JP2559109B2 - Yoke type thin film magnetic head - Google Patents
Yoke type thin film magnetic headInfo
- Publication number
- JP2559109B2 JP2559109B2 JP61241818A JP24181886A JP2559109B2 JP 2559109 B2 JP2559109 B2 JP 2559109B2 JP 61241818 A JP61241818 A JP 61241818A JP 24181886 A JP24181886 A JP 24181886A JP 2559109 B2 JP2559109 B2 JP 2559109B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnetization
- magnetoresistive effect
- effect element
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3916—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
- G11B5/3919—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
- G11B5/3922—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
- G11B5/3925—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
- G11B5/3113—Details for improving the magnetic domain structure or avoiding the formation or displacement of undesirable magnetic domains
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強磁性薄膜の磁気抵抗効果を応用した磁気
抵抗効果素子(以下MR素子と称する)を用いて磁気記録
媒体に記録された信号の検出を行うヨーク型薄膜磁気ヘ
ッド(以下YMRヘッドと称する)に関するものである。The present invention relates to a signal recorded on a magnetic recording medium using a magnetoresistive effect element (hereinafter referred to as MR element) to which the magnetoresistive effect of a ferromagnetic thin film is applied. The present invention relates to a yoke type thin film magnetic head (hereinafter referred to as a YMR head) for detecting
第8図に一般のYMRヘッドの構造を示す。上側ヨーク
1・5は、通常0.5〜1.0μm程度の膜厚のパーマロイ膜
で作製されており、磁気記録媒体で発生した信号磁界を
MR素子2に導くための磁束導入路を構成している。強磁
性膜3・3は、良好な導電性を有する保磁力の大なる膜
で、Co−P、Ni−Co、Ni−Co−P等で作製されており、
その膜厚は、1000〜2000Åである。リード導体部4・4
はAl−Cu膜で作製されており、その膜厚は1000〜2000Å
である。また、上記MR素子2の下方には、このMR素子2
にバイアス磁界を印加するためにAl−Cuから成る導体6
が配設されている。下側ヨーク7は高透磁率磁性体から
成り、この高透磁率磁性体としては、一般に、多結晶Ni
−Znフェライト基板や、単結晶或いは多結晶Nn−Znフェ
ライト基板が用いられる。ヘッドギャップ10は、実際に
使用される記録波長が最小0.5μm程度であるから、0.2
〜0.3μm程度に設定されている。また、上記ヘッドギ
ャップに近接する個所には、第9図に示すように、磁気
記録媒体9が位置しており、この磁気記録媒体9とヘッ
ドギャップ10との間にはスペーシング8が形成されてい
る。FIG. 8 shows the structure of a general YMR head. The upper yokes 1 and 5 are usually made of a permalloy film having a film thickness of about 0.5 to 1.0 μm, and the signal magnetic field generated in the magnetic recording medium is
A magnetic flux introduction path for guiding to the MR element 2 is configured. The ferromagnetic films 3 and 3 are films having good conductivity and large coercive force, and are made of Co-P, Ni-Co, Ni-Co-P, or the like.
The film thickness is 1000 to 2000Å. Lead conductor part 4 ・ 4
Is made of Al-Cu film and its film thickness is 1000 ~ 2000Å
Is. Below the MR element 2, the MR element 2
Conductor 6 made of Al-Cu for applying a bias magnetic field to the
Is provided. The lower yoke 7 is made of a high-permeability magnetic material, and this high-permeability magnetic material is generally made of polycrystalline Ni.
A -Zn ferrite substrate or a single crystal or polycrystalline Nn-Zn ferrite substrate is used. The head gap 10 is 0.2 because the recording wavelength actually used is about 0.5 μm minimum.
It is set to about 0.3 μm. Further, as shown in FIG. 9, a magnetic recording medium 9 is located in the vicinity of the head gap, and a spacing 8 is formed between the magnetic recording medium 9 and the head gap 10. ing.
上記の如く構成されたYMRヘッドにおいて、MR素子2
における磁化容易軸の方向は、MR素子2を作製する際に
MR素子2の長手方向に設定されている。また、上記磁気
記録媒体9より発生する信号磁界の検出は、MR素子2の
長手方向にセンサ電流を流し、かかるMR素子2の両端に
発生する電圧の変化を取り出すことにより行っている。
また、導体6に電流を流すことによって所望のバイアス
磁界を発生させ、これをMR素子2に印加し、MR素子2の
動作点を線型性の良い点に移動させている。さらに、上
記強磁性膜3・3とMR素子2とを強磁性交換結合させて
MR素子2の長手方向に弱磁界を印加している。そして、
この弱磁界によってMR素子2を単磁区状態とし、MR素子
2内部の磁壁を無くしてMR素子2内部の磁化が不連続に
変化するのを防止して、磁壁移動に伴うバルクハウゼン
ノイズの発生を抑制している。In the YMR head configured as described above, the MR element 2
The direction of the easy axis of magnetization at the time of making the MR element 2
It is set in the longitudinal direction of the MR element 2. The signal magnetic field generated from the magnetic recording medium 9 is detected by passing a sensor current in the longitudinal direction of the MR element 2 and extracting the change in the voltage generated across the MR element 2.
Further, a desired bias magnetic field is generated by passing a current through the conductor 6, and this is applied to the MR element 2 to move the operating point of the MR element 2 to a point having good linearity. Furthermore, the ferromagnetic films 3 and 3 and the MR element 2 are ferromagnetically exchange-coupled to each other.
A weak magnetic field is applied in the longitudinal direction of the MR element 2. And
By this weak magnetic field, the MR element 2 is brought into a single domain state, the domain wall inside the MR element 2 is eliminated, and the magnetization inside the MR element 2 is prevented from changing discontinuously, so that Barkhausen noise is generated due to the domain wall movement. It's suppressed.
ところが、一般にMR素子2の磁化容易軸の向きは、MR
素子2の全領域で全て同じ方向に向いているというわけ
ではない。これは、MR素子2を作製する際、或いは、上
記ヘッドギャップ10や上側ヨーク1・5を形成する際に
磁化容易軸の角度分散を生じがちとなるため、MR素子2
内の各領域で磁化容易軸の向きには、一定の分布が形成
されてしまうからである。また、この分布を無くす事は
困難である。このように、MR素子2上の各点a、b、
c、d、eにおける磁化容易軸の向きが、第10図に示す
よういに、矢印の方向を向いていたとし、かつ、強磁
性膜3によるMR素子2の長手方向の弱磁界が紙面左から
右に、即ち、矢印→の方向に向いていたとすると、各点
a、b、c、d、eにおけるMR素子2のストライプ幅方
向の磁化曲線は、各々第11図(a)〜(e)によって表
される。また、このようなMR素子2の再生出力に対応す
るΔR/R曲線は、同図(f)に示すように、MR素子2上
の磁化の不連続な変化に応答して、ΔR/R曲線の一部に
不連続なとびを生じ、磁化スイッチングに起因するバル
クハウゼンノイズを発生させることになる。しかも、MR
素子2を作製する際に、上記磁化容易軸の向きを、長手
方向に設定した場合、MR素子2内の磁化容易軸の向きの
分布は、長手方向に対して正負両方向に分布することに
なる。従って、ΔR/R曲線の横軸、即ち、信号磁界に相
当する磁界Haの正負両側に不連続なとびが発生すること
になり、バイアス磁界によって線形性の良い点にMR素子
2の動作点を移動させる際に、かかる動作点を正側負側
いずれの磁界方向に移動させても磁化スイッチングに起
因するバルクハウゼンノイズを誘発してしまうという問
題を招来していた。However, in general, the direction of the easy axis of magnetization of the MR element 2 is MR
Not all areas of element 2 are oriented in the same direction. This is because when the MR element 2 is manufactured, or when the head gap 10 and the upper yokes 1 and 5 are formed, angular dispersion of the easy axis of magnetization tends to occur.
This is because a constant distribution is formed in the direction of the easy axis of magnetization in each region inside. Also, it is difficult to eliminate this distribution. In this way, each point a, b, on the MR element 2
It is assumed that the directions of the easy axes of magnetization in c, d, and e are in the directions of the arrows as shown in FIG. 10, and the weak magnetic field in the longitudinal direction of the MR element 2 due to the ferromagnetic film 3 is on the left side of the paper. From the right side, that is, in the direction of arrow →, the magnetization curves in the stripe width direction of the MR element 2 at the points a, b, c, d and e are shown in FIGS. ). In addition, the ΔR / R curve corresponding to the reproduction output of the MR element 2 responds to the discontinuous change in the magnetization on the MR element 2 as shown in FIG. Discontinuous jumps occur in a part of the magnetic field and Barkhausen noise caused by magnetization switching is generated. Moreover, MR
When the direction of the easy axis of magnetization is set to the longitudinal direction when the element 2 is manufactured, the distribution of the directions of the easy axis of magnetization in the MR element 2 is distributed in both positive and negative directions with respect to the longitudinal direction. . Therefore, discontinuous jumps occur on the horizontal axis of the ΔR / R curve, that is, on both the positive and negative sides of the magnetic field Ha corresponding to the signal magnetic field, and the operating point of the MR element 2 is set to a point with good linearity due to the bias magnetic field. When the moving point is moved in either positive or negative magnetic field direction, Barkhausen noise caused by magnetization switching is induced.
本発明は、上記の従来の問題点に鑑みなされたもので
あって、その目的は、再生出力信号中に含まれる磁壁移
動に伴うバルクハウゼンノイズの発生を防止するととも
に、磁化スイッチングに起因するバルクハウゼンノイズ
の発生を防止し得るヨーク型薄膜磁気ヘッドを提供する
ことにある。The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to prevent generation of Barkhausen noise due to domain wall movement included in a reproduction output signal, and to cause bulk switching due to magnetization switching. It is an object of the present invention to provide a yoke type thin film magnetic head capable of preventing the occurrence of Hausen noise.
本発明に係るヨーク型薄膜磁気ヘッドは、上記の課題
を解決するために、磁気記録媒体において発生した信号
磁界を抵抗変化として検出する磁気抵抗効果素子と、ヘ
ッドギャップから上記磁気抵抗効果素子へ磁束を導くヨ
ークと、上記磁気抵抗効果素子の長手方向に所望の弱磁
界を印加する直流磁界印加手段と、上記磁気抵抗効果素
子のストライプ幅方向に所望のバイアス磁界を印加する
導体とを備えたヨーク型薄膜磁気ヘッドにおいて、上記
磁気抵抗効果素子は、上記直流磁界印加手段により単磁
区化されるとともに、その磁化容易軸が磁気抵抗効果素
子の長手方向に対して5゜〜20゜傾けられていることを
特徴としている。In order to solve the above problems, a yoke type thin film magnetic head according to the present invention includes a magnetoresistive effect element that detects a signal magnetic field generated in a magnetic recording medium as a resistance change, and a magnetic flux from a head gap to the magnetoresistive effect element. A yoke for guiding the magnetic field, a DC magnetic field applying means for applying a desired weak magnetic field in the longitudinal direction of the magnetoresistive effect element, and a conductor for applying a desired bias magnetic field in the stripe width direction of the magnetoresistive effect element. In the thin film magnetic head, the magnetoresistive effect element is made into a single magnetic domain by the DC magnetic field applying means, and its easy axis of magnetization is inclined 5 ° to 20 ° with respect to the longitudinal direction of the magnetoresistive effect element. It is characterized by that.
上記磁気抵抗効果素子は、上記直流磁界印加手段によ
り単磁区化されているので、磁壁が存在しない。これに
より、磁壁移動に伴うバルクハウゼンノイズの発生を抑
制することができる。Since the magnetoresistive effect element is made into a single magnetic domain by the DC magnetic field applying means, there is no domain wall. As a result, it is possible to suppress the generation of Barkhausen noise due to the domain wall movement.
また、上記磁気抵抗効果素子における磁化容易軸が磁
気抵抗効果素子の長手方向に対して5゜〜20゜傾けられ
ていることで、信号磁界に相当する磁界における正側負
側何れか一方の側に不連続なとびの発生地点を移動させ
ることができる。従って、バイアス磁界によって線形性
の良い点に磁気抵抗効果素子お動作点を移動させる際
に、上記磁界における上記不連続なとびのない側にかか
る動作点を移動させれば、バイアス磁界と同一方向の磁
界領域において発生する磁化スイッチングを防止するこ
とが可能となる。よって、この磁化スイッチングに起因
するバルクハウゼンノイズの発生を回避することが可能
となる。Further, since the easy axis of magnetization in the magnetoresistive effect element is inclined 5 ° to 20 ° with respect to the longitudinal direction of the magnetoresistive effect element, either one of the positive side and the negative side in the magnetic field corresponding to the signal magnetic field is obtained. It is possible to move the point of discontinuity to the. Therefore, when the operating point of the magnetoresistive effect element is moved to a point having good linearity by the bias magnetic field, if the operating point on the side without the discontinuous jump in the magnetic field is moved, it is in the same direction as the bias magnetic field. It is possible to prevent the magnetization switching that occurs in the magnetic field region. Therefore, it is possible to avoid the occurrence of Barkhausen noise due to this magnetization switching.
以上のことから、磁気抵抗効果素子における、磁壁移
動に伴うバルクハウゼンノイズの発生の抑制と、磁化ス
イッチングに起因するバルクハウゼンノイズの発生の回
避とが可能となり、ヨーク型薄膜磁気ヘッドにおける再
生出力信号の高品質化を可能にしている。From the above, it is possible to suppress the generation of Barkhausen noise due to domain wall movement and to avoid the generation of Barkhausen noise due to magnetization switching in the magnetoresistive effect element, and to reproduce a reproduction output signal in the yoke thin film magnetic head. Of high quality.
本発明の一実施例を第1図乃至第9図に基づいて説明
すれば、以下の通りである。なお、説明の便宜上、第8
図及び第9図を再び用いることとし、また、第1図にお
ける部材の符号を第8図、第9図に対応させている。An embodiment of the present invention will be described below with reference to FIGS. 1 to 9. For convenience of explanation, the eighth
FIG. 9 and FIG. 9 are used again, and the reference numerals of the members in FIG. 1 correspond to those of FIG. 8 and FIG.
本発明に係るヨーク型薄膜磁気ヘッド(以下YMRヘッ
ドと称する)は、第8図及び第9図に示すように、磁気
記録媒体9において発生した信号磁界を抵抗変化として
検出する磁気抵抗効果素子(以下MR素子と称する)2
と、ヘッドギャップ10から上記MR素子2へ信号磁束を導
く上側ヨーク1・5と、上記MR素子2を単磁区化するた
めにMR素子2の長手方向に所望の弱磁界を印加する直流
磁界印加手段としての強磁性膜3・3と、上記MR素子2
のストライプ幅方向に所望のバイアス磁界を印加する導
体6とを備えている。かかるYMRヘッドにおいて、そのM
R素子2における磁化容易軸の方向は、第1図に示すよ
うに、MR素子2の長手方向に対して時計回りに10゜傾け
られている。The yoke type thin film magnetic head (hereinafter referred to as YMR head) according to the present invention, as shown in FIGS. 8 and 9, is a magnetoresistive effect element that detects a signal magnetic field generated in the magnetic recording medium 9 as a resistance change ( Hereinafter referred to as MR element) 2
And an upper yoke 1.5 that guides a signal magnetic flux from the head gap 10 to the MR element 2, and a DC magnetic field application for applying a desired weak magnetic field in the longitudinal direction of the MR element 2 in order to make the MR element 2 into a single magnetic domain. The ferromagnetic film 3.3 as a means and the MR element 2
And a conductor 6 for applying a desired bias magnetic field in the stripe width direction. In such YMR head, the M
The direction of the easy axis of magnetization in the R element 2 is tilted clockwise by 10 ° with respect to the longitudinal direction of the MR element 2, as shown in FIG.
上記の構成において、MR素子2には、上記強磁性膜3
・3により、→矢印で示す方向、即ち、紙面左から右へ
の方向の弱磁界が印加されている。したがって、MR素子
2は単磁区化状態となり、磁壁が存在しない状態となっ
ている。これにより、MR素子2内部での磁壁移動に伴な
うバルクハウゼンノイズの発生を抑制することができ
る。In the above structure, the MR element 2 has the ferromagnetic film 3
-By 3, the weak magnetic field is applied in the direction indicated by the arrow →, that is, from the left side to the right side of the drawing. Therefore, the MR element 2 is in a single domain state and has no domain wall. As a result, it is possible to suppress the generation of Barkhausen noise that accompanies the domain wall movement inside the MR element 2.
また、上記MR素子2における磁化容易軸の方向は、MR
素子2の各部分についてみると設定された磁化容易軸の
向きに対して正負両側に略同程度の角度分散が生じてい
る。ここで、この角度分散が±10゜程度あるとすると、
磁化容易軸の向きは、MR素子2の全領域においては、そ
の長手方向に対して0〜20゜の範囲で分布する。例え
ば、MR素子2上のa点では、磁化容易軸は長手方向に対
して20゜程度傾き、e点ではほとんど長手方向と同方向
を向いている。従って、磁化容易軸の向きが長手方向に
対して反時計回りに傾いている領域は、この場合存在し
ていない。このときのa、b、c、d、eの各点でのMR
素子ストライプ幅方向の磁化曲線は、各々第2図(a)
〜(e)で示すようになり、ΔR/R曲線は、同図(f)
に示すように、磁界Haの負側においてのみ曲線の一部に
不連続なとびを生じる。従って、MR素子2の動作点をバ
イアス磁界によって線形性の良い点へ移動させる際に、
上記磁界Haの正側へかかる動作点を移動させれば、YMR
ヘッドが信号磁界を再生する場合に、バイアス磁界と同
一方向の磁界領域において発生する磁化スイッチングを
防止することができ、この結果、磁化スイッチングに起
因するバルクハウゼンノイズの発生を回避することがで
きる。The direction of the easy axis of magnetization in the MR element 2 is MR
As for each part of the element 2, approximately the same degree of angular dispersion occurs on both the positive and negative sides with respect to the direction of the set easy axis. Here, if this angular dispersion is about ± 10 degrees,
The direction of the easy axis of magnetization is distributed in the range of 0 to 20 ° with respect to the longitudinal direction in the entire region of the MR element 2. For example, at the point a on the MR element 2, the easy magnetization axis is inclined by about 20 ° with respect to the longitudinal direction, and at the point e, it is almost in the same direction as the longitudinal direction. Therefore, in this case, there is no region in which the direction of the easy axis of magnetization is tilted counterclockwise with respect to the longitudinal direction. MR at each point of a, b, c, d, e at this time
The magnetization curves in the element stripe width direction are shown in FIG.
~ (E), and the ΔR / R curve is shown in (f) of the same figure.
As shown in, a discontinuous jump occurs in a part of the curve only on the negative side of the magnetic field Ha. Therefore, when moving the operating point of the MR element 2 to a point with good linearity by the bias magnetic field,
If the operating point on the positive side of the magnetic field Ha is moved, the YMR
When the head reproduces the signal magnetic field, it is possible to prevent the magnetization switching that occurs in the magnetic field region in the same direction as the bias magnetic field, and as a result, it is possible to avoid the occurrence of Barkhausen noise due to the magnetization switching.
尚、MR素子2の作製時において、その磁化容易軸の向
きを、第1図に示すものとは反対に反時計回りに10゜傾
け、他の条件は同じであったとすると、ΔR/R曲線にお
いて磁界Haの正側で不連続なとびが生じ、第2図(f)
とは磁界Haの正側、負側において逆の結果となる。この
場合には、MR素子2の動作点を磁界Haの負側へ移動させ
るようにバイアス磁界を印加すれば、その再生出力信号
中に磁化スイッチングに起因するバルクハウゼンノイズ
が含まれることはなくなる。When the MR element 2 was manufactured, the direction of the easy axis of magnetization was tilted counterclockwise by 10 ° contrary to that shown in FIG. 1, and the other conditions were the same, the ΔR / R curve Discontinuity occurs on the positive side of the magnetic field Ha in Fig. 2 (f)
And have opposite results on the positive and negative sides of the magnetic field Ha. In this case, if a bias magnetic field is applied so as to move the operating point of the MR element 2 to the negative side of the magnetic field Ha, Barkhausen noise due to magnetization switching will not be included in the reproduction output signal.
以上のことから、MR素子2における磁壁移動に伴うバ
ルクハウゼンノイズの発生と、磁化スイッチングに起因
するバルクハウゼンノイズの発生とを回避することが可
能となり、ヨーク型薄膜磁気ヘッドにおける再生出力信
号の高品質化を可能にしている。From the above, it is possible to avoid the generation of Barkhausen noise due to domain wall movement in the MR element 2 and the generation of Barkhausen noise due to magnetization switching, and the reproduction output signal of the yoke thin film magnetic head is high. It enables quality improvement.
次に、MR素子2の作製時における磁化容易軸の長手方
向に対する傾き角(以下、異方性傾き角と称する)の決
定要領を以下に説明する。Next, how to determine the tilt angle (hereinafter referred to as an anisotropic tilt angle) of the easy axis of magnetization with respect to the longitudinal direction when the MR element 2 is manufactured will be described below.
YMRヘッドにおけるMR素子2は信号磁界に対して、上
側ヨーク1・5及び下側ヨーク7の磁気的結合のため反
磁界の小さい状態で応答している。また、保磁力の大な
る強磁性膜3によりMR素子2に印加される弱磁界のた
め、MR素子2は単磁区状態である。これらの点から第3
図に示されるような簡単な単磁区モデルにより、異方性
傾き角の適当な値を見積もることができる。第3図にお
いてθは異方性傾き角、HEは強磁性膜3によってMR素子
2に印加される弱磁界、MSはMR素子2の飽和磁化、Haは
信号磁界に相当する外部磁界である。ここで、試作した
MR素子の特性に基づき、HE=1.3[oe]、Ms=796[emu/
cc]、HK=4[oe]として、磁化Mの異方性エネルギ
ー、磁化MとHEとの静磁エネルギーの和、及び、磁化M
とHaとの静磁エネルギーの和がそれぞれ最小になるよう
磁化MのHaに対する回転角ψを計算し、χ方向(第3図
にて示す)の磁化曲線及びΔR/R曲線を求めると、第4
図乃至第7図の各図(a)(b)のようになる。第6図
(a)及び(b)に示すように、異方性傾き角θが20゜
程度であると、磁化のスイッチングが発生する。さら
に、第7図(a)及び(b)に示すようい、異方性傾き
角θが25゜程度であると、磁化のスイッチングは、Haの
正負両側で発生するばかりか、磁化曲線にヒステリシス
が生じる。また、HE=0.8[oe]とし、他の条件を同じ
にして同様に計算を行うと、異方性傾き角θが12゜程度
で、Haの正側に磁化のスイッチングが生じる。さらに、
異方性傾き角θが増加するとHaの正負両側で磁化のスイ
ッチングが生じ、かつ、磁化曲線にヒステリシスを生じ
るようになることが確認されている。このように、異方
性傾き角θは、HEの大きさ及びMR素子2の磁気特性によ
り、或る一定値を超えると、磁化のスイッチングをHaの
両側に生じ、バルクハウゼンノイズを誘発するようにな
る。一方、異方性傾き角θを、磁化スイッチングがHaの
正負両側で発生しない範囲において考察すると、MR素子
2の感度ΔR/R曲線における各点での接線方向の傾きで
表される)は、かかる異方性傾き角θの増加に伴って低
下していくことが判明している。これらの計算結果を参
考にし、さらに一般的なMR素子2の磁気特性及び磁化容
易軸の角度分散が5゜〜10゜程度であることを考慮する
と、MR素子2の磁化容易軸の傾きは、5゜〜20゜の範囲
に設定するのが適当である。The MR element 2 in the YMR head responds to the signal magnetic field in a state where the demagnetizing field is small due to the magnetic coupling of the upper yokes 1 and 5 and the lower yoke 7. Further, due to the weak magnetic field applied to the MR element 2 by the ferromagnetic film 3 having a large coercive force, the MR element 2 is in a single domain state. Third from these points
With a simple single domain model as shown in the figure, an appropriate value of the anisotropic tilt angle can be estimated. Anisotropic inclination angle θ in Figure 3, H E is the weak magnetic field applied to the MR element 2 of a ferromagnetic film 3, M S is the saturation magnetization of the MR element 2, Ha is an external magnetic field corresponding to the signal magnetic field is there. Prototype here
Based on the characteristics of the MR element, HE = 1.3 [o e ] and M s = 796 [emu /
cc], as H K = 4 [o e] , the sum of the magnetostatic energy of the anisotropic energy, magnetization M and H E magnetization M, and the magnetization M
When the rotation angle ψ of the magnetization M with respect to Ha is calculated so that the sum of the magnetostatic energies of H and Ha is minimized, and the magnetization curve and ΔR / R curve in the χ direction (shown in FIG. 3) are obtained, Four
It becomes like each figure (a) (b) of FIGS. As shown in FIGS. 6A and 6B, when the anisotropic tilt angle θ is about 20 °, magnetization switching occurs. Further, as shown in FIGS. 7 (a) and 7 (b), when the anisotropic tilt angle θ is about 25 °, not only switching of magnetization occurs on both the positive and negative sides of Ha, but also the hysteresis of the magnetization curve. Occurs. Further, when H E = 0.8 [o e ] and other conditions are the same and the same calculation is performed, magnetization switching occurs on the positive side of Ha when the anisotropic inclination angle θ is about 12 °. further,
It has been confirmed that as the anisotropic tilt angle θ increases, magnetization switching occurs on both the positive and negative sides of Ha and hysteresis occurs in the magnetization curve. Thus, anisotropic inclination angle θ is the magnetic characteristics of magnitude and MR element 2 H E, it exceeds the certain value, resulting switching magnetization on opposite sides of Ha, induces Barkhausen noise Like On the other hand, considering the anisotropic tilt angle θ in a range in which magnetization switching does not occur on both positive and negative sides of Ha, it is represented by the tangential tilt at each point in the sensitivity ΔR / R curve of the MR element 2) It has been found that it decreases as the anisotropic tilt angle θ increases. With reference to these calculation results and considering that the magnetic characteristics of the MR element 2 and the angular dispersion of the easy axis of magnetization are about 5 ° to 10 °, the inclination of the easy axis of the MR element 2 is It is suitable to set in the range of 5 ° to 20 °.
〔発明の効果〕 本発明に係るヨーク型薄膜磁気ヘッドは、以上のよう
に、磁気記録媒体において発生した信号磁界を抵抗変化
として検出する磁気抵抗効果素子と、ヘッドギャップか
ら上記磁気抵抗効果素子へ磁束を導くヨークと、上記磁
気抵抗効果素子の長手方向に所望の弱磁界を印加する直
流磁界印加手段と、上記磁気抵抗効果素子のストライプ
幅方向に所望のバイアス磁界を印加する導体とを備えた
ヨーク型薄膜磁気ヘッドにおいて、上記磁気抵抗効果素
子は、上記直流磁界印加手段により単磁区化されるとと
もに、その磁化容易軸が磁気抵抗効果素子の長手方向に
対して5゜〜20゜傾けられた構成である。[Effects of the Invention] As described above, the yoke type thin-film magnetic head according to the present invention includes a magnetoresistive effect element for detecting a signal magnetic field generated in a magnetic recording medium as a resistance change, and a head gap to A yoke for guiding a magnetic flux, a DC magnetic field applying means for applying a desired weak magnetic field in the longitudinal direction of the magnetoresistive effect element, and a conductor for applying a desired bias magnetic field in the stripe width direction of the magnetoresistive effect element are provided. In the yoke type thin film magnetic head, the magnetoresistive effect element is made into a single magnetic domain by the DC magnetic field applying means, and its easy axis of magnetization is tilted by 5 ° to 20 ° with respect to the longitudinal direction of the magnetoresistive effect element. It is a composition.
これにより、磁気抵抗効果素子内部に磁壁が存在しな
いので、磁壁移動に伴うバルクハウゼンノイズの発生を
抑制することができる。また、信号磁界に相当する磁界
における正側負側何れか一方の側に不連続なとびの発生
地点を移動させることができる。従って、バイアス磁界
によって線形性の良い点に磁気抵抗効果素子の動作点を
移動させる際に、上記磁界における上記不連続なとびの
ない側にかかる動作点を移動させれば、バイアス磁界と
同一方向の磁界領域において発生する磁化スイッチング
を防止することが可能となり、この磁化スイッチングに
起因するバルクハウゼンノイズの発生を回避することが
できる。As a result, the domain wall does not exist inside the magnetoresistive effect element, so that it is possible to suppress Barkhausen noise due to the domain wall movement. Further, it is possible to move the discontinuity generating point to either one of the positive and negative sides of the magnetic field corresponding to the signal magnetic field. Therefore, when the operating point of the magnetoresistive effect element is moved to a point having good linearity by the bias magnetic field, if the operating point on the side without the discontinuous jump in the magnetic field is moved, it is in the same direction as the bias magnetic field. It is possible to prevent the magnetization switching that occurs in the magnetic field region, and it is possible to avoid the generation of Barkhausen noise due to this magnetization switching.
よって、磁気抵抗効果素子における磁壁移動に伴うバ
ルクハウゼンノイズの発生の抑制と、磁化スイッチング
に起因するバルクハウゼンノイズの発生の回避とが可能
となるので、かかるヨーク型薄膜磁気ヘッドにおける再
生出力信号を高品質化できるという効果を奏する。Therefore, it is possible to suppress the generation of Barkhausen noise due to the movement of the domain wall in the magnetoresistive element and to avoid the generation of Barkhausen noise due to the magnetization switching. This has the effect of improving the quality.
第1図は本発明の一実施例を示すものであって、磁気抵
抗効果素子における磁化容易軸の異方性傾き角θを10゜
に設定したときの磁化容易軸の分布等を示す説明図、第
2図(a)乃至(e)はそれぞれ第1図における各点a
〜eにおける磁気抵抗効果素子のストライプ幅方向の磁
化曲線図、同図(f)は磁気抵抗効果素子の再生主力に
対応するΔR/R曲線図、第3図は単軸モデルを示す概念
図、第4図乃至第7図の各図(a)はそれぞれ異方性傾
き角θが0゜,10゜,20゜,25゜のときの磁化曲線図、第
4図乃至第7図の各図(b)はそれぞれ異方性傾き角θ
が0゜,10゜,20゜,25゜のときのΔR/R曲線図、第8図は
一般のヨーク型薄膜磁気ヘッドの構造を示す斜視図、第
9図は一般のヨーク型薄膜磁気ヘッドを示す平面図、第
10図は従来例を示す説明図、第11図(a)乃至(e)は
それぞれ第10図における各点a〜eにおける磁気抵抗効
果素子のストライプ幅方向の磁化曲線図、同図(f)は
磁気抵抗効果素子の再生出力に対応するΔR/R曲線図で
ある。 1・5は上側ヨーク、2は磁気抵抗効果素子(MR素
子)、3は強磁性膜(直流磁界印加手段)、4はリード
導体部、6は導体、7は下側ヨーク、8はスペーシン
グ、9は磁気記録媒体、10はヘッドギャップである。FIG. 1 shows an embodiment of the present invention, and is an explanatory view showing the distribution of the easy axis of magnetization when the anisotropic tilt angle θ of the easy axis of the magnetoresistive effect element is set to 10 °. 2 (a) to 2 (e) are points a in FIG. 1, respectively.
Magnetization curves in the stripe width direction of the magnetoresistive effect element in to e, (f) is a ΔR / R curve diagram corresponding to the reproducing main force of the magnetoresistive effect element, and FIG. 3 is a conceptual diagram showing a uniaxial model, Each of FIGS. 4 to 7 (a) is a magnetization curve diagram when the anisotropic tilt angle θ is 0 °, 10 °, 20 °, 25 °, and each of FIGS. 4 to 7 (B) is the anisotropic tilt angle θ
ΔR / R curve diagram when 0 °, 10 °, 20 °, 25 °, FIG. 8 is a perspective view showing the structure of a general yoke type thin film magnetic head, and FIG. 9 is a general yoke type thin film magnetic head. Top view showing the
FIG. 10 is an explanatory view showing a conventional example, FIGS. 11 (a) to (e) are magnetization curve diagrams in the stripe width direction of the magnetoresistive effect element at points a to e in FIG. 10, respectively, and FIG. FIG. 4 is a ΔR / R curve diagram corresponding to the reproduction output of the magnetoresistive effect element. 1 and 5 are upper yokes, 2 is a magnetoresistive effect element (MR element), 3 is a ferromagnetic film (DC magnetic field applying means), 4 is a lead conductor portion, 6 is a conductor, 7 is a lower yoke, and 8 is a spacing. , 9 are magnetic recording media, and 10 is a head gap.
Claims (1)
抵抗変化として検出する磁気抵抗効果素子と、ヘッドギ
ャップから上記磁気抵抗効果素子へ磁束を導くヨーク
と、上記磁気抵抗効果素子の長手方向に所望の弱磁界を
印加する直流磁界印加手段と、上記磁気抵抗効果素子の
ストライプ幅方向に所望のバイアス磁界を印加する導体
とを備えたヨーク型薄膜磁気ヘッドにおいて、 上記磁気抵抗効果素子は、上記直流磁界印加手段により
単磁区化されるとともに、その磁化容易軸が磁気抵抗効
果素子の長手方向に対して5゜〜20゜傾けられているこ
とを特徴とするローク型薄膜磁気ヘッド。1. A magnetoresistive effect element for detecting a signal magnetic field generated in a magnetic recording medium as a resistance change, a yoke for guiding a magnetic flux from a head gap to the magnetoresistive effect element, and a desired one in the longitudinal direction of the magnetoresistive effect element. In a yoke type thin film magnetic head comprising a DC magnetic field applying means for applying a weak magnetic field and a conductor for applying a desired bias magnetic field in the stripe width direction of the magnetoresistive effect element. A Roke type thin film magnetic head characterized in that it is made into a single magnetic domain by a magnetic field applying means, and its easy axis of magnetization is inclined by 5 ° to 20 ° with respect to the longitudinal direction of the magnetoresistive effect element.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61241818A JP2559109B2 (en) | 1986-10-09 | 1986-10-09 | Yoke type thin film magnetic head |
DE19863644388 DE3644388A1 (en) | 1985-12-27 | 1986-12-24 | Thin-film yoke-type magnetic head |
US07/688,701 US5155644A (en) | 1985-12-27 | 1991-04-22 | Yoke thin film magnetic head constructed to avoid Barkhausen noises |
US07/869,056 US5225951A (en) | 1985-12-27 | 1992-04-16 | Thin film magnetic head with reduced internal stresses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61241818A JP2559109B2 (en) | 1986-10-09 | 1986-10-09 | Yoke type thin film magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6396713A JPS6396713A (en) | 1988-04-27 |
JP2559109B2 true JP2559109B2 (en) | 1996-12-04 |
Family
ID=17079953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61241818A Expired - Fee Related JP2559109B2 (en) | 1985-12-27 | 1986-10-09 | Yoke type thin film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2559109B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2790811B2 (en) * | 1988-04-20 | 1998-08-27 | シャープ株式会社 | Thin film magnetic head |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58192392A (en) * | 1982-05-07 | 1983-11-09 | Hitachi Ltd | Magneto-resistance effect type thin film element |
JPS61196417A (en) * | 1985-02-25 | 1986-08-30 | Matsushita Electric Ind Co Ltd | Thin film magnetic head |
-
1986
- 1986-10-09 JP JP61241818A patent/JP2559109B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6396713A (en) | 1988-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4803580A (en) | Double-gap magnetoresistive head having an elongated central write/shield pole completely shielding the magnetoresistive sensor strip in the read gap | |
US4967298A (en) | Magnetic head with magnetoresistive sensor, inductive write head, and shield | |
JPH09191141A (en) | Data transducer, magnetoresistance device, and magnetoresistance sensor | |
JP2790811B2 (en) | Thin film magnetic head | |
US4972284A (en) | Deposited permanent magnet for hard and easy axes biasing of a magnetoresistive head | |
EP0551603B1 (en) | Magneto-resistive head | |
US5808843A (en) | Magnetoresistance effect reproduction head | |
US5581427A (en) | Peak enhanced magnetoresistive read transducer | |
JP2559109B2 (en) | Yoke type thin film magnetic head | |
US7233461B2 (en) | Stabilization structure for CPP GMR/TV | |
JPH08203032A (en) | Magneto-resistance effect reproducing head | |
JP3609104B2 (en) | Magnetoresistive thin film head | |
JP2980043B2 (en) | Magnetic head and magnetic recording / reproducing method | |
JPH08147631A (en) | Magnetic recording and reproducing apparatus | |
JPH06203333A (en) | Magneto-resistance effect type thin-film head | |
JPS61196418A (en) | Thin film magnetic head | |
JPH026490Y2 (en) | ||
JPS6134577Y2 (en) | ||
JPH06131632A (en) | Thin film magnetic head and magnetic disk device | |
JPS61196417A (en) | Thin film magnetic head | |
JPH0572642B2 (en) | ||
JPH08147633A (en) | Magnetoresistance head | |
JPH07169024A (en) | Magneto-resistance effect type head and recording/ reproducing apparatus employing the same | |
JPH11120520A (en) | Magnetoresistive effect head and magnetic memory system using the same | |
JPH03225612A (en) | Magneto-resistance effect head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |