JPS5826012A - Manufacture of plutonium mononitride - Google Patents

Manufacture of plutonium mononitride

Info

Publication number
JPS5826012A
JPS5826012A JP56123617A JP12361781A JPS5826012A JP S5826012 A JPS5826012 A JP S5826012A JP 56123617 A JP56123617 A JP 56123617A JP 12361781 A JP12361781 A JP 12361781A JP S5826012 A JPS5826012 A JP S5826012A
Authority
JP
Japan
Prior art keywords
plutonium
carbon
puo2
mixture
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56123617A
Other languages
Japanese (ja)
Inventor
Tadasumi Muromura
室村 忠純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP56123617A priority Critical patent/JPS5826012A/en
Publication of JPS5826012A publication Critical patent/JPS5826012A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/063Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with one or more actinides, e.g. UN, PuN
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain high-purity PuN by a simple manufacturing method by mixing PuO2 with a chemical equiv. or more of C, reacting the mixture at a prescribed temp. in a mixed gaseous flow consisting of H2 and N2, and cooling the reaction product. CONSTITUTION:PuO2 is mixed with a chemical equiv. or more of C to increase the reaction rate and to reduce the amount of residual O2. The mixture is reacted in a mixed gaseous flow consisting of H2 and N2 to allow the reduction and nitriding of the PuO2 and a reaction for removing excess C to proceed simultaneously. After finishing the reactions, the reaction product is cooled to obtain PuN. Said PuO2 is mixed with C in 2.1-3.0mol ratio of C/PuO2. The mixture is reacted at 1,450-1,700 deg.C in a mixed gaseous flow consisting of 8-75% H2 and 92-25% N2. After finishing the reactions, that is, after finishing the discharge of CO and hydrocarbon, the reaction product is cooled to obtain PuN.

Description

【発明の詳細な説明】 本発明は一定化プルトニウム(PuN )の製造法に関
する。より詳しくは、本発明は二酸化プルトニウム(P
uOz)と炭素(C)の混合物と水素および窒素の混合
気体との反応による一定化プルトニウムの製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing stabilized plutonium (PuN). More specifically, the present invention provides plutonium dioxide (P
This invention relates to a method for producing stabilized plutonium by reacting a mixture of carbon (C) and a gas mixture of hydrogen and nitrogen.

核燃料物質の一定化プルトニウムの製造法には。For the production method of plutonium, which is a constant nuclear fuel material.

金属、ハロゲン化物および酸化物を原料とする諸方法が
ある。このうち、酸化物を原料とする方法は、原料の酸
化物が安価で、かつ化学的に安定なことから開発が望ま
れている。プルトニウムの酸化物のうち大気中室温での
安定相である二酸化プルトニウム(PuO2)が望まし
い原料である。二酸化プルトニウムを原料とする製造法
では炭素が還元剤である。このため主な不純物は酸素と
炭素である。
There are various methods using metals, halides and oxides as raw materials. Among these methods, development of methods using oxides as raw materials is desired because the oxides as raw materials are inexpensive and chemically stable. Among plutonium oxides, plutonium dioxide (PuO2), which is a stable phase in the atmosphere at room temperature, is a desirable raw material. Carbon is the reducing agent in the production process using plutonium dioxide as the raw material. Therefore, the main impurities are oxygen and carbon.

以下に従来の二酸化プルトニウムからの一定化プルトニ
ウムの製造法について述べる。
A conventional method for producing stabilized plutonium from plutonium dioxide will be described below.

第1の方法は二酸化プルトニウムと化学当量の炭素の混
合物を窒素気流中で1.100〜1.700℃で反応し
一定化プルトニウムを製造する方法である。ここで化学
当量とは二酸化プルトニウム(PuOz)1モルに対科
で2モルの炭素が必要なことを意味する(1モルのPu
O2== 271.Q y、 1 モ、11/の炭素1
2.02)。この方法の長所は、1回の加熱過程で製造
反応を終了できることである。しかし還元剤の炭素の過
不足がおき易(、このため窒化物の純度は低下し易いこ
とが短所である。このため、この方法による−9化プル
トニウムの報告は殆んどない。他の窒化物の製造の例か
ら、不純物量は06重量%以上の酸素0.15重量係以
上の炭素と予想できる。
The first method is to produce constant plutonium by reacting a mixture of plutonium dioxide and a chemical equivalent of carbon at 1.100 to 1.700° C. in a nitrogen stream. Here, chemical equivalent means that 2 moles of carbon are required for 1 mole of plutonium dioxide (PuOz) (1 mole of PuOz)
O2==271. Q y, 1 mo, 11/carbon 1
2.02). The advantage of this method is that the production reaction can be completed in one heating step. However, the disadvantage is that there is a tendency to have too much or too little carbon in the reducing agent (and as a result, the purity of the nitride tends to decrease).For this reason, there are almost no reports on plutonium-9ide produced by this method.Other nitrides From the example of product manufacturing, the amount of impurities can be expected to be 0.6% by weight or more of oxygen and 0.15% by weight of carbon.

第2の方法として、あらかじめ化学当量以上の炭素を混
合し、不純物酸素量を低下する方法がある。この方法で
は二酸化プルトニウムと化学当量以上の炭素の混合物を
1.600〜1.700℃の窒素気流中で反応した後、
過剰の炭素は水素気流で除(。その後で更に窒化反応を
行って一窒化ゾルトニウムを製造する。
A second method is to reduce the amount of impurity oxygen by mixing carbon in a chemical equivalent or more in advance. In this method, a mixture of plutonium dioxide and more than the chemical equivalent of carbon is reacted in a nitrogen stream at 1.600 to 1.700°C, and then
Excess carbon is removed with a hydrogen stream (afterwards, a nitriding reaction is performed to produce soltonium mononitride.

この方法には■二酸化プルトニウムと炭素の混合は容易
である。■−窒化物中の不純物酸素を0.11量係まで
下げ得る。などの長所が多)ろが、一方■反応過程が複
雑である。■従って反応時間が長くなる。などの短所が
ある。
In this method: 1. Mixing of plutonium dioxide and carbon is easy. (2) Impurity oxygen in nitride can be reduced to 0.11%. It has many advantages such as), but on the other hand, the reaction process is complicated. ■Therefore, the reaction time becomes longer. There are disadvantages such as

本発明の目的は、従来の製造法の短所を排除した−9化
プルトニウムの製造法を提供することである。すなわち
、二酸化プルトニウムを原料に用いて高純度の−9化プ
ルトニウムを合成できて、かつ単純な製造法を提供する
ことである。
An object of the present invention is to provide a method for producing plutonium -9ide that eliminates the disadvantages of conventional production methods. That is, it is possible to synthesize high-purity plutonium -9ide using plutonium dioxide as a raw material and provide a simple manufacturing method.

本発明に従って1反応速度の向上と残留する酸素量な低
Fするために、二酸化プルトニウムに化学当量以上の炭
素を混合し、この混合物を水素窒素混合気流中で反応し
て二m化プルトニウムの還元反応、窒化反応および過剰
炭素の除去反応を同時に進行させ、反応終了の後に冷却
して−9化プルトニウムが製造される。さらに詳しく述
べると二酸化プルトニウムと炭素をモル比で(C/Pu
O2)2.1〜60に混合する。これを水素8〜75%
および窒素92〜25%の混合気流中で1.450〜1
.700℃で反応させる。反応終了佐、すなわち−酸化
炭素と炭化水素の排出終了後、冷却する。
According to the present invention, in order to improve the reaction rate and reduce the amount of residual oxygen, plutonium dioxide is mixed with more than a chemical equivalent of carbon, and this mixture is reacted in a hydrogen-nitrogen mixture to reduce plutonium dimide. The reaction, nitriding reaction, and excess carbon removal reaction are allowed to proceed simultaneously, and after the reaction is completed, it is cooled to produce plutonium -9ide. To explain in more detail, the molar ratio of plutonium dioxide and carbon (C/Pu
O2) Mix at 2.1-60. This is 8-75% hydrogen
and 1.450 to 1 in a mixed stream of 92 to 25% nitrogen.
.. React at 700°C. After the reaction is completed, that is, the carbon oxide and hydrocarbons have been discharged, the reaction mixture is cooled.

以上により一窒化プルトニウムを得ろ。本発明の方法で
は、二酸化プルトニウムの炭素による還元反応と、炭素
の水素による脱炭反応は同時に進行する。それ故に未還
元の二酸化プルトニウムを残留させないために最低の混
合比:2.1が存在することを確認した。なお1本発明
において、1.450℃以下では脱炭反応による炭素の
除去が極めて遅いため、また1、 7 [30℃以上で
は反応炉の寿命が著しく短縮されるので、指定した温度
範囲(j、450〜1,700℃)外は実用上不利であ
る。また水素窒素混合気体中の水素濃度が8%以下では
脱炭反応による炭素の除去が著しく遅く実用上不利であ
る。
Obtain plutonium mononitride using the above steps. In the method of the present invention, the reduction reaction of plutonium dioxide with carbon and the decarburization reaction of carbon with hydrogen proceed simultaneously. Therefore, it was confirmed that a minimum mixing ratio of 2.1 exists in order to prevent unreduced plutonium dioxide from remaining. Note that in the present invention, the specified temperature range (j , 450 to 1,700°C) is practically disadvantageous. Furthermore, if the hydrogen concentration in the hydrogen-nitrogen mixture gas is less than 8%, the removal of carbon by the decarburization reaction is extremely slow, which is disadvantageous in practice.

また75係以上では炭素の除去反応速度の格別の上昇は
認められない。
Further, at a ratio of 75 or higher, no particular increase in the carbon removal reaction rate is observed.

以下実施例を掲げ本望明の構成および効果を具体的に説
明する。
The structure and effects of the present invention will be specifically explained below with reference to Examples.

実施例 二酸化プルトニウムと炭素(黒鉛)の粉末を混合比(C
/PuO2: モル比)2.ろ、2.6および6.0に
混合した。各々の混合物は約0.5′?を直径6mmの
投レットに成型した。各々のRレットは高周波加熱炉で
1410の水素窒素混合気流中で所定の時間反応した後
反応炉内雰囲気をヘリウムに置換し冷却した。
Example Mixing ratio of plutonium dioxide and carbon (graphite) powder (C
/PuO2: molar ratio)2. 2.6 and 6.0. Each mixture is about 0.5'? was molded into a throwlet with a diameter of 6 mm. Each R-let was reacted for a predetermined period of time in a hydrogen/nitrogen mixture of 1410 °C in a high-frequency heating furnace, and then the atmosphere in the reactor was replaced with helium and cooled.

実施例では粉末試料の飛散を防ぐためにベレットに成型
したが、他の型状でも同様の効果があることは明白であ
る。また冷却に際してヘリウムに置換したが他の不活性
気体、窒素もしくは真空引きでも同様の効果があること
は明らかである。更にまた水素窒素混合気体中で冷却し
ても同様の効果があることは当業者には明らかなことで
ある。
In the example, the powder sample was molded into a pellet to prevent it from scattering, but it is clear that other shapes would have the same effect. Further, although the gas was replaced with helium during cooling, it is clear that other inert gases, nitrogen, or vacuuming would have the same effect. Furthermore, it will be obvious to those skilled in the art that cooling in a hydrogen/nitrogen gas mixture will have a similar effect.

本発明の方法は、■二酸化プルトニウムと炭素の混合は
容易である。混合比は2.1〜6.0の任意でよい。■
化学当険以上の炭素の混合により、二酸化プルトニウム
の還元は速やかに進む。■水素窒素の混合気流を用いる
ため窒化反応と過剰炭素の除去反応が同時に進むため製
造に要する時間が短縮できる。■製造工程は単純化され
1回の加熱工程ですむ。■生成する一窒化プルトニウム
の純度は、高純度金属から製造したものに匹敵する。
In the method of the present invention, (1) mixing of plutonium dioxide and carbon is easy; The mixing ratio may be any value from 2.1 to 6.0. ■
The reduction of plutonium dioxide proceeds rapidly due to the addition of more carbon than is chemically acceptable. ■Since a mixed gas flow of hydrogen and nitrogen is used, the nitriding reaction and the reaction for removing excess carbon proceed simultaneously, reducing the time required for production. ■The manufacturing process is simplified and only requires one heating process. ■The purity of the plutonium mononitride produced is comparable to that produced from high-purity metals.

などの特徴がある。It has such characteristics.

Claims (1)

【特許請求の範囲】 1、二酸化プルトニウムと化学当量以上の炭素の混合物
を水素および窒素からなる水素窒素混合ガス気流中1.
450〜1.700℃の温度で反応させた後冷却するこ
とから成る一定化プルトニウムの製造法。 2、化学当量以上の炭素の割合が、モル比で二酸化プル
トニウム1に対して2.1〜5.0である特許請求の範
囲第1項記載の方法。 3、水素および窒素からなる混合ガスが水素8〜75係
および窒素92〜25係から成る特許請求の範囲第1項
記載の方法。
[Claims] 1. A mixture of plutonium dioxide and more than a chemical equivalent of carbon in a hydrogen-nitrogen mixed gas stream consisting of hydrogen and nitrogen.
A method for producing stabilized plutonium comprising reacting at a temperature of 450 to 1.700°C followed by cooling. 2. The method according to claim 1, wherein the molar ratio of carbon having a chemical equivalent or more is 2.1 to 5.0 per 1 plutonium dioxide. 3. The method according to claim 1, wherein the mixed gas of hydrogen and nitrogen comprises 8 to 75 parts of hydrogen and 92 to 25 parts of nitrogen.
JP56123617A 1981-08-07 1981-08-07 Manufacture of plutonium mononitride Pending JPS5826012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56123617A JPS5826012A (en) 1981-08-07 1981-08-07 Manufacture of plutonium mononitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56123617A JPS5826012A (en) 1981-08-07 1981-08-07 Manufacture of plutonium mononitride

Publications (1)

Publication Number Publication Date
JPS5826012A true JPS5826012A (en) 1983-02-16

Family

ID=14865020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56123617A Pending JPS5826012A (en) 1981-08-07 1981-08-07 Manufacture of plutonium mononitride

Country Status (1)

Country Link
JP (1) JPS5826012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192933A (en) * 1984-03-14 1985-10-01 Canon Inc One-side variable power optical system of picture forming device
FR2620438A1 (en) * 1987-09-11 1989-03-17 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF URANIUM NITRIDE AND / OR PLUTONIUM USEFUL AS NUCLEAR FUEL

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368699A (en) * 1976-12-02 1978-06-19 Japan Atom Energy Res Inst Production of uranium mononitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368699A (en) * 1976-12-02 1978-06-19 Japan Atom Energy Res Inst Production of uranium mononitride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192933A (en) * 1984-03-14 1985-10-01 Canon Inc One-side variable power optical system of picture forming device
FR2620438A1 (en) * 1987-09-11 1989-03-17 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF URANIUM NITRIDE AND / OR PLUTONIUM USEFUL AS NUCLEAR FUEL
JPH0196003A (en) * 1987-09-11 1989-04-14 Commiss Energ Atom Manufacture of nitride of uranium and/or plutonium

Similar Documents

Publication Publication Date Title
US4117095A (en) Method of making α type silicon nitride powder
US4428916A (en) Method of making α-silicon nitride powder
JPS6112844B2 (en)
CN106829886B (en) The low temperature synthetic method of uranium mononitride powder
US10457558B2 (en) Method to produce uranium silicides
CA1114656A (en) Process for sintering powder metal parts
US4206190A (en) Plasma arc production of silicon nitride
JPS5826012A (en) Manufacture of plutonium mononitride
US4376105A (en) Process for producing nitrous oxide
JPS6016387B2 (en) Method for manufacturing heat-resistant materials
JPS6042161B2 (en) Production method of uranium mononitride
EP0634359B1 (en) Preparation of high alpha-type silicon nitride powder
US7332628B2 (en) Process for producing carbonyl fluoride
JP2582281B2 (en) Method for producing metal nitride powder
JPH0196003A (en) Manufacture of nitride of uranium and/or plutonium
JPH035310A (en) Method and continuous furnace for production of aluminium nitride
JPH10203818A (en) Granulated low-oxygen silicone, its production and production of silicon nitride
JP2646228B2 (en) Method for producing silicon nitride powder
JPH10282280A (en) Manufacture of ceramic pellet for nuclear fuel
JPH04114907A (en) Production of alpha type silicon nitride powder
JPH0920506A (en) Production of silicon nitride
JPS63162516A (en) Production of silicon nitride
JPS63162512A (en) Production of silicon nitride
Tagawa Process for the production of uranium trifluoride
JPH07300399A (en) Forsterite whisker and its production