JP2658868B2 - Magnetoresistive element and reproducing method thereof - Google Patents

Magnetoresistive element and reproducing method thereof

Info

Publication number
JP2658868B2
JP2658868B2 JP6053688A JP5368894A JP2658868B2 JP 2658868 B2 JP2658868 B2 JP 2658868B2 JP 6053688 A JP6053688 A JP 6053688A JP 5368894 A JP5368894 A JP 5368894A JP 2658868 B2 JP2658868 B2 JP 2658868B2
Authority
JP
Japan
Prior art keywords
film
magnetization
thin film
magnetic
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6053688A
Other languages
Japanese (ja)
Other versions
JPH07262530A (en
Inventor
邦彦 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6053688A priority Critical patent/JP2658868B2/en
Priority to EP95104335A priority patent/EP0675554A1/en
Priority to KR1019950006277A priority patent/KR100196581B1/en
Publication of JPH07262530A publication Critical patent/JPH07262530A/en
Priority to US08/882,229 priority patent/US5880911A/en
Application granted granted Critical
Publication of JP2658868B2 publication Critical patent/JP2658868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気媒体等において磁
界強度を信号として読みとるための磁気抵抗効果素子に
係わり、特にヨーク型人工格子磁気抵抗効果素子におい
て再生出力を向上させる手段に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element for reading a magnetic field intensity as a signal in a magnetic medium or the like, and more particularly to a means for improving a reproduction output in a yoke type artificial lattice magnetoresistive element. .

【0002】[0002]

【従来の技術】近年、磁気センサーの高感度化および磁
気記録における高密度化が進められており、これに伴い
磁気抵抗効果型磁気センサー(以下、MRセンサーとい
う)および磁気抵抗効果型磁気ヘッド(以下、MRヘッ
ドという)の開発が盛んに進められている。MRセンサ
ーもMRヘッドも、磁性材料からなる読み取りセンサー
部の抵抗変化により、外部磁界信号を読み出す訳である
が、MRセンサーおよびMRヘッドは、記録媒体との相
対速度が再生出力に依存しないことから、MRセンサー
では高感度が、MRヘッドでは高密度磁気記録において
も高い出力が得られるという特徴がある。
2. Description of the Related Art In recent years, the sensitivity of magnetic sensors has been increased and the density of magnetic recording has been increased. With this, a magnetoresistive magnetic sensor (hereinafter referred to as MR sensor) and a magnetoresistive magnetic head (hereinafter referred to as MR sensor) have been developed. Hereinafter, an MR head is being actively developed. Both the MR sensor and the MR head read an external magnetic field signal due to a change in resistance of a read sensor made of a magnetic material. However, the MR sensor and the MR head do not depend on the reproduction output because the relative speed with the recording medium does not depend on the reproduction output. The MR sensor is characterized by high sensitivity and the MR head is capable of high output even in high-density magnetic recording.

【0003】最近、非磁性薄膜層を介して隣り合う保磁
力の異なった2種類以上の磁性薄膜が積層された構造を
持ち、小さな外部磁場で大きな磁気抵抗変化を示す人工
格子磁気抵抗効果膜が発見された(特開平4−2189
82号公報、発明の名称:磁気抵抗効果素子)。この磁
気抵抗効果素子は、数Oe〜数十Oe程度の小さな外部
磁場で数%〜数十%の大きい抵抗変化率を示す。
Recently, an artificial lattice magnetoresistive film having a structure in which two or more types of magnetic thin films having different coercive forces adjacent to each other with a nonmagnetic thin film layer interposed therebetween and having a large magnetoresistance change with a small external magnetic field has been developed. Discovered (Japanese Unexamined Patent Publication No. 4-2189)
No. 82, title of invention: magnetoresistance effect element). This magnetoresistance effect element exhibits a large resistance change rate of several% to several tens% with a small external magnetic field of several Oe to several tens Oe.

【0004】上記先願の磁気抵抗効果素子において、実
用的なMRヘッドとして、磁気抵抗効果膜の両側に非磁
性絶縁体を介して軟磁性層を積層した構造のシールド型
人工格子磁気抵抗効果素子が提案されているが、再生波
形が極端な非対称となること、また磁気抵抗効果膜がヘ
ッド浮上面(ABS面)に露出していることにより腐食
の問題があった。一方、磁気抵抗効果膜をABS面から
後退させ、外部磁界を軟磁性ヨークを介して磁気抵抗効
果膜に誘導する構造のヨーク型人工格子磁気抵抗効果素
子の場合、再生波形の対称性が大きく改善され、磁気抵
抗効果膜の腐食の問題がなくなるという利点がある。
In the magnetoresistive element of the prior application, as a practical MR head, a shield type artificial lattice magnetoresistive element having a structure in which soft magnetic layers are laminated on both sides of a magnetoresistive film via a nonmagnetic insulator. However, there has been a problem of corrosion because the reproduced waveform becomes extremely asymmetric and the magnetoresistive effect film is exposed on the head flying surface (ABS surface). On the other hand, in the case of a yoke type artificial lattice magnetoresistive element having a structure in which the magnetoresistive film is retracted from the ABS surface and an external magnetic field is guided to the magnetoresistive effect film via the soft magnetic yoke, the symmetry of the reproduced waveform is greatly improved. This has the advantage that the problem of corrosion of the magnetoresistive film is eliminated.

【0005】[0005]

【発明が解決しようとする課題】しかしヨーク型人工格
子磁気抵抗効果素子の場合には、ヨーク部における磁束
の損失によって、再生出力がシールド型人工格子磁気抵
抗効果素子に比較して大幅に減少するという問題があっ
た。
However, in the case of a yoke type artificial lattice magneto-resistance effect element, the reproduction output is greatly reduced as compared with the shield type artificial lattice magneto-resistance effect element due to the loss of magnetic flux in the yoke portion. There was a problem.

【0006】本発明の目的は、上記先願の磁気抵抗効果
膜を用いたヨーク型MRヘッドにおいて、再生出力の向
上を図ることにある。
An object of the present invention is to improve the reproduction output of a yoke type MR head using a magnetoresistive film of the prior application.

【0007】[0007]

【課題を解決するための手段】本発明は、上記先願の磁
気抵抗効果膜を用いたヨーク型MRヘッドにおいて、磁
気抵抗効果膜に流す電流に関して、再生出力の向上が得
られるように電流方向を規定することにある。すなわち
本発明は、保磁力の異なった2種類以上の磁性薄膜が非
磁性層を介して積層され、繰り返し積層回数が2以上の
人工格子磁気抵抗効果膜に対し、非磁性絶縁層を介して
ヨークを配置したヨーク型磁気抵抗効果素子において、
前記隣り合う磁性薄膜の各々の保磁力をHC2,HC3(0
<HC2<HC3)としたとき、保磁力がHC3の磁性薄膜に
おける磁化を飽和させた後の磁場ゼロでの磁化方向をY
軸、また前記磁気抵抗効果膜の膜面に垂直に磁気抵抗効
果膜からヨークへ向かう方向をZ軸としたときに定めら
れるX軸の負の方向へ、磁気抵抗効果膜に電流を流すこ
とを特徴とする磁気抵抗効果素子およびその再生方法に
関するものである。
SUMMARY OF THE INVENTION The present invention relates to a yoke type MR head using the above-mentioned prior-art magnetoresistive film, in which the current flowing through the magnetoresistive film is adjusted so that the reproduction output can be improved. It is to specify. That is, the present invention relates to an artificial lattice magnetoresistive film in which two or more magnetic thin films having different coercive forces are laminated via a non-magnetic layer and the number of repeated laminations is two or more, and a yoke via a non-magnetic insulating layer. In the yoke type magnetoresistive element in which
The coercive force of each of the adjacent magnetic thin films is represented by H C2 , H C3 (0
<H C2 <H C3 ), the magnetization direction at zero magnetic field after saturating the magnetization in the magnetic thin film whose coercive force is H C3 is Y.
And flowing a current through the magnetoresistive film in the negative direction of the X-axis defined when the Z-axis is a direction from the magnetoresistive film to the yoke perpendicular to the axis and the film surface of the magnetoresistive film. The present invention relates to a magnetoresistive effect element and a reproducing method thereof.

【0008】[0008]

【作用】上記先願の磁気抵抗効果膜では、非磁性層を介
して隣り合った磁性薄膜の保磁力の違いにより、外部磁
場によって隣り合った磁性層の磁化の向きが互いに平行
から反平行となることによって抵抗変化が生じる。すな
わち、前記隣り合う磁性薄膜の各々の保磁力をHC2,H
C3(0<HC2<HC3)として、外部磁場が磁性薄膜の保
磁力HC2とHC3の間(HC2<H<HC3)であるとき、隣
り合った磁性薄膜の磁化の方向が互いに逆向きになり、
抵抗が増大する。このため磁気抵抗効果素子として作用
させるために、保磁力HC3の磁性薄膜における磁化は初
めに磁化飽和される。
In the magnetoresistive film of the prior application, the magnetization directions of the adjacent magnetic layers are changed from parallel to antiparallel by an external magnetic field due to the difference in coercive force between the adjacent magnetic thin films via the nonmagnetic layer. As a result, a resistance change occurs. That is, the coercive force of each of the adjacent magnetic thin films is represented by H C2 , H
Assuming that C3 (0 <H C2 <H C3 ), when the external magnetic field is between the coercive forces H C2 and H C3 of the magnetic thin film (H C2 <H <H C3 ), the direction of magnetization of the adjacent magnetic thin films is Turn around each other,
The resistance increases. Therefore, in order to function as a magnetoresistive effect element, the magnetization of the magnetic thin film having the coercive force H C3 is first saturated.

【0009】このとき、微細加工された人工格子磁気抵
抗効果膜では膜端部において、非磁性薄膜を介して隣り
合った磁性薄膜の間で静磁接合が生じているため、外部
磁場ゼロの状態でも膜端部では隣り合った磁性層間で磁
化が反平行状態となっている。このため、保磁力HC2
磁性薄膜の磁化は、膜中央部から膜端部にかけて徐々に
反転した磁化分布となる。一方、磁気抵抗効果膜に流す
電流によって電流磁界が生じるため、保磁力HC2の磁性
薄膜の磁化は、この電流磁界の影響を大きく受ける。ヨ
ーク型MRヘッドの場合には、軟磁性体であるヨークが
磁気抵抗効果膜に対して、非磁性絶縁層を介して片側の
みに配置されているため、磁気抵抗効果膜に流す電流に
より発生する磁界は、ヨークの影響を受け非対称な分布
となる。このとき保磁力HC2の磁性薄膜の磁化分布は、
非対称な電流磁界の影響で電流方向によって差が生じ
る。すなわち、電流方向によって隣り合った磁性薄膜の
磁化の向きの分布が異なり、再生出力に差が生じる。
At this time, since the magnetostatic junction between the adjacent magnetic thin films via the non-magnetic thin film occurs at the film edge of the micro-machined artificial lattice magnetoresistive film, the state where the external magnetic field is zero is obtained. However, at the end of the film, the magnetization is in an antiparallel state between the adjacent magnetic layers. Therefore, the magnetization of the magnetic thin film having the coercive force H C2 has a magnetization distribution that is gradually inverted from the center of the film to the end of the film. On the other hand, since a current magnetic field is generated by the current flowing through the magnetoresistive film, the magnetization of the magnetic thin film having the coercive force H C2 is greatly affected by the current magnetic field. In the case of a yoke type MR head, since the yoke, which is a soft magnetic material, is disposed only on one side of the magnetoresistive film via the non-magnetic insulating layer, it is generated by a current flowing through the magnetoresistive film. The magnetic field has an asymmetric distribution under the influence of the yoke. At this time, the magnetization distribution of the magnetic thin film having the coercive force H C2 is
A difference occurs depending on the current direction due to the effect of the asymmetric current magnetic field. That is, the distribution of the magnetization directions of the adjacent magnetic thin films differs depending on the current direction, and a difference occurs in the reproduction output.

【0010】ここで、磁気抵抗効果膜とヨークとの位置
関係、保磁力HC3の磁性薄膜の残留磁化方向および電流
方向の関係について説明する。簡素化のため、磁気抵抗
効果膜は保磁力の異なった2種類の磁性薄膜2および3
を非磁性薄膜4を介して交互に3回積層した場合につい
て説明する。磁性薄膜2および3の保磁力HC は、それ
ぞれHC2,HC3(0<HC2<HC3)とする。このとき図
1に示すように、磁性薄膜3の残留磁化方向をY軸、ま
た磁気抵抗効果膜の膜面に垂直に磁気抵抗効果膜からヨ
ーク5へ向かう方向をZ軸としたときに定められるX軸
において、電流をX軸上、正または負の方向に流すこと
を考える。すなわち磁性薄膜3の磁化は、矢印7方向に
向いているとする。ここでは、磁気抵抗効果素子の微細
加工パターン幅は図1に示すMR高さに相当する。電流
ゼロの状態では静磁結合によって、膜端部では磁性薄膜
2と磁性薄膜3の磁化の向きは反平行、すなわち磁性薄
膜2の磁化は負の方向に向こうとするので、磁性薄膜2
の磁化は膜中央部から膜端部にかけて徐々にY軸上負の
方向に向いた磁化分布を持つ。以下、磁性薄膜2のうち
中央の層(以下、磁性薄膜6と呼ぶ)の磁化方向に着目
して説明する。
Here, the positional relationship between the magnetoresistive film and the yoke, and the relationship between the residual magnetization direction and the current direction of the magnetic thin film having the coercive force H C3 will be described. For simplicity, the magnetoresistive film is composed of two types of magnetic thin films 2 and 3 having different coercive forces.
Are alternately laminated three times with the non-magnetic thin film 4 interposed therebetween. The coercive forces H C of the magnetic thin films 2 and 3 are H C2 and H C3 (0 <H C2 <H C3 ), respectively. At this time, as shown in FIG. 1, the direction is determined when the direction of the residual magnetization of the magnetic thin film 3 is the Y axis, and the direction from the magnetoresistive film to the yoke 5 perpendicular to the film surface of the magnetoresistive film is the Z axis. On the X axis, it is assumed that a current flows in the positive or negative direction on the X axis. That is, it is assumed that the magnetization of the magnetic thin film 3 is oriented in the direction of arrow 7. Here, the fine processing pattern width of the magnetoresistive element corresponds to the MR height shown in FIG. In the state of zero current, the magnetization directions of the magnetic thin film 2 and the magnetic thin film 3 are antiparallel at the end portions of the film, that is, the magnetization of the magnetic thin film 2 goes in the negative direction.
Has a magnetization distribution gradually directed in the negative direction on the Y axis from the film center to the film edge. The following description focuses on the magnetization direction of the central layer (hereinafter referred to as the magnetic thin film 6) of the magnetic thin film 2.

【0011】電流をX軸上、正の方向に印加した場合、
磁性薄膜6よりヨーク5側に近い非磁性薄膜4を流れる
電流によって生じる電流磁界は、高透磁率磁性材料で構
成されたヨーク5によってヨーク近傍に集中する。とこ
ろが、磁性薄膜6からヨーク5と反対方向にある非磁性
薄膜4による電流磁界は、ヨーク5の影響をあまり受け
ないため、磁性薄膜6の中央付近では磁化がY軸負の方
向に更に強く向くような磁界分布となる。この結果、外
部磁場の変化に対する磁性薄膜6の磁化方向の変化は、
磁界感度の最も高い磁気抵抗効果膜の中央付近において
Y軸負の方向で抑制され、再生出力は小さくなる。
When a current is applied in a positive direction on the X axis,
A current magnetic field generated by a current flowing through the nonmagnetic thin film 4 closer to the yoke 5 side than the magnetic thin film 6 is concentrated near the yoke by the yoke 5 made of a high-permeability magnetic material. However, since the current magnetic field from the magnetic thin film 6 to the non-magnetic thin film 4 in the direction opposite to the yoke 5 is not much affected by the yoke 5, the magnetization is more strongly directed in the negative Y-axis direction near the center of the magnetic thin film 6. Such a magnetic field distribution is obtained. As a result, the change in the magnetization direction of the magnetic thin film 6 with respect to the change in the external magnetic field is
In the vicinity of the center of the magnetoresistive film having the highest magnetic field sensitivity, the resistance is suppressed in the negative direction of the Y axis, and the reproduction output is reduced.

【0012】一方、電流をX軸上、負の方向に印加した
場合には、上記と反対に、磁気抵抗効果膜の中央付近の
磁化は静磁結合を弱めるように分布するため、電流を正
の方向に流す場合に比較して、外部磁場に対する磁性薄
膜6の磁化変化は抑制されず再生出力は高くなる。ま
た、この磁性薄膜6の磁化変化の抑制がなくなることか
ら、再生波形の対称性も改善される。
On the other hand, when a current is applied in the negative direction on the X-axis, on the contrary, the magnetization near the center of the magnetoresistive film is distributed so as to weaken the magnetostatic coupling. The change in magnetization of the magnetic thin film 6 with respect to the external magnetic field is not suppressed, and the reproduction output is higher than in the case of flowing in the direction of. Further, since the change in the magnetization of the magnetic thin film 6 is not suppressed, the symmetry of the reproduced waveform is also improved.

【0013】このような、ヨークの存在による電流磁界
の非対称性に起因した再生出力の電流方向依存性は、上
記の説明より磁性薄膜2の両側に非磁性薄膜4がある場
合にのみ生じることから、磁気抵抗効果膜の繰り返し積
層回数は2以上であることが必要である。
The above-described dependence of the reproduction output on the current direction caused by the asymmetry of the current magnetic field due to the presence of the yoke occurs only when the non-magnetic thin film 4 is present on both sides of the magnetic thin film 2 according to the above description. It is necessary that the number of repetitive laminations of the magnetoresistive film is two or more.

【0014】[0014]

【実施例】本発明の実施例を図面を参照しながら説明す
る。図2(a),(b)は、それぞれヨーク型ヘッドの
断面図および正面図である。強磁性体基板8(例えば、
NiZnフェライト)には溝(例えば、幅:〜30μm
、深さ:〜30μm )が形成され、この溝には非磁性
絶縁体9(例えば、SiO2 )が充填される。この非磁
性絶縁体9上に磁気抵抗効果膜1(例えば、MR高さ:
〜10μm )を形成し、電極10(例えば、Au:〜
0.24μm )および非磁性絶縁層11(例えば、Si
2 :〜0.2μm )を介してヨーク5(例えば、Ni
Fe:〜1μm )が、磁気抵抗効果膜1とオーバーラッ
プ(例えば、〜1μm )するように形成されている。た
だし、(b)正面図では非磁性絶縁層11は省略した。
磁気抵抗効果膜1は、図1に示すような構成となり、磁
性薄膜2にNiFeを、磁性薄膜3にCoを、また非磁
性薄膜にCuを選び、例えば1.5nm厚のNiFe薄
膜、3.5nm厚のCu薄膜、1.5nm厚のCo薄膜およ
び3.5nm厚のCu薄膜を順に形成する工程を3回繰り
返したものである。なお、最後のCu薄膜は形成されて
いない。磁気抵抗変化率は9%である。また、媒体は垂
直2層膜媒体とし、垂直媒体12の膜厚を0.1μm 、
ビット長を1μm 、また媒体下地層13の膜厚を0.0
5μm とした。MRヘッドと媒体とのスペーシングは
0.02μm である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. 2A and 2B are a sectional view and a front view, respectively, of the yoke type head. The ferromagnetic substrate 8 (for example,
NiZn ferrite) has a groove (for example, width: 3030 μm)
, Depth: 3030 μm), and this groove is filled with a nonmagnetic insulator 9 (for example, SiO 2 ). The magnetoresistive film 1 (for example, MR height:
-10 μm) and an electrode 10 (for example, Au:
0.24 μm) and the nonmagnetic insulating layer 11 (for example, Si
O 2 : .about.0.2 μm) and the yoke 5 (for example, Ni
Fe: 11 μm) is formed so as to overlap (for example, 11 μm) with the magnetoresistive film 1. However, in the (b) front view, the nonmagnetic insulating layer 11 is omitted.
The magnetoresistive film 1 has a structure as shown in FIG. The step of sequentially forming a 5 nm thick Cu thin film, a 1.5 nm thick Co thin film, and a 3.5 nm thick Cu thin film is repeated three times. Note that the last Cu thin film was not formed. The rate of change in magnetoresistance is 9%. The medium is a perpendicular two-layer film medium, and the thickness of the perpendicular medium 12 is 0.1 μm,
The bit length is 1 μm, and the thickness of the medium underlayer 13 is 0.0
It was 5 μm. The spacing between the MR head and the medium is 0.02 μm.

【0015】図3は、MR高さに対する再生出力および
再生波形の対称性の電流方向依存性を示したものであ
る。この図より、電流をX軸上、負の方向に流した場
合、電流方向正の場合に比較して、大幅な再生出力の向
上と再生波形の対称性の改善がなされていることがわか
る。
FIG. 3 shows the current direction dependence of the symmetry of the reproduction output and the reproduction waveform with respect to the MR height. From this figure, it can be seen that when the current flows in the negative direction on the X-axis, the reproduction output and the symmetry of the reproduction waveform are greatly improved as compared with the case where the current direction is positive.

【0016】この結果を、磁気抵抗効果膜の内部磁化の
分布から説明する。ここでは、本発明における磁気抵抗
効果素子を用いたヨーク型MRヘッドの、垂直2層膜媒
体による信号磁界の変化に対する磁化解析を積分要素法
によって行った結果について示す。磁化計算では、電流
はCu薄膜4にのみ流れる(電流密度:1×107 A/
cm2 )と仮定し、Cu薄膜4両側の磁性薄膜2と3の磁
化のなす角度θの変化により磁気抵抗効果が起こるとし
た。このときCu薄膜4の比抵抗ρは、磁場ゼロの時の
比抵抗をρ0 、比抵抗の変化分をΔρとして次式により
計算した。
The result will be described from the distribution of the internal magnetization of the magnetoresistive film. Here, the results of the magnetization analysis of the yoke type MR head using the magnetoresistive effect element according to the present invention with respect to the change in the signal magnetic field due to the perpendicular two-layer film medium will be described. In the magnetization calculation, current flows only through the Cu thin film 4 (current density: 1 × 10 7 A /
cm 2 ), it is assumed that the magnetoresistance effect occurs due to a change in the angle θ between the magnetizations of the magnetic thin films 2 and 3 on both sides of the Cu thin film 4. At this time, the specific resistance ρ of the Cu thin film 4 was calculated by the following equation, where ρ 0 is the specific resistance when the magnetic field is zero, and Δρ is the change in the specific resistance.

【0017】ρ=ρ0 −0.5・Δρ・cosθ 図4は、媒体からの磁界がゼロの場合の、磁性薄膜6の
内部磁化の電流方向依存性を示したものである。このと
きMR高さは3μm 、磁気抵抗効果膜1とヨーク5との
オーバーラップ長は1μm である。NiFe薄膜6の端
部ではCo薄膜3との静磁結合によって、Co薄膜3の
磁化とは逆方向に磁化が向いている分布となる。
Ρ = ρ 0 −0.5 · Δρ · cos θ FIG. 4 shows the current direction dependence of the internal magnetization of the magnetic thin film 6 when the magnetic field from the medium is zero. At this time, the MR height is 3 μm, and the overlap length between the magnetoresistive film 1 and the yoke 5 is 1 μm. Due to magnetostatic coupling with the Co thin film 3 at the end of the NiFe thin film 6, the distribution is such that the magnetization is oriented in the opposite direction to the magnetization of the Co thin film 3.

【0018】電流をX軸上、正の方向に流した場合、N
iFe薄膜6からヨーク5に近い側のCu薄膜4に流れ
る電流による電流磁界はヨーク部に集中するため、磁気
抵抗効果膜1とヨーク5がオーバーラップしている部分
ではNiFe薄膜6の磁化分布は正の方向にシフトす
る。一方、NiFe薄膜6からヨーク5と反対方向にあ
るCu薄膜4による電流磁界は、ヨーク5の影響をあま
り受けないためにNiFe薄膜6の両側の電流磁界分布
は非対称となり、NiFe薄膜6中央付近の磁化分布は
負の方向にシフトしている。電流を負の方向に流した場
合は、同じ説明によって正の場合とは逆方向に磁化分布
にうねりが生じる。この結果図5,6に示すように、電
流を正の方向に流した場合には、磁界感度の最も高いN
iFe薄膜6中央付近において、媒体からの磁界が最小
のとき磁化が飽和し再生出力が抑えられてしまうが(図
5)、電流を負の方向に流した場合には磁化の変化を十
分に感知できていることがわかる(図6)。
When a current flows in the positive direction on the X axis, N
Since the current magnetic field due to the current flowing from the iFe thin film 6 to the Cu thin film 4 on the side close to the yoke 5 is concentrated on the yoke, the magnetization distribution of the NiFe thin film 6 in the portion where the magnetoresistive effect film 1 and the yoke 5 overlap. Shift in the positive direction. On the other hand, since the current magnetic field from the NiFe thin film 6 to the Cu thin film 4 in the direction opposite to the yoke 5 is not so affected by the yoke 5, the current magnetic field distribution on both sides of the NiFe thin film 6 becomes asymmetric, and The magnetization distribution is shifted in the negative direction. When the current flows in the negative direction, the same explanation causes undulation in the magnetization distribution in the direction opposite to the positive case. As a result, as shown in FIGS. 5 and 6, when the current is caused to flow in the positive direction, N has the highest magnetic field sensitivity.
In the vicinity of the center of the iFe thin film 6, when the magnetic field from the medium is minimum, the magnetization is saturated and the reproduction output is suppressed (FIG. 5), but when the current flows in the negative direction, the change in the magnetization is sufficiently sensed. It can be seen that it is completed (FIG. 6).

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、ヨ
ーク型人工格子磁気抵抗効果素子において、人工格子磁
気抵抗効果膜に流す電流方向を規定することによって、
再生出力の向上を図ることができる。
As described above, according to the present invention, in the yoke type artificial lattice magnetoresistance effect element, the direction of the current flowing through the artificial lattice magnetoresistance effect film is defined.
The reproduction output can be improved.

【0020】また、再生波形における対称性の改善も可
能となる。
Further, the symmetry of the reproduced waveform can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の作用原理を説明する磁気抵抗効果素子
の断面図である。
FIG. 1 is a cross-sectional view of a magnetoresistive element for explaining the operation principle of the present invention.

【図2】(a),(b)はそれぞれ、実施例におけるヨ
ーク型磁気抵抗効果ヘッドの断面図および正面図であ
る。
FIGS. 2A and 2B are a cross-sectional view and a front view, respectively, of a yoke-type magnetoresistive head according to an embodiment.

【図3】実施例における再生出力および再生波形の対称
性の電流方向依存性を示す図である。
FIG. 3 is a diagram showing the current direction dependence of the symmetry of the reproduction output and the reproduction waveform in the example.

【図4】実施例におけるNiFe薄膜6の内部磁化の電
流方向依存性を示す図である。
FIG. 4 is a diagram showing the current direction dependence of the internal magnetization of the NiFe thin film 6 in the example.

【図5】実施例におけるNiFe薄膜6の内部磁化の媒
体磁界依存性(電流方向正の場合)を示す図である。
FIG. 5 is a diagram showing the dependence of the internal magnetization of the NiFe thin film 6 on the medium magnetic field (in the case where the current direction is positive) in the example.

【図6】実施例におけるNiFe薄膜6の内部磁化の媒
体磁界依存性(電流方向負の場合)を示す図である。
FIG. 6 is a diagram showing the dependence of the internal magnetization of the NiFe thin film 6 on the medium magnetic field (in the case where the current direction is negative) in the example.

【符号の説明】[Explanation of symbols]

1 磁気抵抗効果膜 2 磁性薄膜 3 磁性薄膜 4 非磁性薄膜 5 ヨーク 6 磁性薄膜2の中央の薄膜 7 磁性薄膜3の磁化方向 8 強磁性体 9 非磁性絶縁体 10 電極 11 非磁性絶縁層 12 垂直媒体 13 媒体下地層 REFERENCE SIGNS LIST 1 magnetoresistive film 2 magnetic thin film 3 magnetic thin film 4 nonmagnetic thin film 5 yoke 6 thin film at center of magnetic thin film 2 7 magnetization direction of magnetic thin film 3 8 ferromagnetic material 9 nonmagnetic insulator 10 electrode 11 nonmagnetic insulating layer 12 vertical Medium 13 Medium underlayer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】保磁力の異なった2種類以上の磁性薄膜が
非磁性層を介して積層され、繰り返し積層回数が2以上
の人工格子磁気抵抗効果膜に対し、非磁性絶縁層を介し
てヨークを配置したヨーク型磁気抵抗効果素子におい
て、前記隣り合う磁性薄膜の各々の保磁力をHC2,HC3
(0<HC2<HC3)としたとき、保磁力がHC3の磁性薄
膜における磁化を飽和させた後の磁場ゼロでの磁化方向
をY軸、また前記磁気抵抗効果膜の膜面に垂直に磁気抵
抗効果膜からヨークへ向かう方向をZ軸としたときに定
められるX軸の負の方向へ、磁気抵抗効果膜に電流を流
すことを特徴とする磁気抵抗効果素子。
An artificial lattice magnetoresistive film having two or more magnetic thin films having different coercive forces laminated through a nonmagnetic layer and having a repeated number of laminations of two or more is provided with a yoke via a nonmagnetic insulating layer. , The coercive force of each of the adjacent magnetic thin films is H C2 , H C3.
When (0 <H C2 <H C3 ), the magnetization direction at zero magnetic field after saturating the magnetization in the magnetic thin film having a coercive force of H C3 is perpendicular to the Y axis, and perpendicular to the film surface of the magnetoresistive film. A current flowing through the magnetoresistive film in a negative direction of the X axis defined when the direction from the magnetoresistive film toward the yoke is the Z axis.
【請求項2】保磁力の異なった2種類以上の磁性薄膜が
非磁性層を介して積層され、繰り返し積層回数が2以上
の人工格子磁気抵抗効果膜に対し、非磁性絶縁層を介し
てヨークを配置したヨーク型磁気抵抗効果素子の再生方
法であって、前記隣り合う磁性薄膜の各々の保磁力をH
C2,HC3(0<HC2<HC3)としたとき、保磁力がHC3
の磁性薄膜における磁化を飽和させた後の磁場ゼロでの
磁化方向をY軸、また前記磁気抵抗効果膜の膜面に垂直
に磁気抵抗効果膜からヨークへ向かう方向をZ軸とした
ときに定められるX軸の負の方向へ、磁気抵抗効果膜に
電流を流し、外部磁場を検出することを特徴とする磁気
抵抗効果素子の再生方法。
2. An artificial lattice magnetoresistive film having two or more magnetic thin films having different coercive forces laminated via a non-magnetic layer and having a repetitive lamination number of 2 or more. Wherein the coercive force of each of the adjacent magnetic thin films is set to H.
When C2 and H C3 (0 <H C2 <H C3 ), the coercive force is H C3
The magnetization direction at zero magnetic field after the magnetization of the magnetic thin film is saturated is defined as the Y axis, and the direction from the magnetoresistive film to the yoke perpendicular to the film surface of the magnetoresistive film is defined as the Z axis. A current is passed through the magnetoresistive film in the negative direction of the X-axis to detect an external magnetic field.
JP6053688A 1994-03-24 1994-03-24 Magnetoresistive element and reproducing method thereof Expired - Fee Related JP2658868B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6053688A JP2658868B2 (en) 1994-03-24 1994-03-24 Magnetoresistive element and reproducing method thereof
EP95104335A EP0675554A1 (en) 1994-03-24 1995-03-23 Magnetoresistive effect element
KR1019950006277A KR100196581B1 (en) 1994-03-24 1995-03-24 Magnetoresistive effect element
US08/882,229 US5880911A (en) 1994-03-24 1997-06-25 Magnetoresistive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6053688A JP2658868B2 (en) 1994-03-24 1994-03-24 Magnetoresistive element and reproducing method thereof

Publications (2)

Publication Number Publication Date
JPH07262530A JPH07262530A (en) 1995-10-13
JP2658868B2 true JP2658868B2 (en) 1997-09-30

Family

ID=12949763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6053688A Expired - Fee Related JP2658868B2 (en) 1994-03-24 1994-03-24 Magnetoresistive element and reproducing method thereof

Country Status (1)

Country Link
JP (1) JP2658868B2 (en)

Also Published As

Publication number Publication date
JPH07262530A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
US6636390B2 (en) Magnetic head and magnetic recording and reproducing system
JP2002523849A (en) Thin film shield type magnetic read head device
JP2004178656A (en) Magnetic recording head and magnetic recording/reproducing device
KR100196581B1 (en) Magnetoresistive effect element
JPS59121617A (en) Dual element magnetic converter
US5491606A (en) Planar magnetoresistive head with an improved gap structure
US6369992B1 (en) Yoke-type head with magneto-resistance effect film recessed from medium facing surface and extending across magnetic gap
JP3208906B2 (en) Magnetoresistive magnetic head
KR100267411B1 (en) Magnetoresistive head
JP2658868B2 (en) Magnetoresistive element and reproducing method thereof
KR100804915B1 (en) A Horizontal Yoke Type Magnetic Reproducing Head and a Magnetic Reproducing Apparatus
JP2701748B2 (en) Magnetoresistive element and bias applying method thereof
US20020001158A1 (en) Thin-film magnetic head and method of manufacturing same
JPH1125431A (en) Magneto-resistance effect type reproducing head and magnetic recording and reproducing device
JP2658872B2 (en) Magnetoresistance effect element
JPH08203032A (en) Magneto-resistance effect reproducing head
JP2661560B2 (en) Magnetoresistive element and reproducing method thereof
JP2699875B2 (en) Magnetoresistance effect element
JPH08212521A (en) Magnetic head
JPH08147631A (en) Magnetic recording and reproducing apparatus
JPH11120523A (en) Magnetoresistive effect head
JP2812280B2 (en) Magnetoresistive element and external magnetic field reproducing method
JP2583851B2 (en) Magnetoresistive magnetic head
JPH05266437A (en) Magnetoresistance effect type head
JP3039482B2 (en) Magnetoresistive head and magnetic recording / reproducing apparatus using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970506

LAPS Cancellation because of no payment of annual fees