JPS60119618A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS60119618A
JPS60119618A JP22812583A JP22812583A JPS60119618A JP S60119618 A JPS60119618 A JP S60119618A JP 22812583 A JP22812583 A JP 22812583A JP 22812583 A JP22812583 A JP 22812583A JP S60119618 A JPS60119618 A JP S60119618A
Authority
JP
Japan
Prior art keywords
film
segment
magnetic
magnetization
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22812583A
Other languages
Japanese (ja)
Other versions
JPH048852B2 (en
Inventor
Sadaichi Miyauchi
貞一 宮内
Toru Kira
吉良 徹
Mitsuhiko Yoshikawa
吉川 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP22812583A priority Critical patent/JPS60119618A/en
Priority to US06/577,389 priority patent/US4639806A/en
Priority to DE19843404273 priority patent/DE3404273A1/en
Priority to GB08403588A priority patent/GB2146482B/en
Publication of JPS60119618A publication Critical patent/JPS60119618A/en
Publication of JPH048852B2 publication Critical patent/JPH048852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To make Barkhausen jump noise small by covering surface of a rectangular magneto-resistance effect element with plural beltlike ferromagnetic thin films of high coercive force in parallel and oblique in longitudinal direction. CONSTITUTION:Magnetic coupling force (called ferromagnetic exchange coupling) that tends to make mutal magnetization parallel is generated at a place where a CoP electrodeposited film 12 is directly covered on a thin ''Permalloy'' film to become a composite film, and the composite film acts as a whole as a magnetic thin film of high coercive force. Consequently, magnetization of the part of composite film does not move even when a signal magnetic field is given. In a place (13 MR segment) where the thin ''Permalloy'' film exposes, the ratio d/q, where d is the width and q is the length of the segment, can be made sufficiently smaller than ''1''. By this processing, magnetic domain breakup becomes difficult in MR segment 13 and behaves as single magnetic domain. As the part of composite film between MR segment 13 and MR segment 13 becomes a hard film, each Mr segment 13, 13- acts as an independent soft film.

Description

【発明の詳細な説明】 く技術分野〉 本発明はパーマロイ等からなる強磁性薄膜の磁気抵抗効
果を応用して磁気記録媒体に記録された信号の検出を行
なう薄膜磁気ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a thin film magnetic head that detects signals recorded on a magnetic recording medium by applying the magnetoresistive effect of a ferromagnetic thin film made of permalloy or the like.

〈従来技術〉 従来、強磁性薄膜の磁気抵抗効果を応用してなる薄膜磁
気ヘッドは、一般に多用されるバルク型の磁気ヘッドと
比較して多くの利点があることが知られている。即ち薄
膜磁気ヘッドは磁気記録媒体に記録された信号磁界を受
け、これを抵抗変化;(よる電圧変化として取り出すも
のであるので磁気記録媒体の移送速度に依存せずに信号
再生でき、高出力であるという利点を有する。
<Prior Art> Conventionally, thin film magnetic heads that utilize the magnetoresistive effect of ferromagnetic thin films are known to have many advantages over bulk type magnetic heads that are commonly used. In other words, a thin film magnetic head receives a signal magnetic field recorded on a magnetic recording medium and extracts this as a resistance change (voltage change), so it can reproduce signals without depending on the transfer speed of the magnetic recording medium, and has a high output. It has the advantage of being

しかし、一方でこの薄膜磁気ヘッドに於いては磁気抵抗
効果素子(パーマロイ膜)特有のバルクハウゼンジャン
プ、ヒステリシスによって再生出力のノイズや歪が生じ
、これが大きな問題となっていた。
However, in this thin film magnetic head, noise and distortion in the reproduction output occur due to Barkhausen jump and hysteresis peculiar to the magnetoresistive element (permalloy film), which has become a major problem.

今、第4図に示す如き薄膜磁気ヘッドについて考える。Now, consider a thin film magnetic head as shown in FIG.

同図で1はパーマロイ膜からなる磁気抵抗効果素子、2
は電流供給用リードである。又、3は信号磁界印加方向
であって、4は磁気抵抗効果素子lの磁化容易軸方向で
ある。この磁化容易軸方向4に直交する方向が磁化困難
軸方向である。
In the figure, 1 is a magnetoresistive element made of permalloy film, 2
is a current supply lead. Further, 3 is the direction of applying the signal magnetic field, and 4 is the direction of the easy axis of magnetization of the magnetoresistive element l. The direction perpendicular to the easy axis direction 4 is the hard axis direction.

tはトラック幅であり、tは素子厚、Wは素子中である
。ここで、t=90 pm 、 t= 500X 、 
w=80μmとし、信号磁界印加方向3から外部磁界を
印加しながら抵抗変化率ΔR/Rを測定した結果を第5
図に示す。又、その時の素子l内での磁区(ドメイン)
の動きを第6図に示す。第5図に於て外部磁した後で外
部磁界を減少させて同図のl120eの所■で磁区(ド
メイン)を観察した所、第6図(a)に示す如くであっ
た。即ち磁区(ドメイン)が4つに分裂していた。同図
で5は磁区を、6は磁化ベクトルを、7は磁壁を夫々示
している。即ち第5図の抵抗変化率曲線における飽和点
のT程度ですでに多磁区状態を示す。そして各磁区5は
第6図(a)に示す如く磁化の向きを交互に変えたバッ
クリングドメイン構造となっている。次に第5図に於て
磁気抵抗効果素子lに付与する外部磁界を減少させてい
くと抵抗の値が■から■に移る、所謂バルクハウゼンジ
ャンプが発生する。これは外部磁界の減少によって第6
図(、)の中央の2つの磁区(ドメイン)が1つに合体
して、第6図(b)の如(Blochライン(又はBl
ochポイント)8を境にして左右で磁化の向きが面に
対して垂直方向に逆転する状態になり、この状態から同
図のBlochライン(又はBlochポイント)8が
外部磁界の減少とともに左へ高速で移動する為に生ずる
ものである。この移動の結果磁区(ドメイン)の状態は
第6図(C)の如くなる。
t is the track width, t is the device thickness, and W is the inside of the device. Here, t=90 pm, t=500X,
The results of measuring the resistance change rate ΔR/R while applying an external magnetic field from the signal magnetic field application direction 3 with w = 80 μm are shown in the fifth table.
As shown in the figure. Also, the magnetic domain within the element l at that time
The movement is shown in Figure 6. After applying external magnetism in FIG. 5, the external magnetic field was reduced and a magnetic domain was observed at 1120e in the same figure, as shown in FIG. 6(a). In other words, the magnetic domain was divided into four. In the figure, 5 indicates a magnetic domain, 6 indicates a magnetization vector, and 7 indicates a domain wall. That is, a multi-domain state is already exhibited at about the saturation point T in the resistance change rate curve of FIG. Each magnetic domain 5 has a buckling domain structure in which the direction of magnetization is alternately changed as shown in FIG. 6(a). Next, as shown in FIG. 5, when the external magnetic field applied to the magnetoresistive element l is decreased, the resistance value shifts from ■ to ■, a so-called Barkhausen jump occurs. This is due to the decrease in the external magnetic field.
The two magnetic domains in the center of the figure (,) merge into one, forming the Bloch line (or Bloch line) as shown in Figure 6(b).
och point) 8, the direction of magnetization on the left and right sides is reversed in the direction perpendicular to the surface, and from this state the Bloch line (or Bloch point) 8 in the same figure rapidly moves to the left as the external magnetic field decreases. This occurs due to movement. As a result of this movement, the state of the magnetic domain becomes as shown in FIG. 6(C).

以上の様に磁気抵抗効果素子のバルク・・ウゼンジャン
プは素子内で一旦分裂した磁区が合体する過程で発生す
るBlochラインの運動によって発生するものである
。このバルクハウゼンジャンプによるノイズは高密度磁
気記録媒体の再生用の薄膜磁気ヘッドに於いて特に大き
な問題となる。何故ならば記録トラック密度を上げ高密
度とする為にトラック幅tを小さくすれば素子中Wの値
には限界があるのでw/l (アスペクトレシオ)が1
に近づきその結果磁区分裂が生じ易くなるからである。
As described above, the bulk jump of the magnetoresistive element is caused by the movement of the Bloch line, which occurs during the process of merging of the magnetic domains once split within the element. Noise caused by this Barkhausen jump becomes a particularly serious problem in thin-film magnetic heads for reproducing high-density magnetic recording media. This is because if the track width t is made smaller in order to increase the recording track density, there is a limit to the value of W in the element, so w/l (aspect ratio) becomes 1.
This is because magnetic domain splitting tends to occur as a result.

〈目 的〉 本発明は以上の従来点に鑑みなされたものであり、バル
クハウゼンジャンプを極度に減少せしめ得る薄膜磁気ヘ
ッドを提供することを目的とするものである。
<Purpose> The present invention has been made in view of the above conventional points, and an object of the present invention is to provide a thin film magnetic head that can extremely reduce Barkhausen jump.

〈実施例〉 以下本発明に係る薄膜磁気ヘッドの一実施例について図
面を用いて詳細に説明を行なう。第1図(、)は本発明
に係る薄膜磁気ヘッドの一実施例の外観斜視図、同図(
b)はその平面図を示す。
<Embodiment> An embodiment of the thin film magnetic head according to the present invention will be described in detail below with reference to the drawings. FIG. 1(,) is an external perspective view of an embodiment of a thin film magnetic head according to the present invention, and FIG.
b) shows its plan view.

同図で9はNi 81%・Fe 19%のパーマロイ薄
膜(磁気抵抗効果素子)であシ、膜厚は500xである
。10は電流供給用リードである。上記パーマロイ簿膜
9の上には保磁力500〜7000eのCoP電着膜I
2が被着される。この膜厚は+oooXである。このC
oP電着膜12の形状は同図に示す様に長方形状のパー
マロイ薄膜9の長手方向に対して斜め方向(角度ψが3
0°〜60°程度)にストライプ状のパターンとして形
成される。11が信号磁界印加方向である。上記の如く
パーマロイ薄膜9にCoP電着膜12が直接被着され複
合膜となった個所は相互の磁化を平行にしようとする磁
気結合力(強磁性交換結合と称される)が生じ、複合膜
は全体として1つの高保磁力磁性薄膜として動作する。
In the figure, numeral 9 is a permalloy thin film (magnetoresistive element) of 81% Ni and 19% Fe, and the film thickness is 500x. 10 is a current supply lead. On the permalloy film 9 is a CoP electrodeposited film I having a coercive force of 500 to 7000 e.
2 is deposited. This film thickness is +oooX. This C
As shown in the figure, the shape of the oP electrodeposited film 12 is diagonal to the longitudinal direction of the rectangular permalloy thin film 9 (angle ψ is 3).
0° to 60°) as a striped pattern. 11 is the signal magnetic field application direction. As mentioned above, at the point where the CoP electrodeposited film 12 is directly deposited on the permalloy thin film 9 to form a composite film, a magnetic coupling force (referred to as ferromagnetic exchange coupling) that tries to make the mutual magnetization parallel is generated, and the composite film is formed. The film as a whole behaves as one high coercivity magnetic thin film.

この実施例の複合膜の個所は保磁力200〜5000e
のハード膜となる。この為信号磁界が与えられても複合
膜の個所の磁化は動かない。又、パーマロイ薄膜9の露
出した個所+3(以下MR士グメントと言う。)の形状
はその巾をd1セグメント長さをqとするとその比d/
q (この値はアスペクトレシオに対応する。)が1よ
り充分小さくされる。この実施例の場合、トラック幅t
″;50μm、素子巾w=loμmの時、MR上セグメ
ント3の巾dを1μm程度とするとd/q < olと
なりlより充分小さくなる。この処置によりMRセグメ
ント!3では磁区分裂しにくくなり単磁区として動作す
る。又、MR上セグメント3とMR上セグメント3との
間に複合膜となった個所が存在するが、この複合膜の個
所はハード膜となる為、各MR上セグメント8.I3.
・・・は夫々独立したソフト膜として動作する。一般に
薄膜磁気ヘッドに於いて磁気抵抗効果素子の抵抗変化は
その磁化ベクトルとセンス電流ベクトルの内積の2乗に
比例するので、公知の様に線型応答特性を得る為にバイ
アス磁界を付与していた。上記実施例の薄膜磁気ヘッド
では上記複合膜によってMR上セグメント3゜18、I
ll・・・にバイアス磁界を付与するものであり、この
バイアス磁界によって線型応答特性を得ている。
The parts of the composite film in this example have a coercive force of 200 to 5000e.
It becomes a hard film. Therefore, even if a signal magnetic field is applied, the magnetization of the composite film does not change. Also, the shape of the exposed part +3 of the permalloy thin film 9 (hereinafter referred to as MR segment) is given by the ratio d/, where the width is d1 and the segment length is q.
q (this value corresponds to the aspect ratio) is made sufficiently smaller than 1. In this embodiment, the track width t
''; When the element width w=lo μm and the width d of the MR upper segment 3 is about 1 μm, d/q < ol, which is sufficiently smaller than l. With this treatment, the MR segment! Operates as a magnetic domain.Also, there is a composite film between the MR upper segment 3 and the MR upper segment 3, but since this composite film is a hard film, each MR upper segment 8.I3 ..
... each operate as an independent soft membrane. Generally, in a thin-film magnetic head, the resistance change of a magnetoresistive element is proportional to the square of the inner product of its magnetization vector and sense current vector, so a bias magnetic field has been applied to obtain linear response characteristics, as is well known. . In the thin film magnetic head of the above embodiment, the MR upper segment 3°18, I
A bias magnetic field is applied to ll..., and a linear response characteristic is obtained by this bias magnetic field.

次に上記複合膜に対する着磁の2つの方法について説明
する。
Next, two methods of magnetizing the above composite film will be explained.

第2図(a)に複合膜に対する着磁の第1の方法を説明
する為の説明図を示す。同図において9はパーマロイ薄
膜、!2はCoP電着膜、13はMR上セグメントある
。パーマロイ薄膜9とCoP電着膜12との複合膜は3
0°〜60°程度の角度ψを有するストライプ形状を構
成する。この複合膜に対する着磁方向は矢印14の方向
即ち上記ストライブに対して平行方向であり、上記複合
膜の保磁力より大きい外部磁界を印加することで着磁が
行なわれる。尚、この時複合膜の先端にば■、Oの磁化
が生じ、この磁化O1○によって破線矢印15方向の磁
界が発生し、この発生磁界によってMRセグメン)+3
の磁化が乱される虞れがある。この為複合膜の巾(Co
P電着膜12の巾)はMR上セグメント3よシ充分小さ
くする必要がある。
FIG. 2(a) shows an explanatory diagram for explaining the first method of magnetizing the composite film. In the figure, 9 is a permalloy thin film! 2 is a CoP electrodeposited film, and 13 is a segment on MR. The composite film of permalloy thin film 9 and CoP electrodeposited film 12 is 3
A stripe shape having an angle ψ of about 0° to 60° is formed. The direction of magnetization of this composite film is the direction of arrow 14, that is, the direction parallel to the above-mentioned stripes, and magnetization is performed by applying an external magnetic field larger than the coercive force of the composite film. In addition, at this time, magnetization of B and O occurs at the tip of the composite film, and this magnetization O1 generates a magnetic field in the direction of the broken line arrow 15, and this generated magnetic field causes the MR segment)+3
There is a risk that the magnetization of the For this reason, the width of the composite membrane (Co
The width of the P electrodeposited film 12 must be made sufficiently smaller than the MR upper segment 3.

以上の薄膜磁気ヘッドに於いて矢印16方向から正方向
に信号磁界が印加されるとMRセグメン)+3内での磁
化とセンス電流17との間の角度が90°に近づくので
抵抗が減少し、負方向に信号磁界が印加されるとMR上
セグメント3内での磁化とセンス電流17との間の角度
が18001c近づくので抵抗が増加する。この薄膜磁
気ヘッドの磁界−抵抗変化曲線を第2図(b)に示す。
When a signal magnetic field is applied in the positive direction from the direction of the arrow 16 in the thin film magnetic head described above, the angle between the magnetization in the MR segment +3 and the sense current 17 approaches 90°, so the resistance decreases. When a signal magnetic field is applied in the negative direction, the angle between the magnetization in the MR upper segment 3 and the sense current 17 approaches 18001c, so the resistance increases. The magnetic field-resistance change curve of this thin film magnetic head is shown in FIG. 2(b).

同図に示す如く磁界−抵抗変化曲線は線型応答特性を示
した。
As shown in the figure, the magnetic field-resistance change curve showed a linear response characteristic.

又、第3図(a)に複合膜に対する着磁の第2の方法を
説明する為の説明図を示す。同図において構造は第2図
(a)と同様の構造である。複合膜に対する着磁方向は
矢印18の方向即ち複合膜の角度ψ(45°〜60°程
度とした。)に対して補角をなす角度の方向であり、そ
の角度で上記複合膜の保磁力より大きい外部磁界を印加
することで行なわれる。この時複合膜のエツジ部分には
■、Oの磁化が生じ、この磁化■、Oによって破線矢印
19の磁界が複合膜の着磁方向と同方向に発生するが、
この磁界はMR上セグメントBに対するバイアス磁界と
して作用する。この第2の方向によれば複合膜のエツジ
部分の磁化による発生磁界I9によってMR−tグメン
ト13の磁化が乱される虞ゎ、がない。
Further, FIG. 3(a) shows an explanatory diagram for explaining a second method of magnetizing a composite film. The structure in this figure is the same as that in FIG. 2(a). The direction of magnetization of the composite film is the direction of arrow 18, that is, the direction of the angle that is complementary to the angle ψ of the composite film (approximately 45° to 60°), and the coercive force of the composite film is determined at that angle. This is done by applying a larger external magnetic field. At this time, magnetization of ■ and O occurs in the edge portion of the composite film, and due to the magnetization ■ and O, a magnetic field indicated by the broken line arrow 19 is generated in the same direction as the magnetization direction of the composite film.
This magnetic field acts as a bias magnetic field for segment B on the MR. According to this second direction, there is no possibility that the magnetization of the MR-t segment 13 will be disturbed by the magnetic field I9 generated by the magnetization of the edge portion of the composite film.

以上の薄膜磁気ヘッドに於いて矢印20方向から正方向
に信号磁界が印加されるとMR上セグメント3内での磁
化とセンス電流21との間の角度が90°に近づくので
抵抗が減少し、負方向に信号磁界が印加されるとMR上
セグメント3内での磁化とセンス電流21との間の角度
が180°に近づくので抵抗が増加する。この薄膜磁気
ヘッドの磁界−抵抗変化曲線を第3図(b)に示す。同
図に示す如く、磁界−抵抗変化曲線は信号磁界がOの近
傍で線型応答特性を示した。
In the thin film magnetic head described above, when a signal magnetic field is applied in the positive direction from the direction of the arrow 20, the angle between the magnetization in the MR upper segment 3 and the sense current 21 approaches 90°, so the resistance decreases. When a signal magnetic field is applied in the negative direction, the angle between the magnetization in the MR upper segment 3 and the sense current 21 approaches 180°, so the resistance increases. The magnetic field-resistance change curve of this thin film magnetic head is shown in FIG. 3(b). As shown in the figure, the magnetic field-resistance change curve showed a linear response characteristic when the signal magnetic field was near O.

以上の実施例ではパーマロイ薄膜9の上にCoP電着膜
12を形成したが、パーマロイ薄膜9の下にCoP電着
膜12を形成する構造としても良い。
In the above embodiment, the CoP electrodeposition film 12 was formed on the permalloy thin film 9, but a structure in which the CoP electrodeposition film 12 is formed under the permalloy thin film 9 may also be used.

〈効 果〉 本発明によれば磁区の分裂が生じ難く、バルクハウゼン
ジャンプノイズの小さい薄膜磁気ヘッドを得ることがで
きるものである。
<Effects> According to the present invention, it is possible to obtain a thin film magnetic head in which domain splitting is less likely to occur and Barkhausen jump noise is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明に係る薄膜磁気ヘッドの一実施例
の外観斜視図、同図(b)はその平面図、第2図(a)
は複合膜に対する着磁の第1の方法を説明する為の説明
図、同図(b)はその薄膜磁気ヘッドの磁界−抵抗変化
曲線を示すグラフ図、第3図(a)は複合膜に対する着
磁の第2の方法を説明する為の説明図、同図(b)はそ
の薄膜磁気ヘッドの磁界−抵抗変化曲線を示すグラフ図
、第4図は従来の薄膜磁気ヘッドの外観斜視図、第5図
はその抵抗変化率の測定グラフ図、第6図はその素子内
の磁区の動きを示す説明図である。 図中、 1:磁気抵抗効果素子 2:電流供給用リード3:信号
磁界印加方向 4:磁化容易軸方向5:磁区 6:磁化
ベクトル 7:磁壁 8 : Blochライン 9:パーマロイ薄膜 I吐電流供給用リード1に信号磁
界印加方向 +2:COP電着膜+3.MR上セグメン ト理人 弁理士 福 士 愛 彦(他2名)Jh2 図 (0) (b) 皐3 図 第4e4
FIG. 1(a) is an external perspective view of an embodiment of a thin film magnetic head according to the present invention, FIG. 1(b) is a plan view thereof, and FIG. 2(a)
3(b) is a graph showing the magnetic field-resistance change curve of the thin film magnetic head, and FIG. 3(a) is an explanatory diagram for explaining the first method of magnetizing the composite film. An explanatory drawing for explaining the second method of magnetization, FIG. 4(b) is a graph showing the magnetic field-resistance change curve of the thin film magnetic head, FIG. 4 is an external perspective view of the conventional thin film magnetic head, FIG. 5 is a measurement graph of the resistance change rate, and FIG. 6 is an explanatory diagram showing the movement of magnetic domains within the element. In the figure, 1: Magnetoresistive element 2: Current supply lead 3: Signal magnetic field application direction 4: Easy magnetization axis direction 5: Magnetic domain 6: Magnetization vector 7: Domain wall 8: Bloch line 9: Permalloy thin film I For supplying discharge current Signal magnetic field application direction to lead 1 +2: COP electrodeposited film +3. MR Upper Segment Attorney Patent Attorney Aihiko Fukushi (and 2 others) Jh2 Figure (0) (b) Ko 3 Figure 4e4

Claims (1)

【特許請求の範囲】[Claims] 1、長方形状の磁気抵抗効果素子の表面に、その長手方
向に対して斜方向に複数の帯状の高保磁力強磁性薄膜を
平行状に被着したことを特徴とする薄膜磁気ヘッド。
1. A thin film magnetic head characterized in that a plurality of strip-shaped high coercive force ferromagnetic thin films are deposited in parallel on the surface of a rectangular magnetoresistive element in a diagonal direction with respect to its longitudinal direction.
JP22812583A 1983-09-09 1983-11-30 Thin film magnetic head Granted JPS60119618A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22812583A JPS60119618A (en) 1983-11-30 1983-11-30 Thin film magnetic head
US06/577,389 US4639806A (en) 1983-09-09 1984-02-06 Thin film magnetic head having a magnetized ferromagnetic film on the MR element
DE19843404273 DE3404273A1 (en) 1983-09-09 1984-02-08 THICK FILM MAGNETIC HEAD
GB08403588A GB2146482B (en) 1983-09-09 1984-02-10 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22812583A JPS60119618A (en) 1983-11-30 1983-11-30 Thin film magnetic head

Publications (2)

Publication Number Publication Date
JPS60119618A true JPS60119618A (en) 1985-06-27
JPH048852B2 JPH048852B2 (en) 1992-02-18

Family

ID=16871601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22812583A Granted JPS60119618A (en) 1983-09-09 1983-11-30 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS60119618A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219410A (en) * 1990-01-25 1991-09-26 Nec Home Electron Ltd Magnetic head and its manufacture
US5402292A (en) * 1991-09-27 1995-03-28 Sharp Kabushiki Kaisha Magnetoresistance effect type thin film magnetic head using high coercion films
US5737156A (en) * 1993-11-08 1998-04-07 Seagate Technology, Inc. Barberpole MR sensor having interleaved permanent magnet and magnetoresistive segments
US6282067B1 (en) * 1998-09-18 2001-08-28 Nippon Hoso Kyokai Magnetic reproducing head having a magnetoresistive effect

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219410A (en) * 1990-01-25 1991-09-26 Nec Home Electron Ltd Magnetic head and its manufacture
US5402292A (en) * 1991-09-27 1995-03-28 Sharp Kabushiki Kaisha Magnetoresistance effect type thin film magnetic head using high coercion films
US5737156A (en) * 1993-11-08 1998-04-07 Seagate Technology, Inc. Barberpole MR sensor having interleaved permanent magnet and magnetoresistive segments
US6282067B1 (en) * 1998-09-18 2001-08-28 Nippon Hoso Kyokai Magnetic reproducing head having a magnetoresistive effect

Also Published As

Publication number Publication date
JPH048852B2 (en) 1992-02-18

Similar Documents

Publication Publication Date Title
JPH08185612A (en) Mr head and its production
US4547824A (en) Dual biasing for integrated inductive MR head
JP2790811B2 (en) Thin film magnetic head
JP3377710B2 (en) Magnetoresistive device and magnetic sensor
US5581427A (en) Peak enhanced magnetoresistive read transducer
US6583970B1 (en) Magnetoresistive head device incorporating joints between magnetoresistive layer and sense current conductors
JPS60119618A (en) Thin film magnetic head
US5959809A (en) Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus
JP2788403B2 (en) Magnetoresistive head
JPH08203032A (en) Magneto-resistance effect reproducing head
JPH10302203A (en) Vertical magnetic recorder
JP3565925B2 (en) Magnetoresistive head
JPS61196417A (en) Thin film magnetic head
JPH0256713A (en) Magneto-resistance effect type reproducing head
JPS5987612A (en) Vertical magnetic recording system
JPS63129511A (en) Magnetoresistance effect type thin film magnetic head
JP2658868B2 (en) Magnetoresistive element and reproducing method thereof
JP2001084531A (en) Magnetoresistance effect type thin film magnetic head
JPS61196418A (en) Thin film magnetic head
JPH06187615A (en) Magneto-resistance effect reproduction head
JPS59142719A (en) Thin-film head
JPH052720A (en) Magneto-resistance effect reproducing head
JPS61287025A (en) Magneto-resistance effect type reproducing head
JPH10188226A (en) Magnetic head and magnetic recording/reproducing method
JPH10154313A (en) Shield type magneto-resistance effect thin film magnetic head and production therefor