JPS63162510A - Method for removing carbon from metal nitride - Google Patents

Method for removing carbon from metal nitride

Info

Publication number
JPS63162510A
JPS63162510A JP30819686A JP30819686A JPS63162510A JP S63162510 A JPS63162510 A JP S63162510A JP 30819686 A JP30819686 A JP 30819686A JP 30819686 A JP30819686 A JP 30819686A JP S63162510 A JPS63162510 A JP S63162510A
Authority
JP
Japan
Prior art keywords
metal nitride
carbon
powder
contg
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30819686A
Other languages
Japanese (ja)
Inventor
Toshiji Ishii
敏次 石井
Sho Sano
佐野 省
Isao Imai
功 今井
Kouichi Sueyoshi
耕一 末芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP30819686A priority Critical patent/JPS63162510A/en
Publication of JPS63162510A publication Critical patent/JPS63162510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a high-purity metal nitride contg. no oxygen and carbon, by heating metal nitride powder contg. carbon in a gaseous atmosphere contg. NH3 and CmHn at the specified temp. CONSTITUTION:A mixture of a metal oxide and carbon is heated in a nitrogen atmosphere to obtain a metal nitride. The obtained metal nitride powder contg. carbon is heated at 600-1,800 deg.C in a gaseous atmosphere contg. CmHn. As a result, the metal nitride itself is not oxidized, and only carbon is oxidized and removed.

Description

【発明の詳細な説明】 産、十の1 本発明は炭素を含む金属窒化物粉末から炭素を除去する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing carbon from carbon-containing metal nitride powder.

従」Lプ退」L 金属酸化物と炭素との混合物をN2雰囲気中で加熱して
金属窒化物を得る方法は、広く行なわれている。
A widely used method is to heat a mixture of a metal oxide and carbon in an N2 atmosphere to obtain a metal nitride.

この場合、還元反応を促進させ、高い窒化率の金属窒化
物を得るために、原料中の炭素の配合量を金属酸化物を
還元するのに必要な量より過剰に配合するのが通例であ
る。したがって還元窒化反応が終った段階では、目的と
する金属窒化物は残留炭素との混合物となっている。
In this case, in order to accelerate the reduction reaction and obtain a metal nitride with a high nitriding rate, it is customary to add carbon in the raw material in excess of the amount necessary to reduce the metal oxide. . Therefore, at the stage where the reductive nitriding reaction is completed, the target metal nitride is a mixture with residual carbon.

そこで、高純度の金属窒化物を得るには、残留炭素を含
んだ金属窒化物から炭素を除去づる必要がある。
Therefore, in order to obtain a highly pure metal nitride, it is necessary to remove carbon from the metal nitride containing residual carbon.

従来、炭素を除去する方法としては、残留炭素を含んだ
金属窒化物を大気中550〜800℃で加熱して残留炭
素を酸化除去していた。あるいは、特開昭60−15o
9o6@で開示しているように、残留炭素を含んだ金属
窒化物をCO2を含むガス中700〜1100℃で加熱
して残留炭素を酸化除去していた。また、空気中での脱
炭を特開昭51−28598号では550〜700℃、
特開昭54−23917号では600〜800℃で行っ
ていた。また、特公昭57−8046号で開示している
ように、残留炭素を含んだ3i3N4を酸化性雰囲気に
おいて600〜800℃で加熱して脱炭処理をしていた
Conventionally, as a method for removing carbon, a metal nitride containing residual carbon was heated in the atmosphere at 550 to 800° C. to oxidize and remove the residual carbon. Or, JP-A-60-15o
As disclosed in 9o6@, a metal nitride containing residual carbon was heated at 700 to 1100° C. in a gas containing CO2 to oxidize and remove residual carbon. In addition, in JP-A No. 51-28598, decarburization in air was carried out at 550 to 700°C.
In JP-A No. 54-23917, the temperature was 600 to 800°C. Further, as disclosed in Japanese Patent Publication No. 57-8046, 3i3N4 containing residual carbon was decarburized by heating at 600 to 800°C in an oxidizing atmosphere.

が ゛しようとするUJLfX しかし、上述した従来の方法では、炭素を酸化して除去
する方法のため、金属窒化物自身も酸化され、高純度の
金属窒化物が得られない。
However, in the conventional method described above, since carbon is removed by oxidation, the metal nitride itself is also oxidized, making it impossible to obtain a highly pure metal nitride.

そこで、本出願人は、炭素を含む金属窒化物粉末を、N
Hsを含むガス中600〜1800℃の温度で加熱して
金属窒化物から炭素を除去する方法を提案した。
Therefore, the applicant has developed a method for converting carbon-containing metal nitride powder into N
We proposed a method for removing carbon from metal nitrides by heating them at temperatures of 600 to 1800°C in a gas containing Hs.

ところが、この方法において系内には必ず02成分が存
在する。この02成分は、ガス中の不純物酸素、水蒸気
、炉材からの混入酸化物、混合物(合成粉)の表面の酸
化物などである。
However, in this method, the 02 component always exists in the system. The 02 components include impurity oxygen in the gas, water vapor, mixed oxides from furnace materials, and oxides on the surface of the mixture (synthetic powder).

このため、次式により水が生じてしまう。Therefore, water is generated according to the following equation.

3 [0] +2NH3−+38z O+N2・・・・
・・(1) この+20は合成粉を酸化させてしまうため、合成粉中
の総酸素含有の割合が高くなってしまう。
3 [0] +2NH3-+38z O+N2...
(1) Since this +20 oxidizes the synthetic powder, the total oxygen content in the synthetic powder increases.

ユ」し久1」1 本発明は上記問題点を解消するためになされたものであ
り、金属窒化物の酸素含有量が極めて少なく金属窒化物
自身が酸化されず高純度の金属窒化物が得られる金属窒
化物から炭素を除去する方法を提供することを目的とし
ている。
The present invention has been made to solve the above problems, and it is possible to obtain a highly pure metal nitride because the metal nitride has an extremely low oxygen content and the metal nitride itself is not oxidized. The purpose of the present invention is to provide a method for removing carbon from metal nitrides.

11九り頴 この目的を達成するために本発明は炭素を含む金属窒化
物粉末を、NH3とCraHnを含むガス中600〜1
800℃の温度で加熱することを特徴とする金属窒化物
から炭素を除去する方法を要旨としている。
In order to achieve this object, the present invention prepares a carbon-containing metal nitride powder in a gas containing NH3 and CraHn at a concentration of 600 to 1
The gist of this paper is a method for removing carbon from metal nitrides, which is characterized by heating at a temperature of 800°C.

。  を ′するた の 本発明における炭素を含む金属窒化物は、次のようにし
て得られる。
. The carbon-containing metal nitride according to the present invention can be obtained as follows.

金属酸化物と炭素を混合し、この混合物をN2雰囲気中
で加熱して金属窒化物を得る。
A metal oxide and carbon are mixed and the mixture is heated in a N2 atmosphere to obtain a metal nitride.

この際、原料中の炭素の配合8は、金属酸化物を還元す
るのに必要な吊より過剰に配合する。これは、金属酸化
物の還元反応を促進させ、かつ高い窒化率を得る1=め
に行われる。
At this time, the carbon content 8 in the raw material is added in excess of the amount necessary to reduce the metal oxide. This is carried out in step 1 to promote the reduction reaction of the metal oxide and obtain a high nitridation rate.

このようにして得られた金属窒化物は残留炭素との混合
物となっている。
The metal nitride thus obtained is a mixture with residual carbon.

この混合物には、02成分が存在する。この02成分と
は、上述したようにガス中の不純物酸素、水蒸気、炉材
からの混入酸化物、混合物(合成粉)の表面の酸化物な
どである。
In this mixture, component 02 is present. As mentioned above, the 02 components include impurity oxygen in the gas, water vapor, mixed oxides from furnace materials, and oxides on the surface of the mixture (synthetic powder).

そこで、本発明ではこの混合物をNH3と炭化水素化合
物(Cm Hn )を含むガス中で加熱し、 3 C+4 N H3→3CH4↑+2N2 ↑ □6
C+2NH3→3C2H2↑+N2↑等の反応を利用し
て炭素を除去するものである。
Therefore, in the present invention, this mixture is heated in a gas containing NH3 and a hydrocarbon compound (Cm Hn), and 3 C+4 NH3→3CH4↑+2N2 ↑ □6
Carbon is removed using reactions such as C+2NH3→3C2H2↑+N2↑.

この脱炭の時に前記02成分の存在により前述の(1)
式から+20を生ずる。
During this decarburization, due to the presence of the 02 component, the above (1)
yields +20 from the equation.

3 [0] +2NH3→3H20+N2しかし、前記
ガスがCm )−Inをも含んでいるので、この+20
は次式により無害化されることになる。
3 [0] +2NH3→3H20+N2 However, since the gas also contains Cm)-In, this +20
will be made harmless by the following equation.

m +2 Q+Cm Hn −+m  CO+  (m  +9)H2NH3とCm
 Hnの混合比は、Cm )−1nを炭素基準のCH4
に換算して好ましくはNH3/CH4が0.5〜300
0 (容積比)である。
m +2 Q+Cm Hn −+m CO+ (m +9)H2NH3 and Cm
The mixing ratio of Hn is Cm)-1n to CH4 based on carbon.
Preferably NH3/CH4 is 0.5 to 300 in terms of
0 (volume ratio).

このNH3/CH4の値が0.5より小さイト大半のN
H3が炭化水素ガスとの反応に消費され、実質的に脱炭
炉用がなくなり好ましくはない。またNH3/CH4の
値が3000より大きいと実質的に820の除去が行な
われず合成粉中の酸素含有量が高くなり好ましくない。
If this NH3/CH4 value is smaller than 0.5, most of the N
H3 is consumed in the reaction with hydrocarbon gas, which is not preferable because it is essentially not used in the decarburization furnace. Moreover, if the value of NH3/CH4 is larger than 3000, 820 is not substantially removed and the oxygen content in the synthetic powder becomes high, which is not preferable.

本発明の系では酸素成分は含まれておらず、金属窒化物
の酸化が全く生じない。
The system of the present invention does not contain any oxygen component, and no oxidation of the metal nitride occurs.

このときの加熱温度は600〜1800℃の範囲である
が、800〜1600℃の加熱温度が好ましい。
The heating temperature at this time is in the range of 600 to 1800°C, but preferably 800 to 1600°C.

このように加熱温度を限定した理由は次のとおりである
The reason for limiting the heating temperature in this way is as follows.

加熱温度が600℃未満である場合、実質的に金属窒化
物から残留炭素が除去されず、すなわち脱炭が進まない
。また加熱温度が1800℃より高いと脱炭には過度の
条件となるし、金属窒化物がたとえばSi 3 H4で
あると、Si 3 H4の分解が起こる。ところで炭化
水素化合物(Cm Hn )としては、たとえばCH4
やC3H8のメタン系列炭化水素の他、エチレン系列、
アセチレン系列の各炭化水素、環式炭化水素および合成
雰囲気中で炭化水素になるガス等が使用できる。
When the heating temperature is less than 600° C., residual carbon is not substantially removed from the metal nitride, that is, decarburization does not proceed. Further, if the heating temperature is higher than 1800° C., this becomes an excessive condition for decarburization, and if the metal nitride is, for example, Si 3 H4, decomposition of Si 3 H4 occurs. By the way, as a hydrocarbon compound (Cm Hn), for example, CH4
In addition to methane series hydrocarbons such as C3H8 and C3H8, ethylene series,
Acetylene series hydrocarbons, cyclic hydrocarbons, and gases that become hydrocarbons in the synthesis atmosphere can be used.

上述の条件のもとに、前記金属窒化物から残留炭素が除
去されるとともに、水が無害化され合成粉の酸化がなく
なる。
Under the above conditions, residual carbon is removed from the metal nitride, water is rendered harmless, and the synthetic powder is no longer oxidized.

支11 次に、表−1により本発明の実施例No。Support 11 Next, Table 1 shows Example No. of the present invention.

1〜N0.7を説明する。1 to N0.7 will be explained.

N011〜03: 3i02粉末(平均粒径20μII)、C(カーボンブ
ラック)粉末(平均粒径40μm)、Si3N4粉末(
平均粒径0.1μm>を、表−1に示した所定割合に配
合し、表−1に示す合成条件で還元窒化処理を施し、余
剰炭素を含むSi3N4粉末を得た。
N011-03: 3i02 powder (average particle size 20 μm), C (carbon black) powder (average particle size 40 μm), Si3N4 powder (
Si3N4 powder containing excess carbon was obtained by blending Si3N4 powder with an average particle size of 0.1 μm in the predetermined proportions shown in Table 1 and subjecting it to a reduction nitriding treatment under the synthesis conditions shown in Table 1.

−No、4〜N05: A Q203粉末(平均粒径0.7μm >、C粉末(
平均粒径40mμm)を、表−1に示した所定割合に配
合し、表−1に示す合成条件で還元窒化処理を施し、余
剰炭素を含むA9N粉末を得た。
-No, 4 to N05: A Q203 powder (average particle size 0.7 μm >, C powder (
(average particle size: 40 mμm) were blended in the predetermined proportions shown in Table 1, and subjected to reduction nitriding treatment under the synthesis conditions shown in Table 1 to obtain A9N powder containing excess carbon.

F   No、6〜NO,7: ZrO2粉末(平均粒径o、 8μm >、c粉末(平
均粒径40mμm)を、表−1に示した所定割合に配合
し、表−1に示す合成条件で還元窒化処理を施し、余剰
炭素を含むZrN粉末を得た。
F No. 6 to No. 7: ZrO2 powder (average particle size o, 8 μm > c powder (average particle size 40 mm μm) was blended in the predetermined proportions shown in Table-1, and synthesized under the synthesis conditions shown in Table-1. A reduction nitriding treatment was performed to obtain ZrN powder containing excess carbon.

次に、上記Si3N4、AIIN及びZrNの粉末をN
H3とCm Hnを含むガス中でそれぞれ表−1に示す
本発明の方法で加熱し、脱炭処理を施した。ここで用い
られたCmHnはC3Haである。得られた前記各金属
窒化物粉末の含有酸素量を赤外吸収法ににす、また含有
炭素量を熱伝導度検出法によりそれぞれ測定した。
Next, the Si3N4, AIIN and ZrN powders were heated with N
Decarburization treatment was performed by heating in a gas containing H3 and CmHn by the method of the present invention shown in Table 1, respectively. CmHn used here is C3Ha. The amount of oxygen contained in each of the obtained metal nitride powders was measured by an infrared absorption method, and the amount of carbon contained was measured by a thermal conductivity detection method.

比較のために、従来の方法により空気中又はCO2中で
脱炭し゛た前記各金属窒化物粉末の比較例N0.1〜N
o、7の特性も表−2に示す。
For comparison, comparative examples No. 1 to N of each of the metal nitride powders decarburized in air or CO2 by a conventional method are shown.
The characteristics of o and 7 are also shown in Table 2.

各実施例No、1〜No、7と比較例No。Each Example No. 1 to No. 7 and Comparative Example No.

1〜N007の生成粉に見られる全酸素屋は主として粉
末構造内に存在する酸素量である。
The total oxygen content found in the powders produced from No. 1 to N007 is primarily the amount of oxygen present within the powder structure.

実施例No 、  1〜No 、  7と比較例No。Example No. 1 to No. 7 and Comparative Example No.

1〜No、7を比べると判るように、本発明の方法によ
り得られた実施例No、1〜No。
As can be seen by comparing Examples Nos. 1 to 7, Examples Nos. 1 to 7 were obtained by the method of the present invention.

7は、従来の比較例No、1〜NO67に比べて金属窒
化物の酸化がおこらず高純度の金属窒化物粉末が得られ
る。
In Comparative Example No. 7, oxidation of the metal nitride does not occur compared to conventional comparative examples No. 1 to No. 67, and a highly pure metal nitride powder can be obtained.

一例として、本発明の方法により得られた表−1に示す
実施例No、1の粉末を用いて、この粉末にY203を
5重量部とA Q203を2重量部を加え、混合後圧粉
成形した。そして、成形体を1750℃ノ温度、450
K(+/cn+2の圧力で3時間焼結して焼結体を作成
した。
As an example, using the powder of Example No. 1 shown in Table 1 obtained by the method of the present invention, 5 parts by weight of Y203 and 2 parts by weight of A Q203 were added to this powder, and after mixing, the powder was compacted. did. Then, the molded body was heated to a temperature of 1750°C and heated to a temperature of 450°C.
A sintered body was produced by sintering at a pressure of K(+/cn+2) for 3 hours.

また表−2に示す比較例N011の粉末を用いて、この
粉末にY2O3を5重り部と八9203を2重量部を加
え、混合後圧粉成形した。そして、成形体を1750℃
の温度、450Kg/cn+2の圧力で3時間焼結して
焼結体を作成した。
Further, using the powder of Comparative Example No. 011 shown in Table 2, 5 parts by weight of Y2O3 and 2 parts by weight of 89203 were added to the powder, mixed, and then compacted. Then, the molded body was heated to 1750°C.
A sintered body was prepared by sintering at a temperature of 450 Kg/cn+2 for 3 hours.

このようにして得られた両焼結体の熱間曲げ強度の比較
を行なった。本発明の実施例N011の焼結体の場合は
、1000℃で111 KO/mm2.1200℃で1
03K(1/mff12であった。一方、比較例No、
1の焼結体の場合は、1000℃で98K(J /mm
2.1200°Cで68Kg/mm2であった。
The hot bending strengths of both sintered bodies thus obtained were compared. In the case of the sintered body of Example No. 011 of the present invention, 111 KO/mm2 at 1000°C, 1 KO/mm2 at 1200°C
03K (1/mff12. On the other hand, comparative example No.
In the case of the sintered body of No. 1, 98K (J/mm
2. It was 68Kg/mm2 at 1200°C.

このことから、本発明の方法により1[7られた焼結体
は、従来の方法により得られた焼結体に比べて熱間曲げ
強度が大きい。
From this, the sintered body obtained by the method of the present invention has a higher hot bending strength than the sintered body obtained by the conventional method.

免匪悲立1 本発明によれば、金属窒化物中の醗索含有最が極めて少
ない高純度の金属窒化物粉末が得られる。そしてそれを
用いて製造された焼結体の特性が向上する。Si3N4
 (−例としてα−8i 3 N4 )の場合、熱間強
度の向上が図れる。またli Nの場合、熱伝導率の向
上が図れる。
According to the present invention, a high-purity metal nitride powder can be obtained in which the metal nitride contains an extremely small amount of iron. The characteristics of the sintered body manufactured using the same are improved. Si3N4
(-8i 3 N4 as an example), the hot strength can be improved. Furthermore, in the case of liN, the thermal conductivity can be improved.

昭和62年4月膣日April 1986 Vaginal Day

Claims (2)

【特許請求の範囲】[Claims] (1)炭素を含む金属窒化物粉末を、NH_3とCmH
nを含むガス中600〜1800℃の温度で加熱するこ
とを特徴とする金属窒化物から炭素を除去する方法。
(1) Metal nitride powder containing carbon is mixed with NH_3 and CmH
A method for removing carbon from a metal nitride, the method comprising heating at a temperature of 600 to 1800°C in a gas containing n.
(2)前記NH_3とCmHnの混合比は、CmHnを
炭素基準のCH_4に換算してNH_3/CH_4が0
.5〜3000の容積比である特許請求の範囲第1項に
記載の金属窒化物から炭素を除去する方法。
(2) The mixing ratio of NH_3 and CmHn is NH_3/CH_4 when CmHn is converted to carbon-based CH_4.
.. A method for removing carbon from metal nitrides according to claim 1, wherein the volume ratio is between 5 and 3000.
JP30819686A 1986-12-26 1986-12-26 Method for removing carbon from metal nitride Pending JPS63162510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30819686A JPS63162510A (en) 1986-12-26 1986-12-26 Method for removing carbon from metal nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30819686A JPS63162510A (en) 1986-12-26 1986-12-26 Method for removing carbon from metal nitride

Publications (1)

Publication Number Publication Date
JPS63162510A true JPS63162510A (en) 1988-07-06

Family

ID=17978073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30819686A Pending JPS63162510A (en) 1986-12-26 1986-12-26 Method for removing carbon from metal nitride

Country Status (1)

Country Link
JP (1) JPS63162510A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434405U (en) * 1990-07-17 1992-03-23
WO2023048282A1 (en) * 2021-09-27 2023-03-30 三菱マテリアル株式会社 Coated zirconium nitride particles and uv-curable black organic composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434405U (en) * 1990-07-17 1992-03-23
WO2023048282A1 (en) * 2021-09-27 2023-03-30 三菱マテリアル株式会社 Coated zirconium nitride particles and uv-curable black organic composition

Similar Documents

Publication Publication Date Title
US4117095A (en) Method of making α type silicon nitride powder
JPS60171282A (en) Manufacture of si3n4-sic ceramic sintered body
JPS6112844B2 (en)
JPS63162510A (en) Method for removing carbon from metal nitride
JPS62241812A (en) Manufacture of silicon nitride
CA1334333C (en) Method for making silicon nitride powder
JP2002069609A (en) Gas soft-nitriding method
JP2582281B2 (en) Method for producing metal nitride powder
JP2797678B2 (en) Method for producing α-type silicon nitride powder
JPH031270B2 (en)
JPS5567514A (en) High purity alpha-type silicon nitride and production thereof
JPS6389411A (en) Method for removing carbon from metallic nitride
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS6042161B2 (en) Production method of uranium mononitride
SU676384A1 (en) Method of thermal treatment of metallic powder
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JPH03208864A (en) Production of mixed powder of boron nitride and aluminum nitride
CN101113095A (en) Synthetic preparation method of A1N ceramic powder
JPH04175210A (en) Method for removing impurity of aluminum nitride
JPS606884B2 (en) Method for producing α-type silicon nitride powder
JPS61256907A (en) Preparation of alpha type silicon nitride
JPH0248407A (en) Production of silicon nitride powder
JPS63162513A (en) Production of silicon nitride
JPS57129810A (en) Manufacture of alpha-type silicon nitride powder
JPS58135112A (en) Production of aluminum oxynitride