JPS63160391A - Distributed feedback type semiconductor laser device - Google Patents

Distributed feedback type semiconductor laser device

Info

Publication number
JPS63160391A
JPS63160391A JP61306510A JP30651086A JPS63160391A JP S63160391 A JPS63160391 A JP S63160391A JP 61306510 A JP61306510 A JP 61306510A JP 30651086 A JP30651086 A JP 30651086A JP S63160391 A JPS63160391 A JP S63160391A
Authority
JP
Japan
Prior art keywords
distributed
variable
wavelength
reflector
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61306510A
Other languages
Japanese (ja)
Inventor
Kenji Matsumoto
研司 松本
Kazuo Suzuki
和雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61306510A priority Critical patent/JPS63160391A/en
Publication of JPS63160391A publication Critical patent/JPS63160391A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Abstract

PURPOSE:To make the whole system compact by causing a set at least out of the distributed reflectors to be variable ones where optical propagation constant is variable, thereby controlling optical propagation constant of the variable distributed reflactors by output difference signals of respective photodetectors that are coupled with two distributed reflectors. CONSTITUTION:A semiconductor laser oscillation part is composed of a gain region 10, variable distributed reflectors 13 and 14 where propagation constant is variable as well as a phase adjustment region 15. Moreover, an oscillation wavelength measuring part is composed of a Y-shaped multipoint type waveguide 16 connecting to the variable distributed reflector 14, a distributed reflector 18 having a sligntly longer Bragg wavelength than that connecting to the above waveguide, the distributed reflector 20 having a slightly shorter wavegude than the Bragg wavelength, and photodetectors 19 and 21 connecting to the distributed reflectors 18 and 20. The variable distributed reflectors 13 and 14 are controlled by output difference signals of the photodetectors 19 and 21 and in this way, oscillation wave lengths are controlled. Then, since the gain region 10 is controlled by the output sum signals of the phtodetectors 19 and 21, light output powers can be controlled.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は分布帰還型半導体レーザに関し、特に発振波長
を制御可能な分布帰還型半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a distributed feedback semiconductor laser, and particularly to a distributed feedback semiconductor laser whose oscillation wavelength can be controlled.

(従来の技術) 単一モード光ファイバーを用いた長距離・大容量伝送を
目的とする光通信システムでは、光ファイバーの波長分
散によるパルス幅の拡がりが、伝送帯域上問題となる。
(Prior Art) In optical communication systems that use single-mode optical fibers for long-distance, high-capacity transmission, pulse width broadening due to wavelength dispersion of optical fibers poses a problem in terms of transmission bandwidth.

このため、高速変調時においても縦単一モードのスペク
トラムで発振する動的単一モード(D S M)レーザ
として、分布帰還型半導体レーザが提案されている。ま
た更なる大容量伝送を可能にする方式として波長多重方
式、また超長距離伝送方式としてヘテロダイン方式が提
案されているが、これらを実現するには発振波長の制御
及び安定化が必要となる。
For this reason, a distributed feedback semiconductor laser has been proposed as a dynamic single mode (DSM) laser that oscillates in a longitudinal single mode spectrum even during high-speed modulation. In addition, a wavelength multiplexing method has been proposed as a method to enable even higher capacity transmission, and a heterodyne method has been proposed as an ultra-long distance transmission method, but in order to realize these methods, it is necessary to control and stabilize the oscillation wavelength.

さて、半導体レーザの発振波長を制御するには、従来、
動作温度を制御する方法が一般的な方法であった。しか
しながら、温度による制御は応答速度が遅く、使用環境
に影響され易い欠点を有する。
Now, in order to control the oscillation wavelength of a semiconductor laser, conventionally,
Controlling the operating temperature has been a common method. However, temperature-based control has the drawback of slow response speed and being easily influenced by the environment in which it is used.

そこで電気的に発振波長を制御できる光源として、ブラ
ック波長制御器付きBIG−DBR型DSMレーザが提
案されている(1986年春期1第33回応用物理学関
係連合講演会予稿集1p−に−8)。
Therefore, a BIG-DBR type DSM laser with a black wavelength controller has been proposed as a light source whose oscillation wavelength can be electrically controlled (1986 Spring 1, Proceedings of the 33rd Joint Conference on Applied Physics, p. 8). ).

この発光素子は、利得を持つ活性層と、これに結合され
た導波路の伝搬定数が変化することによりブラック波長
を制御できる可変分布反射器とを有する。即ち、第8図
に光軸上の縦断面図に示すように、ブラック波長近傍に
利得を持つ活性層0)と、その両側にブラック波長を制
御できる可変分布反射器■とを備える。可変分布反射器
■は、コラゲーション■が形成された半導体導波路層(
イ)とからなり、電流を注入しキャリア密度を変化させ
ることにより、バンド間吸収とプラズマ吸収の分散のた
めに媒質の屈折率が変化し、導波路の伝搬定数が変化し
て、ブラック波長を制御できる。■は、可変分布反射器
■のブラック波長を電気的に制御するためのMi極であ
る。また(6つは、活性層ωに電流を通電する電極であ
る。
This light emitting device has an active layer having a gain and a variable distribution reflector that can control the black wavelength by changing the propagation constant of a waveguide coupled to the active layer. That is, as shown in a longitudinal cross-sectional view on the optical axis in FIG. 8, an active layer 0) having a gain near the black wavelength and variable distribution reflectors (2) on both sides of the active layer 0) capable of controlling the black wavelength are provided. The variable distribution reflector ■ is a semiconductor waveguide layer (
By injecting current and changing the carrier density, the refractive index of the medium changes due to the dispersion of interband absorption and plasma absorption, and the propagation constant of the waveguide changes, changing the black wavelength. Can be controlled. (2) is a Mi pole for electrically controlling the black wavelength of the variable distribution reflector (2). Further, (6) is an electrode that passes current through the active layer ω.

このブラック波長制御器付きBIG−DBR型DSM半
漂体レーザでは、可変分布反射器用電極■に電流を注入
することにより1発振波長を電気的に制御でき、高精度
の波長制御を必要とするヘテロダイン方式、波長多重方
式には好適である。
In this BIG-DBR type DSM semi-drifting laser with a black wavelength controller, one oscillation wavelength can be electrically controlled by injecting current into the variable distribution reflector electrode. It is suitable for wavelength multiplexing.

(発明が解決しようとする問題点) しかしながら、半導体レーザの発振波長の検出には、分
光器、ファブリペロ−干渉計等の小型化が困難な装置が
用いられているため、システム全体はどうしても大形化
する欠点があった。
(Problem to be solved by the invention) However, since devices that are difficult to miniaturize, such as spectrometers and Fabry-Perot interferometers, are used to detect the oscillation wavelength of semiconductor lasers, the entire system is inevitably large. There were some drawbacks.

本発明の目的は、システム全体の小型化が可能なブラッ
ク波長制御器付きDBR型DSM型半汚体レーザを提供
することである。
An object of the present invention is to provide a DBR type DSM type semi-contaminated laser with a black wavelength controller, which allows the entire system to be miniaturized.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明によれば、利得領域と、この利得領域に結合され
た光の進行方向に対してグレーティングを有する1個以
上の分布反射器とを有する分布帰還型半導体レーザにお
いて、分布反射器のうち少なくとも1個は光の伝搬定数
が可変である可変分布反射器であり、かつ分布反射器の
ブラック波長より長いブラック波長を有する第1の分布
反射器と、この第1の分布反射器に結合された第1の光
検出器と、分布反射器のブラック波長より短いブラック
波長を有する第2の分布反射器と、この第2の分布反射
器に結合された第2の光検出器と。
(Means for Solving the Problems) According to the present invention, a distributed feedback type comprising a gain region and one or more distributed reflectors having a grating with respect to the traveling direction of light coupled to the gain region In the semiconductor laser, at least one of the distributed reflectors is a variable distributed reflector having a variable light propagation constant, and a first distributed reflector having a black wavelength longer than the black wavelength of the distributed reflector; a first photodetector coupled to the first distributed reflector; a second distributed reflector having a black wavelength shorter than the black wavelength of the distributed reflector; and a second distributed reflector coupled to the second distributed reflector. 2 photodetector.

分布反射器と第1の分布反射器および前記第2の分布反
射器を光学的に結合する領域を具備し、第1の光検出器
と第2の光検出器の出力の差信号により可変分布反射器
の光の伝搬定数を制御することを特徴とする分布帰還型
半導体レーザ装置が提供される。
The distributed reflector is provided with a region that optically couples the first distributed reflector and the second distributed reflector, and the distributed reflector has a variable distribution according to a difference signal between the outputs of the first photodetector and the second photodetector. A distributed feedback semiconductor laser device is provided that is characterized by controlling the propagation constant of light in a reflector.

(作  用) 上述の構成により、第1の光検出器の出力および第2の
光検出器と出力は、共に発振波長に対応し変化する。ま
たこれら面信号の差信号は発振波長に対して単調に変化
するため、差信号により発振波長の測定が可能になる。
(Function) With the above-described configuration, the output of the first photodetector and the output of the second photodetector both change in accordance with the oscillation wavelength. Furthermore, since the difference signal between these plane signals changes monotonically with respect to the oscillation wavelength, the oscillation wavelength can be measured using the difference signal.

従って、上記両光検出器の出力の差信号によって可変分
布反射器のブラック波長を制御すれば、半導体レーザの
発振波長の制御が可能になる。即ち、本発明によれば、
半導体レーザに波長測定手段が一体に集積でき。
Therefore, if the black wavelength of the variable distribution reflector is controlled by the difference signal between the outputs of the two photodetectors, the oscillation wavelength of the semiconductor laser can be controlled. That is, according to the present invention,
Wavelength measuring means can be integrated into the semiconductor laser.

発振波長の制御が可能な半導体レーザ装置をコンパクト
に構成できる。
A semiconductor laser device whose oscillation wavelength can be controlled can be configured compactly.

(実 施 例) 以下1本発明を実施例を示す図面を参照して説明する。(Example) DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to drawings showing embodiments.

第1図は本発明の一実施例の分布帰還型半導体レーザ装
置を一部の半導体層を除去したものの斜視図を示す。
FIG. 1 shows a perspective view of a distributed feedback semiconductor laser device according to an embodiment of the present invention, with some semiconductor layers removed.

この実施例は、概略的には次のように構成される。即ち
、半導体レーザ発振部と発振波長測定部とから構成され
る。半導体レーザ発振部は、利得領域lOと、この利得
領域IOに結合された光の進行方向に対してグレーティ
ングを有し、伝搬定数が可変である一対の可変分布反射
器13.14と、利得領域12と可変分布反射器13と
の間に設けられた位相調整領域15とからなる。また、
発振波長測定部は、一方の可変分布反射器14に結合さ
れたY分岐型導波路16と、Y分岐型導波路16に結合
されたブラック波長よりも若干長いブラック波長を有す
る分布反射器18と、可変分布反射器のブラック波長よ
りも若干短いブラック波長を有する分布反射器20と、
ブラック波長近傍の光に対して感度を有し、それぞれ分
布反射器18.20に結合された光検出器19.21と
で構成される。光検出器19.21の出力の差信号によ
り波長制御回路54を介して可変分布反射器13.14
を制御することにより、発振波長を制御できる。また光
検出器19.21の出力の和信号により、光出力制御回
路56を介して利得領域10を制御することにより、光
出力を制御できる。
This embodiment is generally configured as follows. That is, it is composed of a semiconductor laser oscillation section and an oscillation wavelength measurement section. The semiconductor laser oscillation unit includes a gain region IO, a pair of variable distributed reflectors 13 and 14 having a grating in the direction of propagation of light coupled to the gain region IO and whose propagation constant is variable, and a gain region IO. 12 and a phase adjustment region 15 provided between the variable distribution reflector 13. Also,
The oscillation wavelength measuring section includes a Y-branch type waveguide 16 coupled to one variable distribution reflector 14, and a distributed reflector 18 having a black wavelength slightly longer than the black wavelength coupled to the Y-branch waveguide 16. , a distributed reflector 20 having a black wavelength slightly shorter than the black wavelength of the variable distributed reflector;
They are sensitive to light near the black wavelength and are composed of photodetectors 19.21 coupled to distributed reflectors 18.20, respectively. The difference signal of the output of the photodetector 19.21 is transmitted to the variable distribution reflector 13.14 via the wavelength control circuit 54.
By controlling the oscillation wavelength, the oscillation wavelength can be controlled. Further, the optical output can be controlled by controlling the gain region 10 via the optical output control circuit 56 based on the sum signal of the outputs of the photodetectors 19 and 21.

以下、この実施例の分布帰還型半導体レーザ装置の製造
方法を、第2図乃至第6図を参照して説明するに の実施例ではInP系、埋め込み型半導体レーザ構造を
採用している。まずn−InPよりなる基板22の上に
、GaInAsPから成る活性層24、検出器用の吸収
層26、GaInAsPもしくはInPからなる保lv
M28をエピタキシャル成長する。この際、活性層24
、検出器用の吸収層26は同一組成でも構わないので一
度の成長で同時に成長できる0次に、フォトレジストに
よるバターニングとエツチングにより、活性M24と光
検出器用の吸収、1i126に当る部分を残して上記エ
ピタキシャル層を取り去り、第2図に示す半導体基板を
得る。
Hereinafter, a method of manufacturing the distributed feedback semiconductor laser device of this embodiment will be described with reference to FIGS. 2 to 6. In this embodiment, an InP-based buried semiconductor laser structure is adopted. First, on a substrate 22 made of n-InP, an active layer 24 made of GaInAsP, an absorption layer 26 for a detector, and a protective layer 22 made of GaInAsP or InP are placed.
Epitaxially grow M28. At this time, the active layer 24
Since the absorbing layer 26 for the detector can have the same composition, it can be grown simultaneously in a single growth process.The 0-order layer 26 is patterned with a photoresist and etched, leaving the active M24 and the absorbing layer 26 for the photodetector, 1i126. The epitaxial layer is removed to obtain the semiconductor substrate shown in FIG.

次に、可変分布反射器13.14、分布反射器18.2
0に対する位置で基板22に、第3図に示すように、所
定のピッチのグレーティング30.32.34を形成す
る。各分布反射器13.14.18.20のブラック波
長は、後述のように、分布反射器の導波路の幅により伝
搬定数を変えて、それぞれ異ならせしめるため、これら
全てのグレーティングのピッチは同じで良い。
Next, variable distributed reflector 13.14, distributed reflector 18.2
Gratings 30, 32, 34 with a predetermined pitch are formed on the substrate 22 at positions relative to 0, as shown in FIG. The black wavelength of each distributed reflector 13, 14, 18, 20 is made different by changing the propagation constant depending on the width of the waveguide of the distributed reflector, as described later, so the pitch of all these gratings is the same. good.

次に第4図に示すように、基板22上にInGaAsP
から成り発振波長に対して透明である導波路層36゜I
nPから成るクラッド層38を順次エピタキシャル成長
する0次にSiO□をプラズマCVD法で形成した後、
フォトレジストによるパターニングとエツチングにより
、SiO□のパターン40を作る。その際、S 、t 
O、のパターン40は1次工程のエツチングにより可変
分布反射器13.14の導波路の幅に、分布反射器18
と分布反射器20の輻の中間的な値を持たせるように、
各部のSiO□ストライプの[a、b、cを決める。次
にSin、 40をマスクとしてクラッド層38゜導波
路)fJj36.基板22の上部をエツチング除去し、
第5図のメサ構造を得る。
Next, as shown in FIG. 4, InGaAsP is placed on the substrate 22.
A waveguide layer 36°I that is transparent to the oscillation wavelength and consists of
After forming a cladding layer 38 made of nP by sequentially epitaxially growing zero-order SiO□ by plasma CVD method,
A pattern 40 of SiO□ is formed by patterning and etching using photoresist. At that time, S, t
The pattern 40 of O is formed by etching in the first step to the width of the waveguide of the variable distributed reflector 13, 14, and the pattern 40 of the distributed reflector 18 is
In order to have an intermediate value of the radiation of the distributed reflector 20,
Determine [a, b, and c of the SiO□ stripe in each part. Next, using Sin and 40 as a mask, a cladding layer (38° waveguide) fJj36. Etching away the upper part of the substrate 22,
The mesa structure shown in FIG. 5 is obtained.

次に、上述により形成されたメサ構造を埋め込むように
、基板22上にP−InPから成るブロック層42、n
−InPから成るブロック層44を順次エピタキシャル
成長する。そして、更に電極金属を被着する。その後、
第1図に示す可変分布反射器13.14゜分布反射器1
8.20、Y分岐型導波路16、検出器19゜21を電
気的に絶縁・分離形成するように、それぞれの領域を導
波路近傍を除いてそれぞれの領域の境界を基板22に達
するまでエツチング除去する。
Next, a block layer 42 made of P-InP is placed on the substrate 22 so as to embed the mesa structure formed as described above.
- Block layers 44 made of InP are sequentially grown epitaxially. Then, electrode metal is further deposited. after that,
Variable distributed reflector 13.14° distributed reflector 1 shown in Figure 1
8.20. In order to electrically insulate and separate the Y-branch waveguide 16 and the detector 19 and 21, the boundaries of each region are etched until the substrate 22 is reached, excluding the vicinity of the waveguide. Remove.

これにより、第8同に示す本発明の分布帰還型半導体レ
ーザ装置が得られる。なお、46.47.48.49.
50.51は、夫々の領域の電極を示す。
As a result, the distributed feedback semiconductor laser device of the present invention shown in No. 8 is obtained. In addition, 46.47.48.49.
50 and 51 indicate electrodes in each region.

さて、上記の分布帰還型半導体レーザ装置において、可
変分布反射器13.14は、半導体からなる導波路36
に電流を注入することにより、バンド間吸収とプラズマ
吸収の分散のために媒質の屈折率が変わり、導波路の伝
搬定数が変化することを用いて、そのブラック波長を電
気的に変えることができる。また1位相調整領域16に
おいても同様の原理を用いて、導波器36の伝搬定数を
変化させ位相を制御できる。
Now, in the above-mentioned distributed feedback semiconductor laser device, the variable distributed reflectors 13 and 14 are formed by the waveguide 36 made of semiconductor.
By injecting a current into the black wavelength, the refractive index of the medium changes due to interband absorption and dispersion of plasma absorption, and the propagation constant of the waveguide changes, which can be used to electrically change the black wavelength. . Also, in the one phase adjustment region 16, the phase can be controlled by changing the propagation constant of the waveguide 36 using the same principle.

各分布反射器のブラック波長は、導波路の幅により設定
できる。即ち、分布反射器18の導波路の幅を分布反射
器20の導波路の幅より細くし、それぞれの伝搬定数を
異ならせることにより、分布反射器18と分布反射器2
0のブラック波長が異ならせしめることができる。また
可変分布反射器13.14に電流を注入しないときのブ
ラック波長を、導波路の幅を調整することにより、分布
反射器18と分布反射器20のブラック波長の間になる
様に設定することができる。なお、各4波路の幅は、上
述のS10.のパターンにより決定される。
The black wavelength of each distributed reflector can be set by the width of the waveguide. That is, by making the width of the waveguide of the distributed reflector 18 narrower than that of the distributed reflector 20 and making the respective propagation constants different, the distributed reflector 18 and the distributed reflector 2
The zero black wavelength can be made different. Furthermore, the black wavelength when no current is injected into the variable distributed reflectors 13 and 14 can be set to be between the black wavelengths of the distributed reflectors 18 and 20 by adjusting the width of the waveguide. I can do it. Note that the width of each of the four wave paths is determined in S10. above. determined by the pattern of

可変分布反射器13.14と利得領域IOの成す共振器
は、第7図aに実線で示す様な波長としきい値電流の関
係を持つ。位相を制御する位相調整領域15の電極47
に与える電流を調整し、レーザ発振を最も低いしきい値
電流(A点)で行うように調整する。また、可変分布反
射器13.14の伝搬定数も同様に電気的に制御できる
ので、同図に破線で示す波長としきい値電流の関係を変
化させることができ、ブラック波長を電気的に制御でき
、結果として半導体レーザの発振波長を電気的に制御で
きる。
The resonator formed by the variable distributed reflectors 13 and 14 and the gain region IO has a relationship between wavelength and threshold current as shown by the solid line in FIG. 7a. Electrode 47 of phase adjustment region 15 for controlling phase
The current applied to the current is adjusted so that laser oscillation is performed at the lowest threshold current (point A). Furthermore, since the propagation constants of the variable distributed reflectors 13 and 14 can be electrically controlled in the same way, the relationship between the wavelength and threshold current shown by the broken line in the figure can be changed, and the black wavelength can be electrically controlled. As a result, the oscillation wavelength of the semiconductor laser can be electrically controlled.

さて、共振器より発生したレーザ光はY分岐型導波路1
6を通して分割され、分布反射器18.20を通過する
。その際、分布反射器18はレーザ光に対して第7図す
に実線に示す透過率を持ち、また分布反射器20はレー
ザ光に対して同図に破線に示す透過率を持つ、このため
、検出器19.21はレーザの発振波長に対して、それ
ぞれ同図の実線及び破線に比例した波長感度を有する。
Now, the laser light generated from the resonator passes through the Y-branched waveguide 1.
6 and passes through a distributed reflector 18.20. At this time, the distributed reflector 18 has a transmittance for the laser beam shown by a solid line in FIG. 7, and the distributed reflector 20 has a transmittance for the laser beam shown by a broken line in the figure. , the detectors 19 and 21 have wavelength sensitivities proportional to the oscillation wavelength of the laser as shown by the solid and broken lines in the figure, respectively.

従って、検出器19と検出器21の差信号は、ブラック
波長近傍でレーザの発振波長に比例し、和信号はレーザ
の光出力に比例する。
Therefore, the difference signal between the detector 19 and the detector 21 is proportional to the oscillation wavelength of the laser near the black wavelength, and the sum signal is proportional to the optical output of the laser.

以上のように本発明の半導体レーザ装置によれば、波長
測定手段が集積化された半導体レーザが得られる。両光
検出器の差信号は発振波長に比例した信号であり、この
信号により、可変分布反射器13.14の導波路を構成
する半導体に流す電流を制御することにより、容易に半
導体レーザは発振波長を電気的に制御できる。また光出
力をも検出できるので、光出力制御も容易である。
As described above, according to the semiconductor laser device of the present invention, a semiconductor laser in which a wavelength measuring means is integrated can be obtained. The difference signal between the two photodetectors is a signal proportional to the oscillation wavelength, and by controlling the current flowing through the semiconductor forming the waveguide of the variable distributed reflector 13 and 14, the semiconductor laser can easily oscillate. Wavelength can be controlled electrically. Furthermore, since optical output can also be detected, optical output control is easy.

上述の実施例においては、InP系の埋め込み型半導体
レーザについて説明してきたが1本発明は内部ストライ
プ型半導体レーザ装置等の他の掃造。
In the above embodiments, an InP-based buried semiconductor laser device has been described, but the present invention is also applicable to other types of internal stripe semiconductor laser devices.

GaAlAs等の他の半導体を用いた半導体レーザ装置
にも適用できる。また可変分布反射器と分布反射器のブ
ラック波長をずらす方法としては、38波路の厚さを異
ならせることにより等価的に導波路の伝搬定数を変えブ
ラック波長をかえる方法、導波路を構成する半導体の組
成を異ならせて導波路の伝搬定数を変えブラック波長を
かえる方法、直接的にグレーティングのピッチを異なら
せてブラック波長をかえる方法等が利用できる。
It can also be applied to semiconductor laser devices using other semiconductors such as GaAlAs. In addition, methods for shifting the black wavelength of the variable distributed reflector and the distributed reflector include a method of changing the black wavelength by equivalently changing the propagation constant of the waveguide by changing the thickness of the 38 waveguides, and a method of changing the black wavelength of the waveguide by changing the thickness of the waveguide. A method of changing the black wavelength by changing the propagation constant of the waveguide by changing the composition of the grating, a method of changing the black wavelength by directly changing the pitch of the grating, etc. can be used.

また上述の実施例の可変分布反射器において、半導体(
GaInAsP)からなる導波路に電流を注入しキャリ
ア密度を変化させてバンド間吸収とプラズマ吸収の分散
のために媒質の屈折率が変わることにより、導波路の伝
搬定数が変化することを用いてブラック波長を制御した
が、電気光学効果を用いて導波路の屈折率を変えても良
い。
Furthermore, in the variable distribution reflector of the above embodiment, the semiconductor (
By injecting a current into a waveguide made of GaInAsP to change the carrier density, the refractive index of the medium changes due to the dispersion of interband absorption and plasma absorption, which changes the propagation constant of the waveguide. Although the wavelength is controlled, the refractive index of the waveguide may also be changed using the electro-optic effect.

更に上述の実施例では、二つの可変分布反射器を用いて
説明してきたが、可変分布反射器の一方は必ずしも必要
ではない。
Furthermore, although the above embodiments have been described using two variable distribution reflectors, one of the variable distribution reflectors is not necessarily required.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の半導体レーザ装置によれば、波長
測定手段が半導体レーザ素子に一体に集積化されており
、発振波長が容易に制御可能なシステムをコンパクトに
構成できる。
As described above, according to the semiconductor laser device of the present invention, the wavelength measuring means is integrated into the semiconductor laser element, and a system in which the oscillation wavelength can be easily controlled can be constructed compactly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の分布帰還型半導体レーザ装
置の斜視図、第2図乃至ff16図は本発明の分布帰還
型半導体レーザ装置の各製造方法を示す斜視図、第7図
は本発明の動作原理を説明するための図、第8図は従来
のブラック波長制御器付きBIG−DBR型DSM型半
導体レーザの断面図を示す。 10・・・利得領域 13.14・・・可変分布反射器 15・・・位相調整領域   16・・・Y分岐型導波
路18.20・・・分布反射器層 19.21・・・光
検出器46.47.48.49.50.51・・・電極
52・・・引算器      53・・・加算器54・
・・波長制御回路   56・・・光出力制御回路58
・・・位相制御回路 代理人 弁理士 則 近 憲 佑 同  大胡典夫 しろい勺す上流、 (a) 第7図 第8図
FIG. 1 is a perspective view of a distributed feedback semiconductor laser device according to an embodiment of the present invention, FIGS. FIG. 8, which is a diagram for explaining the operating principle of the present invention, shows a cross-sectional view of a conventional BIG-DBR type DSM type semiconductor laser with a black wavelength controller. 10... Gain region 13.14... Variable distributed reflector 15... Phase adjustment region 16... Y branch waveguide 18.20... Distributed reflector layer 19.21... Photo detection Device 46.47.48.49.50.51... Electrode 52... Subtractor 53... Adder 54.
... Wavelength control circuit 56 ... Optical output control circuit 58
・・・Phase control circuit agent Patent attorney Nori Chika Ken Yudo Ogo Norio Shiroishuu upstream (a) Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 利得領域と、この利得領域に結合された光の進行方向に
対してグレーティングを有する1個以上の分布反射器と
を有する分布帰還型半導体レーザにおいて、 前記分布反射器のうち少なくとも1個は光の伝搬定数が
可変である可変分布反射器であり、かつ前記分布反射器
のブロック波長より長いブラック波長を有する第1の分
布反射器と、この第1の分布反射器に結合された第1の
光検出器と、前記分布反射器のブラック波長より短いブ
ラック波長を有する第2の分布反射器と、この第2の分
布反射器に結合された第2の光検出器と、前記分布反射
器と前記第1の分布反射器および前記第2の分布反射器
を光学的に結合する領域を具備し、前記第1の光検出器
と前記第2の光検出器の出力の差信号により前記可変分
布反射器の光の伝搬定数を制御することを特徴とする分
布帰還型半導体レーザ装置。
[Scope of Claims] A distributed feedback semiconductor laser comprising a gain region and one or more distributed reflectors having a grating in the direction of propagation of light coupled to the gain region, comprising: a first distributed reflector, at least one of which is a variable distributed reflector having a variable light propagation constant, and which has a black wavelength longer than the block wavelength of the distributed reflector, coupled to the first distributed reflector; a second distributed reflector having a black wavelength shorter than a black wavelength of the distributed reflector; and a second photodetector coupled to the second distributed reflector; a region that optically couples the distributed reflector, the first distributed reflector, and the second distributed reflector; the difference in output between the first photodetector and the second photodetector; A distributed feedback semiconductor laser device, characterized in that a propagation constant of light of the variable distributed reflector is controlled by a signal.
JP61306510A 1986-12-24 1986-12-24 Distributed feedback type semiconductor laser device Pending JPS63160391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61306510A JPS63160391A (en) 1986-12-24 1986-12-24 Distributed feedback type semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61306510A JPS63160391A (en) 1986-12-24 1986-12-24 Distributed feedback type semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS63160391A true JPS63160391A (en) 1988-07-04

Family

ID=17957895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61306510A Pending JPS63160391A (en) 1986-12-24 1986-12-24 Distributed feedback type semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS63160391A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174181A (en) * 1988-12-26 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> Distributed reflection type semiconductor laser with wavelength control function
EP0682390A2 (en) * 1994-05-12 1995-11-15 Canon Kabushiki Kaisha Apparatus and method for driving oscillation polarisation selective light source, and optical communication system using the same
EP1172905A1 (en) * 2000-07-11 2002-01-16 Interuniversitair Microelektronica Centrum Vzw A method and apparatus for controlling a laser structure
EP1223647A1 (en) * 2001-01-12 2002-07-17 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for controlling a laser structure
EP1886389A1 (en) * 2005-05-30 2008-02-13 Phoxtal Communications Ab Integrated chip
WO2008107963A1 (en) * 2007-03-05 2008-09-12 Fujitsu Limited Optical semiconductor element
GB2448162A (en) * 2007-04-03 2008-10-08 Bookham Technology Plc Tunable semiconductor laser
US9739940B2 (en) 2015-03-12 2017-08-22 Medlumics S.L. Bidirectional photonic integrated circuit with suppressed reflection
JP2021128994A (en) * 2020-02-13 2021-09-02 古河電気工業株式会社 Inspection method of laser device and laser device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174181A (en) * 1988-12-26 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> Distributed reflection type semiconductor laser with wavelength control function
EP0682390A2 (en) * 1994-05-12 1995-11-15 Canon Kabushiki Kaisha Apparatus and method for driving oscillation polarisation selective light source, and optical communication system using the same
EP0682390A3 (en) * 1994-05-12 1996-06-26 Canon Kk Apparatus and method for driving oscillation polarisation selective light source, and optical communication system using the same.
US5659560A (en) * 1994-05-12 1997-08-19 Canon Kabushiki Kaisha Apparatus and method for driving oscillation polarization selective light source, and optical communication system using the same
EP1172905A1 (en) * 2000-07-11 2002-01-16 Interuniversitair Microelektronica Centrum Vzw A method and apparatus for controlling a laser structure
EP1223647A1 (en) * 2001-01-12 2002-07-17 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for controlling a laser structure
EP1886389A4 (en) * 2005-05-30 2011-03-30 Phoxtal Comm Ab Integrated chip
EP1886389A1 (en) * 2005-05-30 2008-02-13 Phoxtal Communications Ab Integrated chip
US7983318B2 (en) 2007-03-05 2011-07-19 Fujitsu Limited Optical semiconductor device
JPWO2008107963A1 (en) * 2007-03-05 2010-06-03 富士通株式会社 Optical semiconductor device
WO2008107963A1 (en) * 2007-03-05 2008-09-12 Fujitsu Limited Optical semiconductor element
US20100142567A1 (en) * 2007-04-03 2010-06-10 Oclaro Technology Plc Branched waveguide multisection dbr semiconductor laser
GB2448162A (en) * 2007-04-03 2008-10-08 Bookham Technology Plc Tunable semiconductor laser
US8295315B2 (en) * 2007-04-03 2012-10-23 Oclaro Technology Limited Tunable laser
US9739940B2 (en) 2015-03-12 2017-08-22 Medlumics S.L. Bidirectional photonic integrated circuit with suppressed reflection
JP2021128994A (en) * 2020-02-13 2021-09-02 古河電気工業株式会社 Inspection method of laser device and laser device

Similar Documents

Publication Publication Date Title
US7230963B2 (en) Monolithic wavelength stabilized asymmetric laser
US5134671A (en) Monolithic integrated optical amplifier and photodetector
US5127081A (en) Optical branching waveguide
EP0314490B1 (en) Semiconductor laser
US7983318B2 (en) Optical semiconductor device
EP0558948A1 (en) An optical semiconductor apparatus, a method of driving the same and an optical transmission system using the same
US6844954B2 (en) Method of stabilizing electro-absorption modulators (EAM&#39;s) performance by maintaining constant absorption with the use of intergrated tap couplers and method of manufacture
KR100575964B1 (en) Electro-absorptive optical modulator module with monolithic integrated photo detector
GB2391692A (en) A lasing device with a ring cavity
EP1159774B1 (en) A tunable laser source with an integrated wavelength monitor and method of operating same
Ishii et al. Mode stabilization method for superstructure-grating DBR lasers
JPS63160391A (en) Distributed feedback type semiconductor laser device
JPH07154036A (en) Waveguide having inclined active stripe, laser having this waveguide, and optical fiber transmission system using this laser
JP2708467B2 (en) Tunable semiconductor laser
US6453105B1 (en) Optoelectronic device with power monitoring tap
KR100566216B1 (en) Semiconductor optical device being monolith integrated
JPH02262387A (en) Wavelength variable laser, control of its wavelength and photodetector
JPH02262366A (en) Photodetector and semiconductor laser equipped with photodetector
JP3072123B2 (en) Optically integrated tunable semiconductor laser device
JPH08204271A (en) Variable-wavelength semiconductor laser device
JPS584986A (en) Detector for divided beam
Mason et al. Sampled grating DBR lasers with integrated wavelength monitoring
JP3887738B2 (en) Semiconductor optical integrated circuit device and manufacturing method thereof
US20040008748A1 (en) Wavelength detector apparatus and method therefor
JPS63119284A (en) Semiconductor laser device