JPH03219410A - Magnetic head and its manufacture - Google Patents

Magnetic head and its manufacture

Info

Publication number
JPH03219410A
JPH03219410A JP1522290A JP1522290A JPH03219410A JP H03219410 A JPH03219410 A JP H03219410A JP 1522290 A JP1522290 A JP 1522290A JP 1522290 A JP1522290 A JP 1522290A JP H03219410 A JPH03219410 A JP H03219410A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
magnetic thin
region
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1522290A
Other languages
Japanese (ja)
Other versions
JP2724014B2 (en
Inventor
Susumu Ito
伊東 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP2015222A priority Critical patent/JP2724014B2/en
Publication of JPH03219410A publication Critical patent/JPH03219410A/en
Application granted granted Critical
Publication of JP2724014B2 publication Critical patent/JP2724014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3113Details for improving the magnetic domain structure or avoiding the formation or displacement of undesirable magnetic domains
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers

Landscapes

  • Magnetic Heads (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To improve recording and reproduction characteristics by forming part of a magnetic thin film as a high-coercive-force area or antiferromagnetic area. CONSTITUTION:The magnetic head 10 consists of a couple of magnetic thin films 14 and 16 and coils 18 which are fixed on a substrate 12 and the magnetic thin film 14 constitutes a lower magnetic pole and is a flat plate shape which has a wide rear part and a tip part with track width and 1 - several mum thickness and fixed to the substrate. The magnetic thin film 16 has its rear part fixed to the magnetic tin film 14 to form a magnetic path and an intermediate part that the coil 18 is made to penetrate is formed. A magnetic deformation part 22 consisting of plural high-coercive- force areas or antiferromagnetic areas is formed at the intermediate part of the magnetic thin films 14 and 16 that the coil 18 penetrates. Consequently, the magnetic deformation part 22 behaves like a permanent magnet and the magnetization is in a constant direction and does not change; and a magnetic field in the opposite direction from the magnetization 26 of the deformation part 22 operates on the soft magnetic areas 24 adjoining to the magnetic deformation part 22 at all times and the soft magnetic areas 24 are applied with a bias magnetic field in the same direction at all times, so that the structure of magnetic domains becomes stable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録媒体に情報を記録したり、磁気記録
媒体から情報を読み出す磁気ヘッドに係り、特に高密度
磁気記録が行われるビデオテープレコーダ、デジタルオ
ーディオテープレコーダ等の各種磁気テープ装置やフレ
キシブルディスク装置、ハード磁気ディスク装置に用い
られる磁気ヘッドに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic head for recording information on a magnetic recording medium and for reading information from a magnetic recording medium, and particularly for a video tape on which high-density magnetic recording is performed. The present invention relates to magnetic heads used in various magnetic tape devices such as recorders and digital audio tape recorders, flexible disk devices, and hard magnetic disk devices.

〔従来の技術〕[Conventional technology]

近年、磁気記録の高密度化が進展し、磁気記録媒体の記
録密度が急激に増大している。そして、磁気記録の高密
度化にに伴い、記録媒体に情報を記録したり、記録媒体
から情報を再生する磁気ヘッドの高性能化が図られ、高
性能な磁気ヘッドを得るために、高飽和磁束密度を有し
、かつ保磁力が小さく高透磁率を有する軟磁性体が要求
されている。このため、高密度記録を行う磁気テープ装
置、フレキシブルディスク装置、ハード磁気ディスク装
置においては、従来のフェライトを用いた磁気ヘッドに
よって対応することができず、飽和磁束密度の高い合金
系の磁性薄膜による磁気ヘッドを採用せざるを得なくな
っている。
In recent years, the density of magnetic recording has progressed, and the recording density of magnetic recording media has increased rapidly. With the increase in the density of magnetic recording, the performance of magnetic heads that record information on and read information from recording media has been improved. There is a need for a soft magnetic material that has a high magnetic flux density, low coercive force, and high magnetic permeability. For this reason, in magnetic tape devices, flexible disk devices, and hard magnetic disk devices that perform high-density recording, conventional magnetic heads using ferrite cannot be used, and magnetic thin films made of alloys with high saturation magnetic flux density are used. There is no choice but to use magnetic heads.

ところが、透磁率が高く磁束密度B、の高い磁性薄膜は
、厚みが極めて薄いため、基板やパターン形状等の種々
の影響を受けやすく、磁区構造が不安定である。このた
め、磁性薄膜を用いた磁気ヘッドを、高い透磁率で動作
させようとすると、磁区構造が乱れ、記録性能が劣化し
たり、再生時の出力が落ちたり、擬偵パルスが発生した
りするなどの問題が生ずる。そこで、従来は、磁性薄膜
の磁気異方性エネルギーを大きくして磁区の安定化を図
ることが考えられている。
However, since a magnetic thin film with high magnetic permeability and high magnetic flux density B is extremely thin, it is susceptible to various influences such as the substrate and pattern shape, and its magnetic domain structure is unstable. For this reason, if you try to operate a magnetic head using a magnetic thin film with high magnetic permeability, the magnetic domain structure will be disturbed, resulting in degraded recording performance, decreased output during playback, and generation of false pulses. Problems such as this arise. Conventionally, therefore, it has been considered to increase the magnetic anisotropy energy of the magnetic thin film to stabilize the magnetic domains.

磁気異方性エネルギーを大きくして磁区の安定化を図る
場合、従来下記のような方法が採られていた。
When stabilizing magnetic domains by increasing magnetic anisotropy energy, the following methods have been conventionally used.

■磁場中においてメツキ行い、磁気異方性を一定方向に
強くする(例えば、パーマロイメツキ膜の形成)。
■Plating is performed in a magnetic field to strengthen magnetic anisotropy in a certain direction (for example, forming a permalloy plating film).

■成膜した非晶質膜を磁場中でアニール処理し、磁気異
方性を一定方向に強くする(例えば、C。
(2) The formed amorphous film is annealed in a magnetic field to strengthen the magnetic anisotropy in a certain direction (for example, C.

ZrNb等の非晶質膜の形成)。Formation of an amorphous film such as ZrNb).

■基板を磁場中に配置して磁場中においてスパッタリン
グして成膜し、磁気異方性を一定方向に強くする(例え
ば、Fe5iAρ等の多結晶膜の形成)。
(2) A substrate is placed in a magnetic field and a film is formed by sputtering in the magnetic field to strengthen the magnetic anisotropy in a certain direction (for example, formation of a polycrystalline film such as Fe5iAρ).

■成膜する基板に凹凸を設け、この凹凸を設けた面に成
膜して磁気異方性を一定方向に強くする(例えば、電子
情報通信学会技術研究報告、MR84−56,1985
年3月)。
■ Provide irregularities on the substrate on which the film is to be deposited, and form a film on the surface with the irregularities to strengthen the magnetic anisotropy in a certain direction (for example, IEICE technical research report, MR84-56, 1985)
March).

■磁性薄膜を部分的にエツチングし、磁気異方性を一定
方向に強くする(例えば、1989年、電子情報通信学
会春季全国大会講演論文集、pp5−341)。
■ Partially etching the magnetic thin film to strengthen the magnetic anisotropy in a certain direction (for example, 1989, Proceedings of the Spring National Conference of the Institute of Electronics, Information and Communication Engineers, pp. 5-341).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記した従来の磁気異方性を与える方法は次の
ような欠点がある。
However, the conventional method of providing magnetic anisotropy described above has the following drawbacks.

■、■、■の方法については、異方性の大きさの制御が
微妙なレベルまで要求され、磁区構造の再現性を良くす
るためには磁気異方性を強くすることが求められ、その
結果透磁率が小さくなるという欠点があり、特別の工夫
が必要である。また、■、■の方法の場合、磁性薄膜に
磁気異方性を持たせることは比較的容易であるが、形状
異方性を主眼としているため、異方性を強くして磁区の
安定化を高めると、磁性薄膜の凹凸が大きくなって磁束
の流れが乱れ、特性が劣化する。従って、磁気異方性を
あまり大きくすることができず、再現性にも難がある。
For methods ①, ②, and ②, control of the magnitude of anisotropy is required to a delicate level, and in order to improve the reproducibility of the magnetic domain structure, it is necessary to strengthen the magnetic anisotropy. As a result, there is a drawback that the magnetic permeability becomes small, and special measures are required. In addition, in the case of methods ① and ②, it is relatively easy to give magnetic anisotropy to the magnetic thin film, but since the main focus is on shape anisotropy, the anisotropy is strengthened to stabilize the magnetic domains. If the magnetic field is increased, the unevenness of the magnetic thin film becomes larger, the flow of magnetic flux is disturbed, and the characteristics deteriorate. Therefore, it is not possible to increase the magnetic anisotropy very much, and the reproducibility is also difficult.

本発明は、前記従来技術の欠点を解消するためになされ
たもので、磁性薄膜の磁区を確実に安定化できる磁気ヘ
ッドを提供することを目的とし、またその製造方法を提
供することを目的としている。
The present invention has been made in order to eliminate the drawbacks of the prior art, and aims to provide a magnetic head that can reliably stabilize the magnetic domains of a magnetic thin film, and also to provide a method for manufacturing the same. There is.

[課題を解決するための手段〕 上記の目的を達成するために、本発明に係る磁気ヘッド
は、磁性薄膜によって磁路を形成した磁気ヘッドにおい
て、前記磁性薄膜の一部を高保磁力領域または反強磁性
領域としたことを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, a magnetic head according to the present invention has a magnetic path formed by a magnetic thin film, in which a part of the magnetic thin film is formed in a high coercive force region or an anti-coercive force region. It is characterized by a ferromagnetic region.

磁気ヘッドが誘導型あである場合、磁性薄膜に形成する
高保磁力領域または反強磁性領域の磁化方向は、磁路に
略直交させることが望ましい。また、磁気ヘッドが磁気
抵抗効果型である場合、磁性薄膜に形成する高保磁力領
域または反強磁性領域の磁化方向は、磁性薄膜を流れる
電流のヘクトルに対して45度傾斜させることが望まし
い。
When the magnetic head is an inductive type head, it is desirable that the magnetization direction of the high coercive force region or the antiferromagnetic region formed in the magnetic thin film be substantially perpendicular to the magnetic path. Further, when the magnetic head is of the magnetoresistive type, it is desirable that the magnetization direction of the high coercive force region or the antiferromagnetic region formed in the magnetic thin film be inclined at 45 degrees with respect to the hector of the current flowing through the magnetic thin film.

一方、上記の磁気ヘッドを得るための本発明の磁気ヘッ
ドの製造方法は、磁性薄膜を成膜したのち、前記磁性薄
膜の一部を表面処理して高保磁力領域または反強磁性領
域にすることを特徴とじている。この表面処理の方法に
は磁性薄膜を形成したのち、磁性薄膜の一部をプラズマ
処理してもよく、電解質溶液と反応させてもよく、磁性
薄膜の一部にイオン注入をしてもよい。
On the other hand, the manufacturing method of the magnetic head of the present invention for obtaining the above magnetic head includes forming a magnetic thin film and then surface-treating a part of the magnetic thin film to make it into a high coercive force region or an antiferromagnetic region. It is characterized by This surface treatment method may include forming a magnetic thin film and then plasma treating a portion of the magnetic thin film, reacting with an electrolyte solution, or implanting ions into a portion of the magnetic thin film.

〔作用] 上記の如く構成した本発明の磁気ヘッドは、磁性薄膜の
一部が高保磁力領域または反強磁性領域となっているた
め、これらの領域が一種の永久磁石のように振る舞う。
[Function] In the magnetic head of the present invention configured as described above, a portion of the magnetic thin film is a high coercive force region or an antiferromagnetic region, so that these regions behave like a kind of permanent magnet.

従って、高保磁力領域または反強磁性領域の部分は、磁
化の方向が一定しており、磁性薄膜の残りの軟磁性領域
が交換相互作用により、または高保磁力領域、反強磁性
領域の磁化による静磁気相互作用によりバイアス磁場を
受けることとなり、軟磁性領域の磁化が一定の方向に揃
えられ、磁区が安定しこの結果記録再生特性が向上し、
高性能な磁気ヘッドが得られる。
Therefore, the direction of magnetization in the high coercivity region or antiferromagnetic region is constant, and the remaining soft magnetic region of the magnetic thin film becomes static due to exchange interaction or due to the magnetization of the high coercivity region or antiferromagnetic region. Due to magnetic interaction, a bias magnetic field is applied, and the magnetization of the soft magnetic region is aligned in a certain direction, the magnetic domain is stabilized, and as a result, recording and reproducing characteristics are improved.
A high-performance magnetic head can be obtained.

特に磁気ヘッドが誘導型である場合、高保磁力領域また
は反強磁性領域の磁化方向を磁路に直交して形成すると
、軟磁性領域に磁界が作用していないときに、軟磁性領
域の磁化も磁路に直行しており、磁界が作用するときの
み磁化が磁路と平行となり、記録再生時の周波数特性の
向上と雑音の発生を小さくできる。
Especially when the magnetic head is an inductive type, if the magnetization direction of the high coercive force region or antiferromagnetic region is formed perpendicular to the magnetic path, the magnetization of the soft magnetic region will also occur when no magnetic field is acting on the soft magnetic region. It runs perpendicular to the magnetic path, and magnetization becomes parallel to the magnetic path only when a magnetic field is applied, improving frequency characteristics and reducing noise during recording and reproduction.

また、磁気ヘッドが磁気抵抗効果型である場合、高保磁
力領域または反強磁性領域の磁化方向を電流のベクトル
に対して45度傾斜させて形成すると、軟磁性領域の磁
化もこれらに平行となるため1、磁気記録媒体からの磁
界による磁化の回転による抵抗変化率が大きくなり、高
感度の磁気ヘッドが得られる。
In addition, when the magnetic head is of the magnetoresistive type, if the magnetization direction of the high coercive force region or antiferromagnetic region is tilted at 45 degrees with respect to the current vector, the magnetization of the soft magnetic region will also be parallel to these. Therefore, 1, the rate of change in resistance due to the rotation of magnetization due to the magnetic field from the magnetic recording medium increases, and a highly sensitive magnetic head can be obtained.

磁性薄膜の一部に形成した高保磁力領域または反強磁性
領域は、磁性薄膜を形成したのち、磁性薄膜の一部にプ
ラズマ処理、電解質溶液による処理、イオン注入をする
ことよって容易に得ることがができる。
A high coercivity region or an antiferromagnetic region formed in a part of a magnetic thin film can be easily obtained by forming a magnetic thin film and then subjecting a part of the magnetic thin film to plasma treatment, treatment with an electrolyte solution, or ion implantation. I can do it.

〔実施例〕〔Example〕

本発明に係る磁気ヘッドおよびその製造方法の好ましい
実施例を、添付図面に従って詳説する。
Preferred embodiments of the magnetic head and method of manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は、本発明の第1実施例に係る誘導型磁気ヘッド
の断面図であって、主としてフレキシブルディスク装置
またはハード磁気ディスク装置に使用される磁気ヘッド
を示したものである。
FIG. 1 is a sectional view of an inductive magnetic head according to a first embodiment of the present invention, showing a magnetic head mainly used in a flexible disk device or a hard magnetic disk device.

第1図において、磁気ヘッド10は、基板12の上に固
定した一対の磁性薄膜14.16とコイル18とからな
っている。
In FIG. 1, a magnetic head 10 consists of a pair of magnetic thin films 14, 16 fixed on a substrate 12 and a coil 18.

磁性薄膜14は下部磁極を構成し、後部(図の右側)の
幅が広く、先端部の幅がトラック幅に狭められた、厚さ
が1〜数μmの平板状に形成さ汰基板12に固着しであ
る。また、磁性薄膜16は、上部磁極を構成し、磁性薄
膜14と同様に1〜数μmの厚さを有していて、クラン
ク状に折り曲げられた形状をなしている。そして、磁性
薄膜16は、後部が磁性薄膜14に固着されて磁性薄膜
14とともに磁路を形成している。さらに、磁性薄膜1
Gは、先端部が磁性薄膜14との間にギャップ20を形
成するとともに、コイル18を貫通させるための中間部
を形成している。また、各磁性薄膜14.16には、コ
イル18が貫通する中間部に、複数の高保磁力領域また
は反強磁性領域からなる磁気変質部22が形成しである
The magnetic thin film 14 constitutes a lower magnetic pole, and is formed into a flat plate shape with a thickness of 1 to several μm, with a wider rear portion (on the right side of the figure) and a narrower tip width to the track width. It is fixed. The magnetic thin film 16 constitutes an upper magnetic pole, has a thickness of 1 to several μm like the magnetic thin film 14, and is bent into a crank shape. The rear portion of the magnetic thin film 16 is fixed to the magnetic thin film 14 to form a magnetic path together with the magnetic thin film 14. Furthermore, magnetic thin film 1
The tip of G forms a gap 20 with the magnetic thin film 14, and also forms an intermediate portion through which the coil 18 is passed. Further, in each magnetic thin film 14, 16, a magnetically altered portion 22 consisting of a plurality of high coercive force regions or antiferromagnetic regions is formed in the intermediate portion through which the coil 18 passes.

これら磁気変質部22は、後述する方法によって形成さ
れ、深さが約1000人、幅が0.1〜数μmであって
、磁性薄膜14.16が形成する磁路とほぼ直交するよ
うに設けてあり、磁化の方向も磁路とほぼ直交するよう
になっている。すなわち、磁気変質部22の磁化方向は
、図示しない磁気記録媒体への情報の記録時、または磁
気記録媒体からの情報の再往時に、磁性薄膜14.16
を透過する磁束と直交するように、磁性薄膜14.16
のを横切って設けである。
These magnetically altered portions 22 are formed by a method described later, have a depth of approximately 1000 mm, a width of 0.1 to several μm, and are provided so as to be approximately perpendicular to the magnetic path formed by the magnetic thin film 14.16. The direction of magnetization is also almost perpendicular to the magnetic path. That is, the magnetization direction of the magnetically altered portion 22 is determined by the direction of the magnetic thin film 14, 16 when recording information on a magnetic recording medium (not shown) or when retransmitting information from the magnetic recording medium.
The magnetic thin film 14.16 is perpendicular to the magnetic flux passing through the
It is set across the

上記のように構成した実施例においては、磁気変質部2
2が高保磁力領域または反強磁性領域となっているため
、磁気変質部22が永久磁石のような振る舞いをし、磁
化が一定の方向を向いて変化しない。従って、磁気変質
部22に隣接した軟磁性領域24には、第2図(A)に
示したように、磁気変質部22の磁化26による静磁気
相互作用によって、磁化26と逆方向の磁場28が常に
作用する。この結果、軟磁性領域24は、常に同じ方向
のバイアス磁場を受けることになり、磁化が磁気変質部
22と平行となって磁区の構造が常に同じとなり、磁区
が安定する。
In the embodiment configured as described above, the magnetically altered portion 2
2 is a high coercive force region or an antiferromagnetic region, the magnetically altered portion 22 behaves like a permanent magnet, and the magnetization remains in a fixed direction and does not change. Therefore, as shown in FIG. 2(A), a magnetic field 28 in the opposite direction to the magnetization 26 is generated in the soft magnetic region 24 adjacent to the magnetically altered portion 22 due to the magnetostatic interaction caused by the magnetization 26 of the magnetically altered portion 22. is always in effect. As a result, the soft magnetic region 24 always receives a bias magnetic field in the same direction, and the magnetization becomes parallel to the magnetically altered portion 22, so that the structure of the magnetic domain is always the same, and the magnetic domain is stabilized.

また、磁気変質部22と軟磁性領域24との境界が連続
的に変化している場合には、第2図(B)に示したよう
に、磁気変質部22と軟磁性領域24との磁化30およ
び磁化32は交換相互作用によって互いに平行となるた
め、実質的に磁化30と同方向のバイアス磁場32が作
用したと同じになり磁区の安定化が図られる。
In addition, when the boundary between the magnetically altered portion 22 and the soft magnetic region 24 changes continuously, the magnetization between the magnetically altered portion 22 and the soft magnetic region 24 as shown in FIG. 2(B). Since the magnetization 30 and the magnetization 32 become parallel to each other due to the exchange interaction, it is substantially the same as if a bias magnetic field 32 in the same direction as the magnetization 30 was applied, thereby stabilizing the magnetic domain.

従って、実施例の磁気ヘッド10は、磁区の不安定によ
る記録性能の劣化、再生時の出力低下や擬像パルスの発
生を防ぐことができ、記録再生時のエラーを低減するこ
とができる。しかも、磁気変質部22の磁化方向を磁性
薄膜14.16が形成する磁路にほぼ直行して形成しで
あるため、磁性薄膜14.16に磁界が作用したときの
み磁化が磁路と平行になり、記録再生時の周波数特性を
向上できる。
Therefore, the magnetic head 10 of the embodiment can prevent deterioration of recording performance due to instability of magnetic domains, decrease in output during reproduction, and generation of pseudo-image pulses, and reduce errors during recording and reproduction. Moreover, since the magnetization direction of the magnetically altered portion 22 is formed almost perpendicular to the magnetic path formed by the magnetic thin film 14.16, the magnetization becomes parallel to the magnetic path only when a magnetic field acts on the magnetic thin film 14.16. Therefore, the frequency characteristics during recording and reproduction can be improved.

第3図は、本発明の第2実施例に係る誘導型磁気ヘッド
であって、主として磁気テープ装置またはフレキシブル
ディスク装置に使用される磁気ヘッドの一部を切り欠い
た斜視図である。
FIG. 3 is a partially cutaway perspective view of an inductive magnetic head according to a second embodiment of the present invention, which is mainly used in a magnetic tape device or a flexible disk device.

第3図において、磁気ヘッド1oは、一対の基板12a
、12bの一側面に磁性薄膜40a、4obが設けてあ
り、これらの磁性薄膜40a、40bをスーパーストレ
ート42 a、 42 b (42aは図示せず)が覆
っていて、それぞれの端面を対応させて接合しである。
In FIG. 3, the magnetic head 1o includes a pair of substrates 12a.
, 12b are provided with magnetic thin films 40a and 4ob, and these magnetic thin films 40a and 40b are covered by superstrates 42a and 42b (42a is not shown), and their end faces are made to correspond to each other. It is joined.

そして、接合部の図の下部がギャップ20となっており
、その上方にコイル18を巻回すための六角形をなず透
孔46が設けである。また、基板12a、12bとスー
パーストレート42a、42bとの間に介在させた磁性
薄膜40a、40bには、複数の磁気変質部22が設け
である。これらの磁気変質部22は、磁性薄膜40a、
40bに形成した透孔46の中心に対してほぼ等角度間
隔で放射状に形成され、その磁化方向が磁性薄膜40a
、40bが形成する磁路にほぼ直行している。
A gap 20 is formed at the lower part of the joint in the figure, and a hexagonal through hole 46 is provided above the gap 20 for winding the coil 18. Further, a plurality of magnetically altered portions 22 are provided in the magnetic thin films 40a, 40b interposed between the substrates 12a, 12b and the superstrates 42a, 42b. These magnetically altered parts 22 include magnetic thin films 40a,
They are formed radially at approximately equal angular intervals with respect to the center of the through hole 46 formed in the magnetic thin film 40b, and the magnetization direction thereof is the same as that of the magnetic thin film 40a.
, 40b.

本実施例においても、磁気変質部22が永久磁石と同様
の作用をなし、前記実施例と同様の効果を得ることがで
きる。
Also in this embodiment, the magnetically altered portion 22 functions in the same manner as a permanent magnet, and the same effects as in the previous embodiment can be obtained.

第4図は、本発明の第3実施例に係る磁気抵抗効果型磁
気ヘッドの一部を切り欠いた斜視図である。
FIG. 4 is a partially cutaway perspective view of a magnetoresistive magnetic head according to a third embodiment of the present invention.

第4図において、基板12a、12bの一側面には、3
辺の縁部に沿って「コJの字状に磁気シールド用軟磁性
薄膜50が設けである。そして、軟磁性薄膜50の上に
は、磁性薄膜からなる磁気抵抗素子52が設けである。
In FIG. 4, on one side of the substrates 12a and 12b, there are 3
A soft magnetic thin film 50 for magnetic shielding is provided along the edge of the side in a U-shape.A magnetoresistive element 52 made of a magnetic thin film is provided on the soft magnetic thin film 50.

この磁気抵抗素子52は、両端部に電極54.56が取
り付けてあり、電流が流されるようになっている。また
、磁気抵抗素子52の図の下辺部58は、磁気シールド
用軟磁性薄膜60に覆われ、磁気シールド用磁性薄膜5
0.60によって挾まれている。
This magnetoresistive element 52 has electrodes 54 and 56 attached to both ends so that a current can be passed through it. Further, the lower side 58 of the magnetoresistive element 52 in the figure is covered with a soft magnetic thin film 60 for magnetic shielding, and the magnetic thin film 58 for magnetic shielding
It is sandwiched by 0.60.

磁性薄膜からなる磁気抵抗素子52の下辺部58と、こ
の下辺部58に対面した磁気シールド用軟磁性薄膜50
.60には、所定の間隔をもって磁気変質部22が形成
しである。これら各磁気変質部22は、下辺部58の長
手方向、すなわち電流の流れる方向と45度傾斜して形
成してあり、磁化の方向も45度傾斜している。
A lower side 58 of the magnetoresistive element 52 made of a magnetic thin film, and a soft magnetic thin film 50 for magnetic shielding facing the lower side 58
.. 60, magnetically altered portions 22 are formed at predetermined intervals. Each of these magnetically altered portions 22 is formed to be inclined at 45 degrees with respect to the longitudinal direction of the lower side portion 58, that is, the direction in which the current flows, and the direction of magnetization is also inclined at 45 degrees.

このように構成した実施例は、磁気変質部22が前記実
施例において説明したように永久磁石と同様の作用をし
、磁気変質部22に隣接した軟磁性領域の磁化方向が、
磁気変質部22の磁化による交換相互作用または静磁気
相互作用を受け、磁気変質部22の磁化方向に平行又は
反平行に配向する。従って、磁気抵抗素子52の、軟磁
性領域の磁化は磁気抵抗素子52を流れる電流のベクト
ルに対して45度傾斜して配向した状態に保持され、し
かも、磁区の構造が常に同じとなって磁区の安定化が図
られる。磁気抵抗素子52の磁化は、磁気抵抗素子52
を流れる電流のベクトルに対して45度傾斜しているた
め、磁気記録媒体からの情報の再生時に、磁化の回転に
よる電気抵抗の変化率が大きくなり、感度のよい磁気ヘ
ッド10を得ることができる。
In the embodiment configured in this way, the magnetically altered portion 22 acts in the same manner as a permanent magnet as explained in the previous embodiment, and the magnetization direction of the soft magnetic region adjacent to the magnetically altered portion 22 is
It receives exchange interaction or magnetostatic interaction due to the magnetization of the magnetically altered portion 22, and is oriented parallel or antiparallel to the magnetization direction of the magnetically altered portion 22. Therefore, the magnetization of the soft magnetic region of the magnetoresistive element 52 is maintained at an angle of 45 degrees with respect to the vector of the current flowing through the magnetoresistive element 52, and the structure of the magnetic domain is always the same. will be stabilized. The magnetization of the magnetoresistive element 52 is
Since the magnetic head is tilted at 45 degrees with respect to the vector of the current flowing through the magnetic recording medium, the rate of change in electrical resistance due to the rotation of magnetization becomes large when reproducing information from the magnetic recording medium, making it possible to obtain a magnetic head 10 with high sensitivity. .

第5図は、前記各実施例の磁気ヘッドを製造する方法の
一部を示したもので、磁性薄膜に高保磁力領域または反
強磁性領域からなる磁気変質部を形成する工程を示して
いる。
FIG. 5 shows a part of the method for manufacturing the magnetic head of each of the embodiments described above, and shows the step of forming a magnetically altered portion consisting of a high coercive force region or an antiferromagnetic region in a magnetic thin film.

磁性薄膜の一部に磁気変質部を形成する場合、まずスパ
ッタ法や蒸着法またはメツキ法等により磁性薄膜を形成
する(ステップ100)。次に、形成した磁性薄膜にフ
ォトレジストを塗布しくステップ102)、フォトレジ
ストに所定のパターンを露光、現像したのち、磁気変質
部を形成する部分のフォトレジストを除去する(ステッ
プ104)。
When forming a magnetically altered portion in a part of a magnetic thin film, the magnetic thin film is first formed by sputtering, vapor deposition, plating, or the like (step 100). Next, a photoresist is applied to the formed magnetic thin film (step 102), a predetermined pattern is exposed and developed on the photoresist, and then the portion of the photoresist where the magnetically altered portion is to be formed is removed (step 104).

その後、上記の処理をした磁性薄膜を、プラズマ中に配
置してプラズマ処理をしてフォトレジストを除去した部
分の表面を酸化または窒化するか(ステップ106.1
0B)、電解質溶液中に浸漬してフォトレジストを除去
した部分の表面を酸化するか(ステップ110.112
)、またはフォトレジストを除去した部分にイオン注入
して表面部分の組成を変える(ステップ114.116
)。
Thereafter, the magnetic thin film subjected to the above treatment is placed in plasma, and the surface of the portion where the photoresist is removed by plasma treatment is oxidized or nitrided (step 106.1).
0B), oxidize the surface of the area where the photoresist was removed by immersing it in an electrolyte solution (steps 110 and 112).
), or by implanting ions into the area where the photoresist has been removed to change the composition of the surface area (steps 114 and 116).
).

磁性薄膜の一部を磁気変質部に変えるプラズマ処理は、
真空度がI X 10” 〜10−’To r rの酸
素分圧または窒素分圧を有する真空系に磁性薄膜を配置
し、磁性薄膜側が負になるようにして100〜2000
Vの電圧を数分〜数10分印加する。これにより、磁性
薄膜と正の電極との間にグロー放電が発生し、酸素また
は窒素が電離して電離した酸素イオンまたは窒素イオン
が磁性薄膜に衝突する。これにより、磁性薄膜のフォト
レジストを除去した部分の表面が酸化または窒化され、
磁性!膜の主成分がFeであれば酸化鉄または窒化鉄が
形成される。そして、このように変質された磁性薄膜部
分は、100e以上の高保磁力領域となり、本発明の実
施に適する磁気変質部となる。
Plasma treatment that transforms a part of a magnetic thin film into a magnetically altered part is
A magnetic thin film is placed in a vacuum system having an oxygen partial pressure or a nitrogen partial pressure with a degree of vacuum of I x 10" to 10-'Torr, and the magnetic thin film side is negative to 100 to 2000
A voltage of V is applied for several minutes to several tens of minutes. This causes a glow discharge to occur between the magnetic thin film and the positive electrode, and the ionized oxygen or nitrogen ions collide with the magnetic thin film. As a result, the surface of the magnetic thin film where the photoresist has been removed is oxidized or nitrided.
Magnetism! If the main component of the film is Fe, iron oxide or iron nitride is formed. The thus altered magnetic thin film portion becomes a high coercive force region of 100e or more, and becomes a magnetically altered portion suitable for implementing the present invention.

溶液中における酸化は、pHが4〜10程度の電解質溶
液中に磁性薄膜を浸漬して行う。電解質溶液が例えば塩
酸や硝酸のような無機酸の水溶液である場合、磁性薄膜
をこれらの水溶液に浸漬するだけでよい。これにより、
磁性薄膜のフォトレジストの除去された部分が酸によっ
て腐食され、この部分が水洗の際に水によって酸化され
る。また、水溶液が水酸化ナトリウムや水酸化カルシウ
ムなどのアルカリ溶液である場合、磁性薄膜を陽極にし
て電解質溶液に1mA/cm”以下の電流を数分〜数1
0分流す。これにより、磁性薄膜を酸化する。
Oxidation in a solution is performed by immersing the magnetic thin film in an electrolyte solution having a pH of about 4 to 10. When the electrolyte solution is, for example, an aqueous solution of an inorganic acid such as hydrochloric acid or nitric acid, it is sufficient to simply immerse the magnetic thin film in these aqueous solutions. This results in
The portion of the magnetic thin film from which the photoresist has been removed is corroded by the acid, and this portion is oxidized by water during washing. In addition, when the aqueous solution is an alkaline solution such as sodium hydroxide or calcium hydroxide, a current of 1 mA/cm" or less is applied to the electrolyte solution for several minutes to several minutes using the magnetic thin film as an anode.
Flow for 0 minutes. This oxidizes the magnetic thin film.

一方、磁性薄膜へのイオン注入は、0□、N2または希
土類元素、Mn等の他の金属を10〜300kVの加速
を行い、磁性薄膜に衝突させて1015個/cT112
程度注入すると高保磁力領域が形成される。そして、磁
性薄膜に酸化鉄やMnFeが含まれている場合には、保
磁力が1000以上の高保磁力領域又は反強磁性領域と
なる。
On the other hand, ion implantation into a magnetic thin film is performed by accelerating 0□, N2 or other metals such as rare earth elements, Mn, etc. at 10 to 300 kV and colliding them with the magnetic thin film to 1015 ions/cT112.
A high coercive force region is formed by implanting to a certain degree. When the magnetic thin film contains iron oxide or MnFe, the coercive force becomes a high coercive force region of 1000 or more or an antiferromagnetic region.

このようにして高保磁力領域または反強磁性領域からな
る磁気変質部を形成した磁性薄膜は、付着しているフォ
トレジストを除去しくステップ118)、必要に応じて
アニール処理をして組み立て等の次工程に送る(ステッ
プ120)。
The magnetic thin film in which the magnetically altered portion consisting of the high coercive force region or the antiferromagnetic region has been formed in this way is removed by removing the attached photoresist (step 118), and is annealed if necessary for subsequent assembly, etc. Send to process (step 120).

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の磁気ヘッドは、磁性薄
膜の一部が高保磁力領域または反強磁性領域となってい
るため、これらの領域が一種の永久磁石のように振る舞
う。従って、高保磁力領域または反強磁性領域の部分は
、磁化の方向が一定しており、磁性薄膜の高保磁力領域
、反強磁性領域に隣接した軟磁性領域の磁化が交換相互
作用、または高保磁力領域、反強磁性領域の磁化による
静磁気相互作用により一定の方向に揃えられ、磁区が常
に同じ構造をとるようになって磁区が安定する。従って
、記録再生特性が向上し、高性能な磁気ヘッドが得られ
る。
As explained above, in the magnetic head of the present invention, a portion of the magnetic thin film is a high coercive force region or an antiferromagnetic region, so that these regions behave like a kind of permanent magnet. Therefore, the direction of magnetization is constant in the high coercive force region or the antiferromagnetic region, and the magnetization of the soft magnetic region adjacent to the high coercive force region or antiferromagnetic region of the magnetic thin film is caused by exchange interaction or high coercive force. The magnetostatic interaction caused by the magnetization of the antiferromagnetic region and the antiferromagnetic region aligns them in a certain direction, and the magnetic domains always have the same structure, making them stable. Therefore, recording and reproducing characteristics are improved, and a high-performance magnetic head can be obtained.

また、作製した磁性薄膜の一部にプラズマ処理、電解質
溶液による処理、イオン注入を行えば、磁性薄膜の一部
に高保磁力領域または反強磁性領域を容易に形成するこ
とがであきる。
Further, by subjecting a portion of the produced magnetic thin film to plasma treatment, treatment with an electrolyte solution, or ion implantation, a high coercive force region or an antiferromagnetic region can be easily formed in a portion of the magnetic thin film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る磁気ヘッドの断面斜
視図、第2図は前記実施例の磁気変質部の作用説明図、
第3図は本発明の第2実施例に係る磁気ヘッドの一部を
切り欠いた斜視図、第4図は本発明の第3実施例に係る
磁気ヘッドの一部を切り欠いた斜視図、第5図は本発明
の実施例に係る磁気ヘッドの製造方法の磁性薄膜に磁気
変質部を形成する工程の流れ図である。 10−−−−−・磁気ヘッド、12−−−−一基板、1
4.16.40a、40b、50.52.60 −・−
磁性薄膜、22−・・−高保磁力領域または反強磁性領
域(磁気変質部)。
FIG. 1 is a cross-sectional perspective view of a magnetic head according to a first embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of the magnetically altered portion of the embodiment,
3 is a partially cutaway perspective view of a magnetic head according to a second embodiment of the present invention, FIG. 4 is a partially cutaway perspective view of a magnetic head according to a third embodiment of the present invention, FIG. 5 is a flowchart of a process for forming a magnetically altered portion in a magnetic thin film in a method for manufacturing a magnetic head according to an embodiment of the present invention. 10----Magnetic head, 12----1 substrate, 1
4.16.40a, 40b, 50.52.60 -・-
Magnetic thin film, 22--high coercive force region or antiferromagnetic region (magnetic altered part).

Claims (7)

【特許請求の範囲】[Claims] (1)磁性薄膜によって磁路を形成した磁気ヘッドにお
いて、前記磁性薄膜の一部を高保磁力領域または反強磁
性領域としたことを特徴とする磁気ヘッド。
(1) A magnetic head in which a magnetic path is formed by a magnetic thin film, characterized in that a part of the magnetic thin film is a high coercive force region or an antiferromagnetic region.
(2)前記高保磁力領域または反強磁性領域の磁化方向
は、前記磁路に略直交させて形成したことを特徴とする
請求項1に記載の磁気ヘッド。
(2) The magnetic head according to claim 1, wherein the magnetization direction of the high coercive force region or the antiferromagnetic region is substantially orthogonal to the magnetic path.
(3)前記磁性薄膜は磁気抵抗効果を有し、前記高保磁
力領域または反強磁性領域の磁化方向は前記磁性薄膜を
流れる電流のベクトルに対して45度傾斜させて形成し
てあることを特徴とする請求項1に記載の磁気ヘッド。
(3) The magnetic thin film has a magnetoresistive effect, and the magnetization direction of the high coercive force region or the antiferromagnetic region is formed to be inclined at 45 degrees with respect to the vector of the current flowing through the magnetic thin film. The magnetic head according to claim 1.
(4)磁性薄膜を成膜したのち、前記磁性薄膜の一部を
表面処理し、高保磁力領域または反強磁性領域として、
磁路を形成したことを特徴とする磁気ヘッドの製造方法
(4) After forming the magnetic thin film, a part of the magnetic thin film is surface-treated to form a high coercive force region or an antiferromagnetic region.
A method of manufacturing a magnetic head, characterized in that a magnetic path is formed.
(5)前記磁性薄膜の表面処理はプラズマ処理であるこ
とを特徴とする請求項4に記載の磁気ヘッドの製造方法
(5) The method of manufacturing a magnetic head according to claim 4, wherein the surface treatment of the magnetic thin film is plasma treatment.
(6)前記磁性薄膜の表面処理は電解質溶液と反応させ
たことを特徴とする請求項4に記載の磁気ヘッドの製造
方法。
(6) The method of manufacturing a magnetic head according to claim 4, wherein the surface treatment of the magnetic thin film is performed by reacting it with an electrolyte solution.
(7)前記磁性薄膜の表面処理はイオン注入をしたこと
を特徴とする請求項4に記載の磁気ヘッドの製造方法。
(7) The method of manufacturing a magnetic head according to claim 4, wherein the surface treatment of the magnetic thin film is performed by ion implantation.
JP2015222A 1990-01-25 1990-01-25 Magnetic head and method of manufacturing the same Expired - Lifetime JP2724014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015222A JP2724014B2 (en) 1990-01-25 1990-01-25 Magnetic head and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015222A JP2724014B2 (en) 1990-01-25 1990-01-25 Magnetic head and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03219410A true JPH03219410A (en) 1991-09-26
JP2724014B2 JP2724014B2 (en) 1998-03-09

Family

ID=11882841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015222A Expired - Lifetime JP2724014B2 (en) 1990-01-25 1990-01-25 Magnetic head and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2724014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007153A3 (en) * 2000-07-13 2002-11-07 Seagate Technology Llc Domain control in shields of a magnetic transducer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119618A (en) * 1983-11-30 1985-06-27 Sharp Corp Thin film magnetic head
JPS63298705A (en) * 1987-05-28 1988-12-06 Toshiba Corp Thin film magnetic head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119618A (en) * 1983-11-30 1985-06-27 Sharp Corp Thin film magnetic head
JPS63298705A (en) * 1987-05-28 1988-12-06 Toshiba Corp Thin film magnetic head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007153A3 (en) * 2000-07-13 2002-11-07 Seagate Technology Llc Domain control in shields of a magnetic transducer
GB2380052A (en) * 2000-07-13 2003-03-26 Seagate Technology Llc Domain control in shields of a magnetic transducer
US6710982B2 (en) 2000-07-13 2004-03-23 Seagate Technology Llc Domain control in shields of a magnetic transducer
GB2380052B (en) * 2000-07-13 2004-07-28 Seagate Technology Llc Domain control in shields of a magnetic transducer

Also Published As

Publication number Publication date
JP2724014B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
JP3086731B2 (en) Magnetoresistive magnetic head
EP0881627A2 (en) Thin film magnetic head
US6510025B2 (en) Thin film magnetic head including a protrusion structure and an insulation film in a magnetic core
US5761010A (en) Magnetoresistive head, manufacturing method of the head and magnetic recording/reproducing drive
Bajorek et al. An integrated magnetoresistive read, inductive write high density recording head
US5430592A (en) Method of manufacturing a magneto-resistive head adapted to be used as the reproducing head of a magnetic recording/reproducing device
JPH03219410A (en) Magnetic head and its manufacture
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
US4641213A (en) Magnetic head
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JPH09102109A (en) Recording/reproducing separation type magnetic head
JPH05250651A (en) Perpendicular magnetic recording medium
JPH0283809A (en) Production of thin-film magnetic head
JP2513085B2 (en) Magnetoresistive head manufacturing method
JPH07153036A (en) Magnetoresistance effect type magnetic head
JP2701748B2 (en) Magnetoresistive element and bias applying method thereof
JPS59107417A (en) Permanent magnet bias type magneto-resistance effect head
JP3210139B2 (en) Magnetoresistive magnetic head
JPH0668420A (en) Thin film magnetic head and its manufacture
JPS58179921A (en) Magnetic head
JPS62222410A (en) Vertical magnetic head
JPH08194920A (en) Magnetic recorder/reproducer
JPS60136016A (en) Magnetic head
JPS6356812A (en) Perpendicular magnetic recording medium
JPS60133517A (en) Magnetoresistance effect type magnetic head