った磁気抵抗型薄膜ヘッド(以後MRヘ
ッドと呼ぶ)が広く使用されている。代表的構造を第3
図に示す。第3図においてフェライトなどの磁性基板1
o上にAd。
BACKGROUND OF THE INVENTION Recently, magnetic recording devices have been using magnetoresistive elements (hereinafter referred to as MREs) as playback heads due to the shortening of track widths and slowing down of magnetic tape running speeds due to improved track density. type thin film heads (hereinafter referred to as MR heads) are widely used. The third representative structure
As shown in the figure. In Fig. 3, a magnetic substrate 1 such as ferrite
Ad on o.

Au、Cu  などのバイアス導体11が配置される。A bias conductor 11 made of Au, Cu, etc. is arranged.

バイアス導体11上には5i02 などの絶縁膜を介し
てパーマロイ(Ni−Fe合金)やN1−Go金合金ど
で構成されるMRE12が形成される。MRE12の形
状は短冊状であり、成膜方法としては磁場中蒸着法など
が使われ、そのトラック幅方向が磁化容易軸となるよう
に一軸磁気異方性を訪超せしめている。13はフロント
ヨーク、14はバックヨークでパーマロイ、センダスト
、アモルファス合金膜などの高透磁率を有する軟磁性膜
で形成される。フロントヨーク13とバックヨーク14
とによってMRE12のほぼ中央上部に相互に分離され
たウィンド16を形成する。MRK12の両端子にはM
RIC:12にセンス電流を流すリード端子16.17
が設けられる。以上の構成はいわゆるヨーク型MRヘッ
ドと呼ばれるもので、磁気テープ18に近接し、上記磁
気テープ18に記録されている情報を読み出すものであ
る。
An MRE 12 made of permalloy (Ni-Fe alloy), N1-Go gold alloy, etc. is formed on the bias conductor 11 via an insulating film such as 5i02. The MRE 12 has a rectangular shape, and a magnetic field evaporation method is used to form the film, and uniaxial magnetic anisotropy is achieved so that the track width direction becomes the axis of easy magnetization. 13 is a front yoke, and 14 is a back yoke, which is made of a soft magnetic film having high magnetic permeability such as permalloy, sendust, or amorphous alloy film. Front yoke 13 and back yoke 14
A window 16 separated from each other is formed approximately at the upper center of the MRE 12. Both terminals of MRK12 have M
Lead terminal 16.17 that flows sense current to RIC:12
is provided. The above configuration is what is called a yoke type MR head, which is placed close to the magnetic tape 18 and reads information recorded on the magnetic tape 18.

MRE12の動作は以下の通りである。即ち磁気テープ
18からの信号磁束はフロントヨーク13を通ってMR
E12に導かれ、MRE12の磁化を回転させ、これに
従ってMRE12の抵抗が変化する。この時、MRE1
2にリード端子16.17を通じてセンス電流Isを流
しておくとMR1C12の抵抗変化は電圧変化に変換さ
れ検知される。
The operation of the MRE 12 is as follows. That is, the signal magnetic flux from the magnetic tape 18 passes through the front yoke 13 to the MR
E12 rotates the magnetization of the MRE 12, and the resistance of the MRE 12 changes accordingly. At this time, MRE1
When a sense current Is is caused to flow through the lead terminals 16 and 17 of the MR1C12, the resistance change of the MR1C12 is converted into a voltage change and detected.

一般にMRE12の抵抗変化ΔRは、センス電流工、の
向きと、MRE12の磁化の向きとが成す角度を0、最
大抵抗変化をΔRmaxとした時ΔR−ΔRcosO・
・・・・・(1)m&x で表わせる。またMRE12内の信号磁束” s i 
g。
In general, the resistance change ΔR of the MRE 12 is ΔR − ΔRcosO, where the angle between the sense current direction and the magnetization direction of the MRE 12 is 0, and the maximum resistance change is ΔRmax.
...(1) It can be expressed as m&x. Also, the signal magnetic flux inside MRE12
g.

MRE12の飽和磁束密度をBsとした時、近似的に sinθ”Bs1g/Bs         −−(2
)が成立し、(1)式、(2)式より ΔR=ΔRmax (’  (Bs1g/ Bs ) 
 )が導かれる。即ち理論的にはMRE12の抵抗変化
ΔRは第4図のような抵抗変化を示す。MRE12の抵
抗変化による出力を高度化及び直線応答化する目的で、
磁気平衡点を第4図Bの位置にする必要がある。このた
めバイアス導体11に直流バイアス電流が流され、これ
によって生じる磁界ヲハイアス磁界としている。
When the saturation magnetic flux density of MRE12 is Bs, approximately sin θ”Bs1g/Bs --(2
) is established, and from equations (1) and (2), ΔR=ΔRmax (' (Bs1g/Bs )
) is guided. That is, theoretically, the resistance change ΔR of the MRE 12 shows a resistance change as shown in FIG. In order to improve the output due to resistance change of MRE12 and make it linearly responsive,
It is necessary to set the magnetic equilibrium point at the position shown in FIG. 4B. For this reason, a DC bias current is passed through the bias conductor 11, and the magnetic field generated thereby is a bias magnetic field.

発明が解決しようとする問題点 しかしながら、高密度記録を実現する上で、トラック幅
を小さくしてトラック密度の増大を図ることが考えられ
る。この時MREが微小パターン化されると不連続な磁
壁移動に起因するパルクツ・ウゼンノイズが生じ、再生
出力の品質劣化を招くと言う問題があった。即ち、消磁
状態のMRICは多数の磁区を有しており、第6図はそ
の長手方向に磁化容易軸を有する短冊状のMRICの磁
区構造の一例を示すものである。この例では、磁化容易
軸方向に互いに反平行の磁化を有する2つの主磁区20
.21と還流磁区と呼ばれる2つの磁区22.23i有
し、MRK全体としての磁化を有していない構造となっ
ている。この結果、磁気テープからの信号磁界がMRI
Cに作用すると、上記磁区が変則的な移動によるパルク
ツ・ウゼンノイズを発生する。この様子を第6図に示す
。同図において、N、〜N4はパルクツ・ウゼンノイズ
が発生している個所である。このバルクハウゼンノイズ
は広い周波数領域にわたるノイズ分布を有し、再生信号
のS/Ni劣化せしめる大きな要因となっていた。
Problems to be Solved by the Invention However, in order to realize high-density recording, it is conceivable to increase the track density by reducing the track width. At this time, when the MRE is formed into a minute pattern, there is a problem in that noise is generated due to discontinuous domain wall movement, leading to deterioration in the quality of the reproduced output. That is, an MRIC in a demagnetized state has a large number of magnetic domains, and FIG. 6 shows an example of the magnetic domain structure of a strip-shaped MRIC having an axis of easy magnetization in the longitudinal direction. In this example, two main magnetic domains 20 have antiparallel magnetization to each other in the easy axis direction.
.. 21 and two magnetic domains 22 and 23i called reflux magnetic domains, and the MRK as a whole has no magnetization. As a result, the signal magnetic field from the magnetic tape is
When acting on C, the magnetic domain generates noise due to irregular movement. This situation is shown in FIG. In the figure, N to N4 are locations where the noise is generated. This Barkhausen noise has a noise distribution over a wide frequency range, and has been a major factor in deteriorating the S/Ni of the reproduced signal.

本発明は、前記バルクハウゼンノイズの発生を除去し、
低ノイズ化を図ったMRヘッドを提供するものである。
The present invention eliminates the occurrence of the Barkhausen noise,
The present invention provides an MR head with low noise.

問題点を解決するための手段 この目的を達成するために本発明のMRヘッドは、閉磁
路構造に極めて近い間隙Gを有するMREを形成し、さ
らに上記MRICにバイアス磁界を印加するためのバイ
アス導体形状をほぼ上記MRE形状に近いものとし、M
RKが完全にバイアス導体上に配置された構成となって
いる。
Means for Solving the Problems In order to achieve this object, the MR head of the present invention forms an MRE having a gap G very close to a closed magnetic circuit structure, and further includes a bias conductor for applying a bias magnetic field to the MRIC. The shape is almost similar to the above MRE shape, and M
The structure is such that RK is completely placed on the bias conductor.

作用 この構成によって本発明のMRE及びバイアス導体との
組合わせにより、バルクハウゼンノイズを大幅に低減す
ることができる。即ち、MREはその長手方向の両端距
離が間隙Gを有する極めて閉磁路に近い構造であること
から、外部磁界が作用しない時、消磁状態では4つの磁
区にそれぞれ磁化を有し、MREの4ケ所のコーナ部の
みに900磁壁を発生する。この90°磁壁は極めて安
定で外部磁界H6エがある所定の方向から印加されても
H6Xが磁気テープ上の信号磁界程度であれば移動する
ことはない。従って不連続な磁壁移動に起因するパルク
ツ・ウゼンノイズを除去することが可能である。
Effect: This configuration, in combination with the MRE and bias conductor of the present invention, can significantly reduce Barkhausen noise. That is, since the MRE has a structure that is very close to a closed magnetic circuit with a gap G between both ends in the longitudinal direction, when no external magnetic field acts, each of the four magnetic domains has magnetization in the demagnetized state, and the four locations of the MRE A 900 domain wall is generated only at the corner. This 90° domain wall is extremely stable and will not move even if an external magnetic field H6 is applied from a certain direction as long as H6X is about the same as the signal magnetic field on the magnetic tape. Therefore, it is possible to remove the noise caused by discontinuous domain wall movement.

次にバイアス導体の形状作用について述べる。Next, the effect of the shape of the bias conductor will be described.

MRICは例えばNi−Fe合金から成る厚さ300人
〜500人の薄膜で形成され磁壁発生には、MREの下
地表面の平滑性に極めて影響される。
The MRIC is formed of a thin film of Ni--Fe alloy, for example, with a thickness of 300 to 500 mm, and the generation of domain walls is extremely influenced by the smoothness of the underlying surface of the MRE.

特にMREの下地に微細な段差や凹凸が存在すると、そ
の個所の上位面に位置するMRE内には複雑な磁壁が生
じることとなる。一般にMRヘッドではバイアス磁界用
のバイアス導体を絶縁膜をはさんでMRKの下部面に形
成する必要がある。この時、MREを下部面に投影した
時その一部がバイアス導体からはみ出すと、MRICの
はみ出し部には段差が発生する。本発明のバイアス導体
は、MREI完全に包み込む形状で、はぼMREと相似
形状とし、MRKのはみ出しを防いでいる。
In particular, if there is a fine step or unevenness on the base of the MRE, a complicated domain wall will be generated in the MRE located on the upper surface of the area. Generally, in an MR head, it is necessary to form a bias conductor for a bias magnetic field on the lower surface of the MRK with an insulating film interposed therebetween. At this time, when a part of the MRE is projected onto the lower surface and protrudes from the bias conductor, a step is generated in the protruding portion of the MRIC. The bias conductor of the present invention has a shape that completely envelops the MREI and has a similar shape to the MRE, thereby preventing the MRK from protruding.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の磁気抵抗型薄膜磁気ヘッド
を示すものである。第1図において、強磁性フェライト
基板50上の全面に、5i02などの絶縁膜61が付着
されている。この絶縁膜51上にリード端子52 、s
3i有するバイアス導体64がバターニングされている
。バイアス導体54の主要構成はリード端子部を除いて
直線部55と、それぞれの一端を間隙gをへたてたL字
部56.57とから成っている。バイアス導体54上に
絶縁膜(図示せず)を介してMR1!:5Bが間隙Gi
有する極めて閉磁路に近い構造で形成されている。この
MRK68はバイアス導体54上にはみ出すことなく直
線部59と5字部60゜61を形成するようにパターニ
ングされている。
FIG. 1 shows a magnetoresistive thin film magnetic head according to an embodiment of the present invention. In FIG. 1, an insulating film 61 such as 5i02 is deposited on the entire surface of a ferromagnetic ferrite substrate 50. In FIG. Lead terminals 52 and s are provided on this insulating film 51.
3i bias conductor 64 is patterned. The main structure of the bias conductor 54, excluding the lead terminal portion, consists of a straight portion 55 and L-shaped portions 56 and 57, each having one end separated by a gap g. MR1! on the bias conductor 54 via an insulating film (not shown). :5B is the gap Gi
The structure is very similar to a closed magnetic circuit. The MRK 68 is patterned to form a straight portion 59 and a 5-shaped portion 60°61 without protruding onto the bias conductor 54.

62.63はMRE58へセンス電流を流すリード端子
である。MRK5Bの形成手法は従来の短冊状のものと
同様に磁場中蒸着法音用い、材料はNi−Fe合金であ
る。MR]1C58の直線部59は上記磁場中蒸着によ
り、磁化容易軸64の方向がトラック幅方向と一致する
様に制御される。MREssの直線部59の上部に絶縁
膜(図示せず)をはさんで、フロントヨーク65とバッ
クヨーク66のそれぞれの一端がMRK58の直線部6
9にオーバーラツプする如く形成される。上記ヨーク材
には高透磁率を有する軟磁性膜としてパーマロイ、セン
ダスト、アモルファス合金膜なトカ使用される。トラッ
ク幅Twはフロントヨーク65のバターニング時に設定
される0この後、パッジベージジン膜としての5102
膜やム1203膜或いはSiO膜(図示せず)が形成さ
れ、磁気テープとの摺動面が所定の形状に加工、ラッピ
ングされ、いわゆるヨーク型MRヘッドが完成する。
62 and 63 are lead terminals through which a sense current flows to the MRE 58. The method of forming MRK5B is the same as the conventional strip-shaped one, using the magnetic field evaporation method, and the material is Ni-Fe alloy. The straight portion 59 of MR]1C58 is controlled by the above-mentioned deposition in the magnetic field so that the direction of the axis of easy magnetization 64 coincides with the track width direction. An insulating film (not shown) is sandwiched over the straight part 59 of the MREss, and one end of each of the front yoke 65 and the back yoke 66 is connected to the straight part 6 of the MRK 58.
It is formed so as to overlap with 9. For the above-mentioned yoke material, a soft magnetic film having high magnetic permeability such as Permalloy, Sendust, or an amorphous alloy film is used. The track width Tw is set at the time of patterning the front yoke 65. After this, 5102
A film 1203 film or a SiO film (not shown) is formed, and the sliding surface with the magnetic tape is processed and lapped into a predetermined shape, thereby completing a so-called yoke type MR head.

以上の様に構成されたMRヘッドにおいて、磁気テープ
からの信号磁束はフロントヨーク66→MRE58の直
線部59→バツクヨーク66→基板50の経路で流れる
0この経路の中で、信号磁束がMRF、58の直線部5
9’jli:横切ることで、MREssの抵抗変化を発
生させ、磁気テープに書き込まれた情報が検知される0
この時バイアス導体には、バイアス電流、MRIC:5
8にはセンス電流が加えられていることは言うまでもな
い0MRK58内でのセンス電流は、リード端子62゜
63により加えられるが、間隙(、(i7有することが
らMRIC:5Bの直線部59のみに流れる。すなわち
MRIC68の動作領域は直線部69のみである。
In the MR head configured as described above, the signal magnetic flux from the magnetic tape flows through the path of the front yoke 66 -> the straight part 59 of the MRE 58 -> the back yoke 66 -> the substrate 50. In this path, the signal magnetic flux flows through the MRF, 58 Straight line part 5
9'jli: Crossing causes a change in resistance of MREss, and information written on the magnetic tape is detected.
At this time, the bias conductor has a bias current, MRIC: 5
It goes without saying that a sense current is applied to 0MRK58, but the sense current in MRK58 is applied by the lead terminals 62 and 63, but since there is a gap (i7), it flows only to the straight part 59 of MRIC: 5B. In other words, the operating region of the MRIC 68 is only the straight portion 69.

MRK5Bの下部面には絶縁膜をはさんでバイアス導体
54が設置されている。リード端子52゜63により直
流のバイアス電流を流すことで、MRE6Bへのバイア
ス磁界を発生せしめ、MREssの直線部69の感度と
直線性の向上を図っている。この時バイアス電流はバイ
アス導体54の間隙gの存在により直線部55のみに流
れ、5字部66.57には流れない。このバイアス導体
54の形状により、MRK5Bの下地は平坦化される。
A bias conductor 54 is installed on the lower surface of the MRK5B with an insulating film interposed therebetween. By passing a DC bias current through the lead terminals 52 and 63, a bias magnetic field is generated to the MRE 6B, thereby improving the sensitivity and linearity of the straight portion 69 of the MREss. At this time, the bias current flows only to the straight portion 55 due to the presence of the gap g in the bias conductor 54, and does not flow to the 5-shaped portions 66 and 57. The shape of the bias conductor 54 flattens the base of the MRK5B.

さらにMRK5Bがバイアス導体64の形状寸法からは
み出すことがなければ、MREssには段差や凹凸が発
生せず、第2図に示したような安定な磁壁構造となる。
Furthermore, if the MRK5B does not protrude from the shape and dimensions of the bias conductor 64, no steps or irregularities will occur in the MREss, resulting in a stable domain wall structure as shown in FIG.

以上の構造により、MRK58の直線部69には磁壁を
有していないから、パルクツ・ウゼンノイズは除去され
良好な再生信号が得られる。またバイアス導体54及び
MRE58にはそれぞれ閉回路に近い形状となっている
が、その回路の一部に間隙grczk有している。この
結果バイアス電流。
With the above structure, since the straight portion 69 of the MRK 58 does not have a magnetic domain wall, the park noise is removed and a good reproduced signal can be obtained. Further, although the bias conductor 54 and the MRE 58 each have a shape close to a closed circuit, there is a gap grczk in a part of the circuit. This results in a bias current.

センス電流は、5字部60.61には流れず、直線部5
9のみに流れ、MRE5Bの直線部59における実効的
動作領域の抵抗変化効率とバイアス効率を高めることが
できる。
The sense current does not flow through the figure 5 portion 60, 61, but through the straight portion 5.
9, the resistance change efficiency and bias efficiency in the effective operating region in the straight portion 59 of the MRE 5B can be increased.

なお本実施例は1トラツク構成で説明したが、複数トラ
スフ構造においても同様な効果が得られる0 発明の効果 本発明は、閉磁路に極めて近い微小間隙を有するMRE
と、この形状を投影した状態において上記MREをはみ
出すことなく、その下部面にバイアス導体を配置するこ
とにより、MRE内の動作領域に磁壁の発生を防ぐこと
ができる。従って磁気テープから信号磁界が加わっても
、MRE内の不連続な磁壁移動に起因するバルクハウゼ
ンノイズが発生せず、高S/Hの再生信号が得られる。
Although this embodiment has been explained using a one-track configuration, the same effect can be obtained even in a multiple-truss structure.Advantageous Effects of the Invention The present invention provides an MRE having a micro gap extremely close to a closed magnetic path.
By arranging the bias conductor on the lower surface of the MRE without protruding from the MRE when this shape is projected, it is possible to prevent the generation of domain walls in the operating region within the MRE. Therefore, even when a signal magnetic field is applied from the magnetic tape, Barkhausen noise caused by discontinuous domain wall movement within the MRE does not occur, and a reproduced signal with a high S/H can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における磁気抵抗型薄膜磁気
ヘッドの斜視図、第2図はMRT!−とバイアス導体の
形状とMRE内の消磁時の磁壁及び磁化状態の概要を示
す平面図、第3図は従来の磁気抵抗効果型薄膜磁気ヘッ
ドの斜視図、第4図はMREの磁界強度と抵抗変化を示
す理論特性図、第6図は従来の短冊状MRKの消磁時の
磁化状態の一例を示す平面図、第6図はパルクツ・ウゼ
ンノイズを発生する微小パターンMREの磁界強度と抵
抗変化を示す特性図である。 60・・・・・・基板、54・・・・・・バイアス導体
、58・・・・・・磁気抵抗素子、55.69・・・・
・・直線部、66゜57.80.61・・・・・・L字
部、62.63・・・・・・リード744子、65−フ
ロントヨーク、66・・・・・・バックヨーク。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名5θ
−基板 乞−゛バイアス譚ネト 65°°−フロントヨーク 第4図 第5図 2:/ 2θ
FIG. 1 is a perspective view of a magnetoresistive thin film magnetic head according to an embodiment of the present invention, and FIG. 2 is an MRT! 3 is a perspective view of a conventional magnetoresistive thin film magnetic head, and 4 is a plan view showing the shape of the bias conductor and the domain wall and magnetization state during demagnetization in the MRE. Theoretical characteristic diagram showing resistance changes. Figure 6 is a plan view showing an example of the magnetization state of a conventional strip-shaped MRK during demagnetization. Figure 6 shows the magnetic field strength and resistance change of a micropattern MRE that generates Parkz-Usen noise. FIG. 60... Substrate, 54... Bias conductor, 58... Magnetoresistive element, 55.69...
...Straight line part, 66°57.80.61...L-shaped part, 62.63...Lead 744, 65-front yoke, 66...back yoke. Name of agent: Patent attorney Toshio Nakao and one other person 5θ
- Substrate requirement - Bias angle 65° - Front yoke Figure 4 Figure 5 2: / 2θ

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に強磁性金属材料から成る磁気抵抗素子と
前記磁気抵抗素子にセンス電流を流す一対のリード端子
と、前記磁気抵抗素子にバイアス磁界を印加するバイア
ス導体とを具備し、磁気記録媒体からの信号磁束を前記
磁気抵抗素子の抵抗変化として検知するための磁気ヘッ
ドであって、前記磁気抵抗素子はその長手方向の両端が
微小間隙Gを有する極めて閉磁路に近い形状となし、か
つ絶縁膜を挾んで前記バイアス導体上に設置されている
ことを特徴とする磁気抵抗型薄膜磁気ヘッド。
(1) A magnetoresistive element made of a ferromagnetic metal material, a pair of lead terminals for passing a sense current through the magnetoresistive element, and a bias conductor for applying a bias magnetic field to the magnetoresistive element are provided on a substrate, and magnetic recording is possible. A magnetic head for detecting signal magnetic flux from a medium as a change in resistance of the magnetoresistive element, wherein the magnetoresistive element has a shape extremely close to a closed magnetic path with a minute gap G at both longitudinal ends thereof, and A magnetoresistive thin film magnetic head, characterized in that it is placed on the bias conductor with an insulating film sandwiched therebetween.
(2)磁気抵抗素子の微小間隙部の下面に位置するバイ
アス導体路に微小間隙g(≦G)を有することを特徴と
する特許請求の範囲第1項記載の磁気抵抗型薄膜磁気ヘ
ッド。
(2) A magnetoresistive thin film magnetic head according to claim 1, characterized in that the bias conductor path located on the lower surface of the microgap portion of the magnetoresistive element has a microgap g (≦G).
JP31218886A 1986-12-26 1986-12-26 Magneto-resistance type thin film magnetic head Pending JPS63164013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31218886A JPS63164013A (en) 1986-12-26 1986-12-26 Magneto-resistance type thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31218886A JPS63164013A (en) 1986-12-26 1986-12-26 Magneto-resistance type thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS63164013A true JPS63164013A (en) 1988-07-07

Family

ID=18026275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31218886A Pending JPS63164013A (en) 1986-12-26 1986-12-26 Magneto-resistance type thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS63164013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505041A2 (en) * 1991-03-20 1992-09-23 Hitachi, Ltd. Magnetic sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196417A (en) * 1985-02-25 1986-08-30 Matsushita Electric Ind Co Ltd Thin film magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196417A (en) * 1985-02-25 1986-08-30 Matsushita Electric Ind Co Ltd Thin film magnetic head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505041A2 (en) * 1991-03-20 1992-09-23 Hitachi, Ltd. Magnetic sensor
EP0505041A3 (en) * 1991-03-20 1993-09-08 Hitachi, Ltd. Magnetic sensor
US5351027A (en) * 1991-03-20 1994-09-27 Hitachi, Ltd. Magnetic sensor

Similar Documents

Publication Publication Date Title
US4803580A (en) Double-gap magnetoresistive head having an elongated central write/shield pole completely shielding the magnetoresistive sensor strip in the read gap
JPH08185612A (en) Mr head and its production
US5792547A (en) Low noise magnetic head for high frequency recording
US5475550A (en) Enhanced cross-talk suppression in magnetoresistive sensors
US5669133A (en) Method of making a magnetoresistive sensor
US5959809A (en) Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus
JPS63164013A (en) Magneto-resistance type thin film magnetic head
JPS61196418A (en) Thin film magnetic head
JPS61196417A (en) Thin film magnetic head
JPS61134913A (en) Magnetoresistance type thin film head
JP2583851B2 (en) Magnetoresistive magnetic head
JP3160947B2 (en) Magnetoresistive magnetic head
JPS60119618A (en) Thin film magnetic head
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JPH08203032A (en) Magneto-resistance effect reproducing head
JPH026490Y2 (en)
JP3565925B2 (en) Magnetoresistive head
JP2559109B2 (en) Yoke type thin film magnetic head
JPS6134577Y2 (en)
JP3039482B2 (en) Magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPS61134912A (en) Thin film type magnetic head
JPH0115927B2 (en)
JPH06267036A (en) Thin film magnetic head
JPH05182146A (en) Thin-film magnetic head
JPH0810486B2 (en) Magnetoresistive magnetic head