JPS63162036A - Production of solid simple substance - Google Patents

Production of solid simple substance

Info

Publication number
JPS63162036A
JPS63162036A JP30860886A JP30860886A JPS63162036A JP S63162036 A JPS63162036 A JP S63162036A JP 30860886 A JP30860886 A JP 30860886A JP 30860886 A JP30860886 A JP 30860886A JP S63162036 A JPS63162036 A JP S63162036A
Authority
JP
Japan
Prior art keywords
liquid
substrate
liq
raw material
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30860886A
Other languages
Japanese (ja)
Inventor
Yoshinori Kuwae
桑江 良昇
Masato Kamata
眞人 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30860886A priority Critical patent/JPS63162036A/en
Publication of JPS63162036A publication Critical patent/JPS63162036A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To accelerate the liq. phase growth of the titled substance on a surface of a base substance, by heating the base substance in the condition that a part of the base substance is dipped in a liq. contg. an inorganic compd., decomposing the inorganic compd. and allowing the simple substance of the aimed element to deposit on the surface of the base substance. CONSTITUTION:A liq. of raw material 7 discharged from a liq. outlet 3 is introduced into a reaction container 1 from a liq. inlet 2 and circulated with a circulating device. The raw liq. 7 is kept 70-80 deg.C and is suitably supplied with the operation of reaction. Next, the inside of the reaction container 1 is kept in Ar atmosphere by introducing Ar from the gas inlet 4 into the reaction container 1 and allowing it to flow out from the gas outlet 5. Thereafter the base substance 8 is indirectly heated to 1,500-1,600 deg.C by heating a heater with an electric source 10. Boron is deposited on the surface of the base substance 8 by keeping the above-mentioned condition.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は固体単体の製造方法に関し、更に詳しくは簡便
かつ迅速に各種基体の表面に固体単体を液相成長させる
方法に係る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a solid element, and more specifically to a method for easily and rapidly growing a solid element on the surface of various substrates in a liquid phase. Related.

(従来の技術) 従来、固体単体の製造方法としては、各種の方法が提案
され、実用化されている。通常、1種の固体単体につい
ていくつかの製造方法があり、またそれらの製造方法の
うちでもいくつかの固体単体の製造に共通して適用され
ているものがある。
(Prior Art) Conventionally, various methods have been proposed and put into practical use as methods for producing solid elements. Generally, there are several manufacturing methods for one type of solid element, and among these manufacturing methods, there are some that are commonly applied to the production of several solid elements.

以下、いくつかの固体単体の製造方法を例示する。Below, some methods for producing solid elements will be exemplified.

ヒ素As(昇華点615℃)は、三酸化ヒ素AS203
を炭素Cで還元することにより製造されている。
Arsenic As (sublimation point 615℃) is arsenic trioxide AS203
It is produced by reducing with carbon C.

ホウ素B(融点2225℃)は、三臭化ホウ素BBr3
の気体を、加熱した金属気体上で熱分解することにより
製造されている。
Boron B (melting point 2225°C) is boron tribromide BBr3
It is produced by pyrolyzing a gas over a heated metal gas.

アルミニウムAffi(11点660℃)は、アルミナ
Affi203を氷晶石3NaF−A(lFa (1)
溶融塩に溶かしたものを電解浴とし、電極として炭素を
用いて電解し、 2Aり203 +3C→4Aff+3CO2の反応を起
こさせ、陰極上にAQを析出させることにより製造され
ている。
Aluminum Affi (11 points 660℃) is alumina Affi203 with cryolite 3NaF-A (lFa (1)
It is produced by dissolving a molten salt in an electrolytic bath, electrolyzing it using carbon as an electrode, causing a reaction of 2A + 3C → 4Aff + 3CO2, and depositing AQ on the cathode.

モリブデン(融点2615℃)は、酸化モリブデンMO
O3を1000℃前後で水素還元することにより、粉状
の形態で製造されている。
Molybdenum (melting point 2615℃) is molybdenum oxide MO
It is produced in powder form by reducing O3 with hydrogen at around 1000°C.

チタン(融点1668℃)は、クロール法を用い、四塩
化チタンT i CI2+をマグネシウムで還元するこ
とにより製造されている。
Titanium (melting point 1668° C.) is produced by reducing titanium tetrachloride T i CI2+ with magnesium using the Kroll method.

しかし、これらの方法では、装置が大規模になったり、
製造速度が遅く、収率が小さい等の問題がある。また、
副生物が固体単体に混入したり、一般に製造条件が厳し
いため製造装置部材の構成成分が固体単体中に混入する
ことから、純度が悪く、しかも精製が困難である場合が
多いという問題がある。
However, these methods require large-scale equipment or
There are problems such as slow production speed and low yield. Also,
There are problems in that the purity is poor and purification is often difficult because by-products get mixed into the solid substance, and because the manufacturing conditions are generally harsh, components of manufacturing equipment components get mixed into the solid substance.

(発明が解決しようとする問題点) 本発明は上記問題点を解決するためになされ ゛たもの
であり、純度の^い固体単体を簡便かつ迅速に製造でき
る方法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a method for easily and quickly producing a pure solid element. .

[発明の構成] (問題点を解決するための手段) 本発明の固体単体の製造方法は、原料として目的元素の
無機化合物を含む液体中に、基体の少なくとも一部を浸
漬させた状態で該基体を加熱し、上記無機化合物を分解
させ、上記基体上に目的元素の固体単体を析出させるこ
とを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing a solid simple substance of the present invention involves the step of immersing at least a portion of a substrate in a liquid containing an inorganic compound of a target element as a raw material. The method is characterized in that the substrate is heated to decompose the inorganic compound, and a solid element of the target element is precipitated on the substrate.

本発明方法を実施するにあたっては、まず反応容器中に
基体を設置する。基体の材料としては、各種の単体、化
合物、合金又は複合材料が用いられ、特に限定されない
が、通電加熱できるWlSi、グラファイト等の導電物
質を用いることが望ましい。更に、基体としては、液相
成長させたい固体単体と同じ材質のものを用いることが
より望ましい。これは、成長する固体単体が基体によっ
て汚染されることが少ないためである。基体の形状も特
に限定されず、線状、板状のもの等が用いられる。
In carrying out the method of the present invention, first, a substrate is placed in a reaction vessel. As the material of the substrate, various single materials, compounds, alloys, or composite materials can be used, and although not particularly limited, it is preferable to use a conductive material such as WlSi or graphite that can be heated with electricity. Furthermore, it is more desirable to use the same material as the solid substance to be subjected to liquid phase growth as the substrate. This is because the growing solid element is less likely to be contaminated by the substrate. The shape of the substrate is also not particularly limited, and linear, plate-shaped, etc. are used.

次に、反応容器内に原料となる無機化合物を含む液体を
入れ、基体の少なくとも一部を浸漬させた状態にする。
Next, a liquid containing an inorganic compound serving as a raw material is placed in the reaction container, and at least a portion of the substrate is immersed therein.

上記液体としては、■液体の無機化合物のみからなるも
の:■液体の無機化合物のほかに、アルゴン、窒素等固
体単体の液相成長に悪影響を及ぼさない成分が共存して
いるもの:を挙げることができる。無機化合物は必ずし
もv濡で液体である必要はなく、冷却又は加熱により液
体になればよい。なお、こうした無機化合物を熱分解す
ると、固体単体との1生物とが生成する。このため、副
生物が固体単体に混入されないように、製造温度で副生
物が気体となるような無機化合物を用いることが望まし
い。無機化合物としては、具体的には、ASH3(−1
17〜155℃で液体)、BBr3 (−46〜91℃
で液体〉、Ga2H6(−21〜130℃で液体)、M
 o CりS  (194〜268°Cで液体)、Pb
 (CH3)4  (−27,5〜110℃で液体)、
TiCl2(−25〜136℃で液体)、WCβs  
(275〜347℃で液体)等を挙げることができる。
Examples of the above-mentioned liquids include ■Those consisting only of liquid inorganic compounds;■Those in which, in addition to liquid inorganic compounds, components such as argon and nitrogen that do not adversely affect the liquid phase growth of a solid substance coexist. I can do it. The inorganic compound does not necessarily have to be a liquid when wet, but only needs to become a liquid when cooled or heated. Note that when such an inorganic compound is thermally decomposed, a solid element and a living organism are generated. For this reason, it is desirable to use an inorganic compound whose by-product becomes a gas at the manufacturing temperature so that the by-product is not mixed into the solid substance. Specifically, the inorganic compound is ASH3(-1
Liquid at 17-155℃), BBr3 (-46-91℃
liquid>, Ga2H6 (liquid at -21 to 130℃), M
o CrS (liquid at 194-268°C), Pb
(CH3)4 (-27, liquid at 5-110℃),
TiCl2 (liquid at -25 to 136 °C), WCβs
(liquid at 275-347°C).

こうした無機化合物の液体は、反応容器内に静置しても
よいし、流動させてもよい。
The liquid of such an inorganic compound may be left standing in the reaction container or may be allowed to flow.

液体を流動させる場合、その方式は循環式でもよいし、
非@環式でもよい。
When flowing liquid, the method may be a circulation method,
It may be non-@cyclic.

つづいて、基体を加熱する。基体の適切な加熱温度は無
機化合物の種類、液体の流動速度、基体の材質等の条件
にも依存するため、特に限定されない。ただし、その温
度は、無機化合物の分解温度以上〈分解温度では無機化
合物は気体でもよい)で、固体温度の融点以下又は昇華
点以下であることが必要である。具体的に例を挙げると
、例えばASH3(分解温度300℃)を原料としてA
S(昇華点615℃)を析出させる場合、基体を300
〜615℃に加熱する。また、BBr3(分解温度13
00℃)を原料としB (融点2225℃)を析出させ
る場合、基体を1300〜2225℃に加熱する。また
、MOC/2s  (分解温度1300℃)を原料とし
てMO(1点2615℃)を析出させる場合、基体を1
300〜2615℃に加熱する。このように基体を加熱
すると、無機化合物が熱分解され、基体表面に目的元素
の固体単体が析出する。
Next, the substrate is heated. The appropriate heating temperature for the substrate is not particularly limited, since it also depends on conditions such as the type of inorganic compound, the flow rate of the liquid, and the material of the substrate. However, the temperature needs to be higher than the decomposition temperature of the inorganic compound (at the decomposition temperature, the inorganic compound may be a gas) and lower than the melting point or sublimation point of the solid temperature. To give a specific example, for example, A
When depositing S (sublimation point 615°C), the substrate is
Heat to ~615°C. In addition, BBr3 (decomposition temperature 13
When precipitating B (melting point: 2225°C) using B (melting point: 2225°C) as a raw material, the substrate is heated to 1300 to 2225°C. In addition, when precipitating MO (2615°C per point) using MOC/2s (decomposition temperature 1300°C) as a raw material, the substrate is
Heat to 300-2615°C. When the substrate is heated in this manner, the inorganic compound is thermally decomposed, and a solid element of the target element is precipitated on the surface of the substrate.

上述した反応系全体の雰囲気は大気であってもよいが、
Ar、N2等の不活性ガス雰囲気中の方が無機化合物が
安定で、しかも副反応が抑制されるので好ましい。
The atmosphere of the entire reaction system mentioned above may be air, but
An atmosphere of an inert gas such as Ar or N2 is preferable because the inorganic compound is more stable and side reactions are suppressed.

なお、以上の説明では、■基体の設置、■液体の導入、
■基体の加熱の順序で操作を行なう場合について説明し
たが、この順序に限定されるものではなく、例えば■と
■との順序を逆にしてもよい。
In addition, in the above explanation, ■ installation of the substrate, ■ introduction of liquid,
Although the case has been described in which the operations are performed in the order of (1) heating the substrate, the order is not limited to this, and for example, the order of (1) and (2) may be reversed.

(作用) 上述したような本発明方法によれば、原料液体中の無機
化合物は励起・分解し、基体表面に固体ψ体が液相成長
する。この際、原料が液体であるので、励起・分解の頻
度が高まり、迅速に固体単体が成長する。また、原理上
副反応が起こりにくく、副生物の除去も容易であるので
、逆反応が抑制されて収率が高まる。また、原料である
液体は蒸留等で容易に精製することができるうえ固体不
純物は液体中にとどまり、しかも製造条件が穏やかで製
造装置の構成成分が固体単体に混入することも防止でき
るので、固体単体の純度が高くなる。更に、製造装置も
簡単なもので十分である。
(Operation) According to the method of the present invention as described above, the inorganic compound in the raw material liquid is excited and decomposed, and a solid ψ body grows on the surface of the substrate in a liquid phase. At this time, since the raw material is a liquid, the frequency of excitation and decomposition increases, resulting in rapid growth of a solid substance. Furthermore, in principle, side reactions are unlikely to occur, and by-products can be easily removed, so reverse reactions are suppressed and yields are increased. In addition, the raw material liquid can be easily purified by distillation, etc., solid impurities remain in the liquid, and the manufacturing conditions are mild and it is possible to prevent the components of the manufacturing equipment from mixing with the solid itself. The purity of the single substance increases. Furthermore, a simple manufacturing device is sufficient.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図は実施例1で用いられる反応装置の概略構成図で
ある。第1図において、反応容器1には、その底面に液
体人口2及び液体出口3が、その上面にガス人口4及び
ガス出口5がそれぞれ設けられている。また、反応容器
1の中央部には円筒状の基体ホルダ6が設けられている
。この反応容器1の内部に原料液体7が収容される。上
記反応容器1の基体ホルダ6に基体8が設置され、その
下面が原料液体7に浸漬される。更に、基体8に近接し
てヒータ9が設けられ、このヒータ9は電源10に接続
されている。
Example 1 FIG. 1 is a schematic diagram of a reaction apparatus used in Example 1. In FIG. 1, a reaction vessel 1 is provided with a liquid population 2 and a liquid outlet 3 on its bottom surface, and a gas population 4 and a gas outlet 5 on its top surface. Further, a cylindrical substrate holder 6 is provided in the center of the reaction container 1 . A raw material liquid 7 is accommodated inside this reaction vessel 1 . A substrate 8 is placed in the substrate holder 6 of the reaction vessel 1, and its lower surface is immersed in the raw material liquid 7. Further, a heater 9 is provided adjacent to the base 8, and this heater 9 is connected to a power source 10.

上記反応Vi、置を用い、以下のようにしてホウ素Bを
析出させた。まず、基体8として直径20m、厚さ2m
+のアルミナ円板を用意し、これを直径20Hのアルミ
ナ製の基体ホルダ6に設置した。
Using the above reaction Vi, boron B was precipitated as follows. First, the base body 8 has a diameter of 20 m and a thickness of 2 m.
A positive alumina disk was prepared and placed in an alumina substrate holder 6 having a diameter of 20H.

次に、液体出口3を閉じ、液体人口2から原料液体6で
あるBBr3 (−46〜91℃で液体)を反応容器1
内へ流入させ、基体8の下面が十分に原料液体7に浸漬
されたところで液体出口3を開いた。その後は、循環装
置(図示せず)により、液体出口3から出た原料液体7
が液体人口2から反応容器1内へ導入されるように循環
させた。なお、原料液体7の温度は70〜80’Cに保
持した。
Next, the liquid outlet 3 is closed, and the raw material liquid 6, BBr3 (liquid at -46 to 91°C) is transferred from the liquid population 2 to the reaction vessel 1.
When the lower surface of the substrate 8 was sufficiently immersed in the raw material liquid 7, the liquid outlet 3 was opened. Thereafter, the raw material liquid 7 discharged from the liquid outlet 3 is processed by a circulation device (not shown).
was circulated so that it was introduced into the reaction vessel 1 from the liquid population 2. Note that the temperature of the raw material liquid 7 was maintained at 70 to 80'C.

また、後述する反応操作中は消費されただけの原料液体
7を適宜補給した。つづいて、ガス人口4から反応容器
1内へArを導入しガス出口5から流出させて、反応容
器1内をAr雰囲気に保った。
Further, during the reaction operation described later, the consumed raw material liquid 7 was replenished as appropriate. Subsequently, Ar was introduced into the reaction vessel 1 through the gas port 4 and flowed out from the gas outlet 5 to maintain an Ar atmosphere inside the reaction vessel 1.

次いで、電源10により通電してヒータを加熱し、間接
的に基体8を1500〜1600℃に加熱した。この状
態を保持したところ、基体8の表面にホウ素Bが析出し
た。また、D1生する臭素Br2(59℃以上で気体)
はガス出口5から系外へ放出した。
Next, power was supplied from the power supply 10 to heat the heater, and the base 8 was indirectly heated to 1500 to 1600°C. When this state was maintained, boron B was deposited on the surface of the substrate 8. In addition, D1 forms bromine Br2 (gaseous at 59°C or higher)
was released from the gas outlet 5 to the outside of the system.

上記方法により1時間の析出操作で基体8表面に平均厚
さ2履のホウ素の層が形成された。このホウ素層の純度
は99.8%であった。また、BBrsの減量とホウ層
の生成量から収率を計算したところ、94%であった。
By the above method, a boron layer having an average thickness of 2 mm was formed on the surface of the substrate 8 in one hour of precipitation. The purity of this boron layer was 99.8%. Further, the yield was calculated from the weight loss of BBrs and the amount of the porium layer produced, and was found to be 94%.

実施例2 第2図は実施例2で用いられる反応装置の概略構成図で
ある。第2図において、反応容器11には、その上面に
ガス人口12及びガス出口13が設けられている。この
反応容器11内には予め原料液体14が収容され、後述
の析出操作中そのまま静置されている。この原料液体1
4中には基体15が、両端を電極16.16に支持され
た状態で浸漬される。そして、電橋16,16間には電
源17が接続される。
Example 2 FIG. 2 is a schematic diagram of a reaction apparatus used in Example 2. In FIG. 2, a reaction vessel 11 is provided with a gas port 12 and a gas outlet 13 on its upper surface. A raw material liquid 14 is stored in advance in this reaction vessel 11, and left as it is during a precipitation operation to be described later. This raw material liquid 1
A substrate 15 is immersed in the substrate 4, supported at both ends by electrodes 16.16. A power source 17 is connected between the electric bridges 16, 16.

上記反応装置を用い、以下のようにしてモリブデンMO
を製造した。まず、反応容器11内に予め原料液体14
である MOCffis  (194〜268℃で液体
)を導入し、200〜220℃に保持した。次に、基体
15として直径0.2M、長さ40調のモリブデン線を
原料液体14中に浸漬し、その両端をモリブデン製の電
極16.16で支持した。つづいて、ガス入口12から
反応容器11内へArを導入し、ガス出口13から流出
させて、反応容器11内をAr雰囲気に保った。次いで
、Ti源17により基体15を直接通電加熱し、180
0〜1900℃に保持した。その結果、基体15の表面
にモリブデンの層が析出した。また、副生ずる臭素Cf
;12 (−34℃以上で気体)はガス出口13から系
外へ放出した。
Using the above reaction apparatus, molybdenum MO was prepared as follows.
was manufactured. First, the raw material liquid 14 is placed in the reaction vessel 11 in advance.
MOCffis (liquid at 194-268°C) was introduced and maintained at 200-220°C. Next, a molybdenum wire having a diameter of 0.2 M and a length of 40 mm was immersed in the raw material liquid 14 as the base 15, and both ends of the wire were supported by molybdenum electrodes 16 and 16. Subsequently, Ar was introduced into the reaction vessel 11 through the gas inlet 12 and flowed out through the gas outlet 13 to maintain an Ar atmosphere inside the reaction vessel 11. Next, the base body 15 is directly heated with electricity by the Ti source 17 to 180
The temperature was maintained at 0-1900°C. As a result, a layer of molybdenum was deposited on the surface of the substrate 15. In addition, by-produced bromine Cf
;12 (gaseous at temperatures above -34°C) was discharged from the gas outlet 13 to the outside of the system.

上記方法により1時間の析出操作で基体15表面に平均
厚さ1順のモリブデンの層が形成された。
By the above method, a layer of molybdenum having an average thickness of 1 was formed on the surface of the substrate 15 in a one hour precipitation operation.

このモリブデン層の純度は99.99%であった。また
、収率を計舜したところ、96%であった。
The purity of this molybdenum layer was 99.99%. Moreover, when the yield was calculated, it was 96%.

[発明の効果] 以上詳述したように本発明方法によれば、純度の高い固
体単体を簡便かつ迅速に高歩留りで製造できる等工業上
極めて顕著な効果を奏するものである。
[Effects of the Invention] As detailed above, according to the method of the present invention, a highly pure solid element can be produced easily and quickly with a high yield, and other industrially significant effects are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1で用いられた固体単体を液相
成長させるための反応装置の概略構成図、第2図は本発
明の実施例2で用いられた固体単体を液相成長させるた
めの反応装置の概略構成図である。 1・・・反応容器、2・・・液体入口、3・・・液体出
口、4・・・ガス入口、5・・・ガス出口、6・・・!
!体ホルダ、7・・・原料液体、8・・・基体、9・・
・ヒータ、10・・・電源、11・・・反応容器、12
・・・ガス入口、13・・・ガス出口、14・・・原料
液体、15・・・基体、16・・・電極、17・・=1
?I!。
Figure 1 is a schematic configuration diagram of a reaction apparatus for liquid phase growth of a solid element used in Example 1 of the present invention, and Figure 2 is a schematic diagram of a reaction apparatus for liquid phase growth of a solid element used in Example 2 of the present invention. 1 is a schematic configuration diagram of a reaction apparatus for producing 1... Reaction vessel, 2... Liquid inlet, 3... Liquid outlet, 4... Gas inlet, 5... Gas outlet, 6...!
! Body holder, 7... Raw material liquid, 8... Substrate, 9...
・Heater, 10... Power supply, 11... Reaction container, 12
... Gas inlet, 13... Gas outlet, 14... Raw material liquid, 15... Substrate, 16... Electrode, 17... = 1
? I! .

Claims (1)

【特許請求の範囲】[Claims] 原料として目的元素の無機化合物を含む液体中に、基体
の少なくとも一部を浸漬させた状態で該基体を加熱し、
上記無機化合物を分解させ、上記基体上に目的元素の固
体単体を析出させることを特徴とする固体単体の製造方
法。
heating the substrate while at least a portion of the substrate is immersed in a liquid containing an inorganic compound of the target element as a raw material;
A method for producing a solid element, which comprises decomposing the inorganic compound and depositing a solid element of the target element on the substrate.
JP30860886A 1986-12-26 1986-12-26 Production of solid simple substance Pending JPS63162036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30860886A JPS63162036A (en) 1986-12-26 1986-12-26 Production of solid simple substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30860886A JPS63162036A (en) 1986-12-26 1986-12-26 Production of solid simple substance

Publications (1)

Publication Number Publication Date
JPS63162036A true JPS63162036A (en) 1988-07-05

Family

ID=17983088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30860886A Pending JPS63162036A (en) 1986-12-26 1986-12-26 Production of solid simple substance

Country Status (1)

Country Link
JP (1) JPS63162036A (en)

Similar Documents

Publication Publication Date Title
US20090202415A1 (en) Process for producing high-purity silicon and apparatus
JPS6345112A (en) Purification of silicon
JP2004002138A (en) Method for manufacturing silicon
JP3844849B2 (en) Method for producing polycrystalline silicon and zinc chloride
US4676968A (en) Melt consolidation of silicon powder
JPS63222011A (en) Production of polycrystal silicon
JP2004210594A (en) Method of manufacturing high purity silicon
JPS63162036A (en) Production of solid simple substance
JP2004035382A (en) Method of manufacturing polycrystalline silicon
JP5698221B2 (en) Metal titanium manufacturing apparatus and metal titanium manufacturing method
US5458669A (en) Process for purification of gallium material
JPS6156163B2 (en)
GB1570131A (en) Manufacture of silicon
JP2004099421A (en) Method for manufacturing silicon
JP2001226721A (en) Refining method for aluminum and its application
JP2004010472A (en) Method for producing silicon
JPS6350496A (en) Production of polycrystalline silicon coating by electrolytic precipitation of silicon
JPS63117906A (en) Member for production apparatus of polycrystalline silicon
JPS63162877A (en) Production of crystalline graphite
JPH0676609B2 (en) Method for producing fine copper powder
JPS63262489A (en) Electrolytic production of nonmetal
JPS62294175A (en) High-purity metal sheet
JPH0524207B2 (en)
US6086745A (en) Allotropic modification of zirconium and hafnium metals and method of preparing same
JPS59121109A (en) Production of high purity silicon