JPS6042161B2 - Production method of uranium mononitride - Google Patents

Production method of uranium mononitride

Info

Publication number
JPS6042161B2
JPS6042161B2 JP9775577A JP9775577A JPS6042161B2 JP S6042161 B2 JPS6042161 B2 JP S6042161B2 JP 9775577 A JP9775577 A JP 9775577A JP 9775577 A JP9775577 A JP 9775577A JP S6042161 B2 JPS6042161 B2 JP S6042161B2
Authority
JP
Japan
Prior art keywords
uranium
carbon
mononitride
hydrogen
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9775577A
Other languages
Japanese (ja)
Other versions
JPS5432198A (en
Inventor
忠純 室村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP9775577A priority Critical patent/JPS6042161B2/en
Publication of JPS5432198A publication Critical patent/JPS5432198A/en
Publication of JPS6042161B2 publication Critical patent/JPS6042161B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/063Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with one or more actinides, e.g. UN, PuN
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は二酸化ウランを原料とする一窒化ウランの製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing uranium mononitride using uranium dioxide as a raw material.

さらに詳しくは、本発明は二酸化ウランをいつたん炭化
ウランに転換し、この炭化ウランをアンモニアまたは水
素・窒素混合気体と反応し一窒化ウランを製造する方法
に関する。核燃料物質の一窒化ウランの製造原料として
は、製造コストが低いことから酸化ウランが望ましい。
More specifically, the present invention relates to a method of converting uranium dioxide into uranium carbide and reacting this uranium carbide with ammonia or a hydrogen/nitrogen mixture to produce uranium mononitride. Uranium oxide is desirable as a raw material for producing uranium mononitride, a nuclear fuel material, because of its low production cost.

特に二酸化ウランは反応制御の容易なため一般に用いら
れている。二酸化ウランを原料とする製造法においては
二酸化ウランを炭素で還元し窒化する。従つて、二酸化
ウランから製造された一窒化ウラン中の主な不純物は酸
素と炭素である。そしてこれらの不純物量の低減のため
に今日まで多くの努力が払われた来た。以下二酸化ウラ
ンからの従来の一窒化ウランの製造法について述べる。
第1の方法は二酸化ウランと炭素をモル比で正確に1対
2に混合し、この混合物を窒素気流中1500〜17卯
℃で加熱反応し一窒化ウランを製造するものである。
In particular, uranium dioxide is commonly used because the reaction can be easily controlled. In a manufacturing method using uranium dioxide as a raw material, uranium dioxide is reduced with carbon and nitrided. Therefore, the main impurities in uranium mononitride produced from uranium dioxide are oxygen and carbon. Many efforts have been made to date to reduce the amount of these impurities. A conventional method for producing uranium mononitride from uranium dioxide will be described below.
The first method involves mixing uranium dioxide and carbon in a molar ratio of exactly 1:2, and heating the mixture at 1,500 to 17 μC in a nitrogen stream to produce uranium mononitride.

この方法の長所は製造反応が単一の反応工程で終ること
である。しかしながら、(1)反応をすみやかに進める
ためには高い温度が必要である、(2)二酸化ウランと
炭素をモル比で正確に1対2に混合することが困難であ
る、(3)そのため高度の熟練と技術で製造しても窒化
ウラン中に0、踵量%の酸素、0.15重量%の炭素等
比較的高い濃度の不純物を含む等の欠点がある。そこで
不純物酸素量を低下させるため、還元剤の炭素を少し過
剰にし、この過剰炭素を水素て除く第2の方法が考えら
れた。この方法は二酸化ウランと炭素をモル比で1対2
.14〜2.16に混合しこの混合物を窒素中1600
〜170伊Cで反応させた後過剰炭素を水素で除く製造
法である。
The advantage of this method is that the production reaction is completed in a single reaction step. However, (1) high temperatures are required for the reaction to proceed quickly, (2) it is difficult to mix uranium dioxide and carbon at an accurate molar ratio of 1:2, and (3) there is a high Even if uranium nitride is manufactured with the skill and technology of uranium nitride, it has drawbacks such as relatively high concentrations of impurities such as 0.1% by weight of oxygen and 0.15% by weight of carbon. Therefore, in order to reduce the amount of impurity oxygen, a second method was devised in which the amount of carbon in the reducing agent is slightly excessive and this excess carbon is removed by hydrogen. This method uses uranium dioxide and carbon in a molar ratio of 1:2.
.. 14-2.16 and this mixture was heated under nitrogen at 1600 °C.
This is a production method in which excess carbon is removed with hydrogen after reaction at ~170°C.

この方法では、還元窒化、遊離炭素の除去、固溶炭素の
遊離化、再度の遊離炭素の除去、高級窒化物の分解、等
の第5工程を経て一室′化ウランが製造される。この方
法には(1)二酸化ウランと炭素の混合が容易である、
(2)一窒化ウラン中の不純物酸素を0.1重量%まて
低下できる等の長所があるが、5工程にも及ぶ複雑な製
造法てある短所がある。5 本発明の目的は従来の製造
法の欠点および短所を排除した新たな、不純物酸素濃度
の低い新規な一窒化ウランの製造法を提供することであ
る。
In this method, uranium monochloride is produced through the fifth step of reducing nitriding, removing free carbon, liberating solid solution carbon, removing free carbon again, and decomposing higher nitrides. This method includes (1) easy mixing of uranium dioxide and carbon;
(2) It has the advantage of being able to reduce the oxygen impurity in uranium mononitride by as much as 0.1% by weight, but it has the disadvantage of requiring a complicated manufacturing process that involves five steps. 5. An object of the present invention is to provide a new method for producing uranium mononitride with a low concentration of impurity oxygen, which eliminates the drawbacks and drawbacks of conventional production methods.

本発明は二酸化ウランをいつたん酸素を含まない化合物
に転換し、これを一窒化ウランに転換する2つの工程に
よつて一窒化ウランを製造せんとするものである。すな
はち、詳しく述べると、二酸化ウランと炭素をモル比で
1対3〜4の割合で混合する。この混合物を1350℃
以上で真空中もしくは不活性雰囲気中で一酸化炭素の排
出が終るまで加熱して炭化ウラン(UC一炭化ウラン、
U2C3三炭化二ウラン、UC2二炭化ウラン)を製造
する。この工程を炭化反応工程と称する。炭化ウランは
さらにアンモニア気流もしくは水素・窒素混合気流中1
400〜1750℃で炭化水素の排出が終るまで加熱し
て、一窒化ウランを生成する。これを窒化反応工程と称
する。窒化反応工程終了の後、アンモニアもしくは水素
・窒素混合気体をヘリウムに置換するか、反応炉中を真
空引きして冷却する。かくして一窒化ウランが得られる
。次に実施例について本発明を説明する。
The present invention aims to produce uranium mononitride through two steps: converting uranium dioxide into an oxygen-free compound and converting this into uranium mononitride. Specifically, uranium dioxide and carbon are mixed at a molar ratio of 1:3 to 4. This mixture was heated to 1350°C.
Uranium carbide (UC uranium monocarbide,
U2C3 diuranium tricarbide, UC2 uranium dicarbide) are produced. This step is called a carbonization reaction step. Uranium carbide is further added to an ammonia stream or a hydrogen/nitrogen mixture stream.
Uranium mononitride is produced by heating at 400-1750° C. until the hydrocarbons are exhausted. This is called a nitriding reaction step. After the nitriding reaction process is completed, the ammonia or hydrogen/nitrogen mixed gas is replaced with helium, or the reactor is evacuated and cooled. Thus, uranium mononitride is obtained. Next, the present invention will be explained with reference to examples.

なお、本明細書において、気体の混合割合は、容量%で
ある。
Note that in this specification, the mixing ratio of gases is % by volume.

実施例1 二酸化ウランと炭素(黒鉛)をモル比で、1対3および
1対4に混合した。
Example 1 Uranium dioxide and carbon (graphite) were mixed in molar ratios of 1:3 and 1:4.

各混合物は直径7順、高さ2−3wn重さ0.5fIの
ペレット状に成型した。このペレットを誘導加熱炉中、
ヘリウム気流中1600℃で2時間加熱し一酸化炭素の
排出が終つた後、加熱炉中を流速0.5e/分のアンモ
ニア気流もしくは1.0e/分の8%水素+92%窒素
または75%水素+25%窒素気流に置換し1400〜
1750℃で炭化水素の排出が終るまで加熱した。反応
終了の後反応炉中をヘリウムに置換する真空引きして冷
却した。以上により格子定数4.8892〜4.889
6人の一窒化ウランが製造された。第1表に種々の条件
下で製造した一窒化ウランの不純物の分析値を示す。窒
化反応工程で約9〜1F!Tf間加熱反応した一窒化ウ
ラン中の酸素は0.023〜0.05種量%、炭素は0
.009〜0.044重量%の間にあつた。
Each mixture was molded into pellets with a diameter of 7, a height of 2-3wn, and a weight of 0.5fI. This pellet is placed in an induction heating furnace.
After heating at 1600℃ in a helium stream for 2 hours and exhausting carbon monoxide, the heating furnace is heated with an ammonia stream at a flow rate of 0.5e/min or 8% hydrogen + 92% nitrogen or 75% hydrogen at a flow rate of 1.0e/min. +25% nitrogen flow and 1400~
It was heated at 1750° C. until the discharge of hydrocarbons had ended. After the reaction was completed, the inside of the reactor was evacuated to replace it with helium and cooled. As a result of the above, the lattice constant is 4.8892 to 4.889
Six uranium mononitrides were produced. Table 1 shows the analytical values for impurities in uranium mononitride produced under various conditions. Approximately 9 to 1 F during the nitriding reaction process! Oxygen in uranium mononitride subjected to heating reaction between Tf is 0.023 to 0.05%, and carbon is 0.
.. It was between 0.009 and 0.044% by weight.

第1表に示されるように本発明の方法で製造した一窒化
ウラン中の不純物量は従来第1法(酸素0.鍾量%、炭
素0.15重量%)、第2法(酸素0.1重量%、炭素
0.2重量%)におけるより低い値である。実施例1に
おいては、炭化反応工程は1600℃で加熱したが、こ
の反応工程が1350℃以上で進行することは周知であ
る。
As shown in Table 1, the amount of impurities in uranium mononitride produced by the method of the present invention is conventionally the first method (oxygen 0.0% by weight, carbon 0.15% by weight) and the second method (oxygen 0.1% by weight). 1% by weight, carbon 0.2% by weight). In Example 1, the carbonization reaction step was heated at 1600°C, but it is well known that this reaction step proceeds at 1350°C or higher.

窒化反応工程は1400〜1750℃で加熱した。14
00℃以下では窒化反応工程の脱炭反応の速度が遅いた
め、また1750℃以上では加熱炉の寿命を縮めるため
実用的でない。
The nitriding reaction step was heated at 1400 to 1750°C. 14
If it is below 00°C, the speed of the decarburization reaction in the nitriding reaction step is slow, and if it is above 1750°C, it is not practical because the life of the heating furnace will be shortened.

水素・窒素混合気体は水素8〜75%を用いた。8%以
下の水素濃度では窒化反応工程の脱炭反応速度が低下す
るため、また75%以上の水素濃度では爆発の危険性が
あるため、いずれも用いなかつた。
The hydrogen/nitrogen mixed gas used was 8 to 75% hydrogen. Since the decarburization reaction rate in the nitriding reaction step decreases at a hydrogen concentration of 8% or less, and there is a risk of explosion at a hydrogen concentration of 75% or more, neither was used.

以上より明らかなごとく本発明の方法は (1)本発明の方法は、二酸化ウランをいつたん酸素を
含まない炭化ウランに転換(炭化反応工程)し、これを
窒化物に転換(窒化反応工程)する2つの工程によつて
構成される。
As is clear from the above, the method of the present invention is as follows: (1) The method of the present invention converts uranium dioxide into uranium carbide containing no oxygen (carbonization reaction step), and converts this into nitride (nitridation reaction step). It consists of two steps.

(2)二酸化ウランと炭素はモル比で1対3〜4で混合
すればよい。
(2) Uranium dioxide and carbon may be mixed at a molar ratio of 1:3 to 4.

(3)未還元の二酸化ウランの残留はない。(3) There is no residual unreduced uranium dioxide.

(4) 一窒化ウランの純度は高く、ウラン金属から製
造した物に匹敵する。等の特徴を有する。
(4) The purity of uranium mononitride is high and comparable to that made from uranium metal. It has the following characteristics.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化ウラン1モルに対して炭素3〜4モルを混合
し、この混合物を真空中もしくは不活性雰囲気中135
0℃以上で加熱し一酸化炭素の排出が完了した後、さら
にアンモニア気流または8〜75容量%の水素と92〜
25容量%の窒素の混合気流中1400〜1750℃で
加熱し炭化水素の排出が完了した後、該アンモニアまた
は水素・窒素混合気体を不活性気体に置換するかまたは
真空に引いて冷却することを特徴とする一窒化ウランの
製造法。
1. Mix 3 to 4 moles of carbon to 1 mole of uranium dioxide, and add this mixture to 135% in vacuum or in an inert atmosphere.
After heating at 0°C or higher to complete exhaustion of carbon monoxide, further heat with a stream of ammonia or 8 to 75% hydrogen by volume.
After heating at 1,400 to 1,750°C in a 25% by volume nitrogen gas mixture to complete exhaustion of hydrocarbons, replace the ammonia or hydrogen/nitrogen mixture with an inert gas or evacuate and cool. A unique method for producing uranium mononitride.
JP9775577A 1977-08-17 1977-08-17 Production method of uranium mononitride Expired JPS6042161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9775577A JPS6042161B2 (en) 1977-08-17 1977-08-17 Production method of uranium mononitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9775577A JPS6042161B2 (en) 1977-08-17 1977-08-17 Production method of uranium mononitride

Publications (2)

Publication Number Publication Date
JPS5432198A JPS5432198A (en) 1979-03-09
JPS6042161B2 true JPS6042161B2 (en) 1985-09-20

Family

ID=14200687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9775577A Expired JPS6042161B2 (en) 1977-08-17 1977-08-17 Production method of uranium mononitride

Country Status (1)

Country Link
JP (1) JPS6042161B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173618A (en) * 1984-09-20 1986-04-15 松下電器産業株式会社 Seat heater apparatus for vehicle
JPS61190258U (en) * 1985-05-22 1986-11-27
JPS62121800U (en) * 1986-01-24 1987-08-01

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562771B1 (en) * 2017-02-06 2020-02-18 Triad National Security, Llc Fabrication of uranium nitride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173618A (en) * 1984-09-20 1986-04-15 松下電器産業株式会社 Seat heater apparatus for vehicle
JPS61190258U (en) * 1985-05-22 1986-11-27
JPS62121800U (en) * 1986-01-24 1987-08-01

Also Published As

Publication number Publication date
JPS5432198A (en) 1979-03-09

Similar Documents

Publication Publication Date Title
US4117095A (en) Method of making α type silicon nitride powder
US4428916A (en) Method of making α-silicon nitride powder
US4090976A (en) Process for producing uranium oxide rich compositions from uranium hexafluoride
US3334974A (en) Manufacture of refractory compounds
CN106829886B (en) The low temperature synthetic method of uranium mononitride powder
JPS6042161B2 (en) Production method of uranium mononitride
US5075091A (en) Process for the preparation of silicon nitride
JPS63199832A (en) Manufacture of high-purity metallic chromium
US3758669A (en) Process for the preparation of uranium nitride powder
Sears Reactions of uranium carbonitrides and uranium nitride with aqueous solutions of hydrochloric, sulfuric, and nitric acids
Tripathy et al. Preparation of vanadium nitride and its subsequent metallization by thermal decomposition
JPS632885B2 (en)
JPS63162511A (en) Production of silicon nitride
EP0634359B1 (en) Preparation of high alpha-type silicon nitride powder
JPS63199833A (en) Manufacture of high-purity metallic chromium
US3836631A (en) Method of making uranium sesquicarbide
JPS5826012A (en) Manufacture of plutonium mononitride
JPH0196003A (en) Manufacture of nitride of uranium and/or plutonium
JP3172732B2 (en) Manufacturing method of ceramic pellets for nuclear fuel
JPS5884108A (en) Manufacture of high purity alpha-type silicon nitride
US3976750A (en) Process for the production of uranium trifluoride
US2526584A (en) Manufacture of silver monofluoride
US3345143A (en) Production of stoichiometric uranium monocarbide from a uranium fluoride
US3250588A (en) Method of producing uranium carbide
JPS61201608A (en) Manufacture of high purity aluminum nitride powder