JPS63119284A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63119284A
JPS63119284A JP26455286A JP26455286A JPS63119284A JP S63119284 A JPS63119284 A JP S63119284A JP 26455286 A JP26455286 A JP 26455286A JP 26455286 A JP26455286 A JP 26455286A JP S63119284 A JPS63119284 A JP S63119284A
Authority
JP
Japan
Prior art keywords
light
laser
wavelength
waveguide
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26455286A
Other languages
Japanese (ja)
Inventor
Keisuke Koga
啓介 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26455286A priority Critical patent/JPS63119284A/en
Publication of JPS63119284A publication Critical patent/JPS63119284A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Abstract

PURPOSE:To afford sufficient monitoring function even for the minute change of a laser oscillating wavelength by monitoring the oscillation conditions of a semiconductor laser by using a waveguide type branching filter which has wavelength selection and reflection functions and a photodetector. CONSTITUTION:The oscillated output light of a DFB laser is coupled to a light waveguide 3 which is directly coupled to an edge face. An InGaAsP layer of a composition which has a transparent band gap against laser light is used for the light waveguide. Part of the oscillated output light propagated in a light waveguide layer is diffracted by a grating 4 at an angle which satisfies Bragg condition. If the diffracted light of a steady state oscillation wavelength is entered in a photodetector 5, the diffracted light passes through a transparent characteristic buried region and is detected by the photo detector 5. If the oscillated wavelength of the laser is changed by an external factor, the Bragg condition by the grating 4 is changed and the incident condition to the photodetector is changed so the stabilizing of an absolute oscillation wavelength is contrived by monitoring each output of the photodetectors provided at an interval and by feeding the outputs of the photodetectors back to a control system.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信用伝送部品あるいは光集積回路素子と
して用いる半導体レーザに関するもので2 ベーン ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a two-vane semiconductor laser used as a transmission component for optical communications or an optical integrated circuit element.

従来の技術 近年、半導体レーザー作製技術の向上に伴ない、光情報
処理・光通信等の幅広い分野においてその実用化が図ら
れてきた。なかでも長波長帯光通信分野では、InP系
DFBレーザーの特性改善が著しく、発振波長の絶対安
定化を前提とした超波長多重伝送方式の検討も行われつ
つある。この伝送方式では発振波長を数人ないし数十λ
間隔で精密に制御し、光ファイバーの波長分散が影響を
及ぼさない程度の非常に狭い波長帯域で多重伝送を行う
もので、この方式を用いることによって伝送容量を従来
の数倍ないし数十倍に高めることができるものと期待さ
れている。
BACKGROUND OF THE INVENTION In recent years, as semiconductor laser manufacturing technology has improved, efforts have been made to put it into practical use in a wide range of fields such as optical information processing and optical communications. In particular, in the field of long-wavelength optical communications, the characteristics of InP-based DFB lasers have been significantly improved, and ultra-wavelength multiplexing transmission systems based on absolute stabilization of the oscillation wavelength are being studied. In this transmission method, the oscillation wavelength ranges from several to several tens of λ.
This method performs multiplex transmission in a very narrow wavelength band that is not affected by the wavelength dispersion of optical fibers by precisely controlling the spacing, and by using this method, the transmission capacity is increased several to tens of times compared to conventional methods. It is expected that this will be possible.

発明が解決しようとする問題点 ところが、一般に半導体レーザーは、その構造上発振波
長が変化してしまうという問題点を有している。発振波
長の変動要因として大きく以下の二点があげられる。
Problems to be Solved by the Invention However, semiconductor lasers generally have a problem in that their oscillation wavelength changes due to their structure. There are two major factors that can cause the oscillation wavelength to fluctuate:

一1温度変化によるもの 31・−ノ 半導体レーザーは、キャリアを活性領域へ注入し、キャ
リアの再結合による発光・増幅を行ないレーザー発振を
得ている。しかし、光エネルギーへの変換効率は100
%とはならず、注入キャリアの一部が熱エネルギーにも
変換されて活性層の温度上昇を引き起こしてしまう。そ
の結果、活性層の発振波長を左右するバンドギャップエ
ネルギーを変化させ発振波長の温度ドリフトを起こして
しまう。1.3μmμm−ザーの場合、FP型レーザー
ではその変化量は5 A / deg程度、DFBレー
ザーではI A / deg程度となっている。
11. Causes due to temperature changes 31.-- Semiconductor lasers obtain laser oscillation by injecting carriers into the active region and emitting and amplifying light by recombining the carriers. However, the conversion efficiency to light energy is 100
%, and a part of the injected carriers is also converted into thermal energy, causing a rise in the temperature of the active layer. As a result, the bandgap energy that influences the oscillation wavelength of the active layer changes, causing temperature drift of the oscillation wavelength. In the case of a 1.3 μm μm laser, the amount of change is about 5 A/deg for an FP laser, and about I A/deg for a DFB laser.

二、キャリア濃度変化によるもの 半導体レーザーを高速変調した場合、チャーピングと呼
ばれる現象が生じる。これは、光強度の直接変調によっ
て引き起こされる活性層内キャリア濃度変化が、活性層
の実効的屈折率を変化させ、その結果、活性層の実効的
屈折率が変動してしまい発振波長のスペクトル幅を増加
させるとともに、中心波長のゆらぎを引き起こしてしま
う。コヒーレント通信用光源としては、このチャーピン
グをいかに抑え、スペクトル幅の狭い安定なレーザー光
を得るかが大きな課題となっておシ様々な方式で精力的
に開発が行なわれている。発振波長の絶対安定化を図る
上では、ハイブリッド構成よりはむしろ、モノリシック
な構成が有望であると考えられている。従来のレーザー
では、発振パワーのモニター機能は有していても発振波
長のモニター機能は有しておらず、上述のような理由に
ょシ超波長多重伝送用光源やコヒーレント通信用光源と
しては、発振波長の制御性という点で問題があった。よ
って本発明の目的は、上述の欠点を除去することのでき
る、すなわち発振波長のモニター機能を有する半導体レ
ーザー装置を提供することにある。
2. Due to changes in carrier concentration When a semiconductor laser is modulated at high speed, a phenomenon called chirping occurs. This is because carrier concentration changes in the active layer caused by direct modulation of light intensity change the effective refractive index of the active layer, and as a result, the effective refractive index of the active layer changes and the spectral width of the oscillation wavelength changes. This causes fluctuations in the center wavelength. As a light source for coherent communication, how to suppress this chirping and obtain stable laser light with a narrow spectral width has become a major issue, and various methods are being actively developed. In order to achieve absolute stabilization of the oscillation wavelength, a monolithic configuration is considered more promising than a hybrid configuration. Conventional lasers have a function to monitor the oscillation power but not the oscillation wavelength.For the reasons mentioned above, the oscillation There was a problem in terms of wavelength controllability. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor laser device that can eliminate the above-mentioned drawbacks, that is, has a function of monitoring the oscillation wavelength.

問題点を解決するための手段 上記の問題点を解決するだめに、本発明では基板面に形
成された半導体レーザーと、前記半導体レーザーに結合
された光導波路と、前記光導波路上に形成され波長選択
反射機能を有する導波路型光分波器と、前記導波路型光
分波器より所定の位51・−ヅ 置に設置された少なくとも1つ以上の受光素子を備えて
おり、これらをモノリシックに集積化して形成する。ま
た前記半導体レーザーは分布帰還型あるいはブラッグ反
射型構造をとってお9、レーザー発振光の一部は前記導
波路型光分波器によって回折を受け、所定の位置に設置
された受光素子によって検出される。ブラッグ条件によ
りその発振波長をモニターすることができる。
Means for Solving the Problems In order to solve the above problems, the present invention includes a semiconductor laser formed on a substrate surface, an optical waveguide coupled to the semiconductor laser, and a wavelength It is equipped with a waveguide type optical demultiplexer having a selective reflection function and at least one or more light receiving elements installed at a predetermined position 51° from the waveguide type optical demultiplexer. integrated into and formed. Further, the semiconductor laser has a distributed feedback type or Bragg reflection type structure9, and a part of the laser oscillation light is diffracted by the waveguide type optical demultiplexer and detected by a light receiving element installed at a predetermined position. be done. The oscillation wavelength can be monitored by Bragg conditions.

作  用 本発明は、狭帯域光学フィルターとして光導波路上にグ
レーティングを形成した導波路型光分波器を用いておp
1適当々設計を施せばフィルターのバンド巾は1Å以下
の特性も可能となり、レーザーの発振波長の微細な変化
に対しても十分なモニター機能を有することになる。
Function The present invention uses a waveguide type optical demultiplexer in which a grating is formed on an optical waveguide as a narrowband optical filter.
1. With appropriate design, the filter can have a band width of 1 Å or less, and has a sufficient monitoring function even for minute changes in the laser oscillation wavelength.

実施例 次に図面を参照して本発明の一実施例を説明する。第1
図は本発明の一実施例を示し、図中1はInP基板、2
はBH槽構造InGaAsP/InPDFBレーザー、
3は3次元閉じ込め構造の光導6 ページ 波路、4は光導波路上に形成されたグレーティング、5
はDFBレーザーの埋込領域の一部に適当な配置で作製
された受光素子、6はレーザー出力光、7はグレーティ
ング4によって回折されたレーザー光である。DFBレ
ーザーの発振出力光は、端面に直接結合された光導波路
3へ結合される。
Embodiment Next, an embodiment of the present invention will be described with reference to the drawings. 1st
The figure shows one embodiment of the present invention, in which 1 is an InP substrate, 2 is an InP substrate, and 2 is an InP substrate.
is a BH tank structure InGaAsP/InPDFB laser,
3 is an optical waveguide with a three-dimensional confinement structure. 4 is a grating formed on the optical waveguide. 5
numeral 6 is a light-receiving element manufactured in an appropriate arrangement in a part of the embedded region of the DFB laser, numeral 6 is laser output light, and numeral 7 is laser light diffracted by the grating 4. The oscillation output light of the DFB laser is coupled to the optical waveguide 3 directly coupled to the end face.

光導波路の組成としては通常、レーザー光に対して透明
なバンドギャップを有する組成のI nGaAs P層
が用いられる。光導波層を伝搬する発振出力光の一部は
、グレーティング4によってブラッグ条件を満足する角
度で回折される。この時の条件は、レーザーの発振波長
:λ、グレーティングの周期:A、グレーティングへの
入射角二〇等によって決定される。今、定常状態での発
振波長に対して、その回折光が受光素子5へ入射するよ
うな設計を行うと回折光は透明な特性の埋込領域を通過
した後、受光素子5によって検出されることになる。
As the composition of the optical waveguide, an InGaAsP layer having a composition that has a band gap that is transparent to laser light is usually used. A part of the oscillation output light propagating through the optical waveguide layer is diffracted by the grating 4 at an angle that satisfies the Bragg condition. The conditions at this time are determined by the laser oscillation wavelength: λ, the grating period: A, the incident angle to the grating 20, etc. Now, if the design is such that the diffracted light enters the light receiving element 5 for the oscillation wavelength in a steady state, the diffracted light will be detected by the light receiving element 5 after passing through the embedded region with transparent characteristics. It turns out.

レーザーの発振波長が外的要因で変化すると、グレーテ
ィング4によるブラッグ条件が変化し、受光素子への入
射条件が変化することになる。つま7、、−> p、ある間隔で並置された受光素子のそれぞれの出力を
モニターすることによって、定常状態からの発振波長の
シフトを観測することができる。レーザーの発振波長は
、温度あるいは電界等によって外的に制御を行うことが
できるため、これらの制御系へ受光素子の出力をフィー
ドバックすることによって、絶対的な発振波長の安定化
を図ることが可能になる。また、レーザー素子、光導波
路。
When the oscillation wavelength of the laser changes due to external factors, the Bragg conditions due to the grating 4 change, and the conditions of incidence on the light receiving element change. By monitoring the output of each of the light-receiving elements arranged at a certain interval, it is possible to observe the shift of the oscillation wavelength from the steady state. Since the laser oscillation wavelength can be controlled externally by temperature or electric field, it is possible to stabilize the absolute oscillation wavelength by feeding back the output of the light receiving element to these control systems. become. Also, laser elements and optical waveguides.

分波器、受光素子等の機能素子をモノリシックに集積化
しているために、光学素子のアライメントの必要もなく
、丑だ安定性に極めて優れた構成となっている。
Since the functional elements such as the demultiplexer and the light-receiving element are monolithically integrated, there is no need for alignment of optical elements, resulting in an extremely stable structure.

なお、本実施例ではInP系材系材用いた構成で説明を
行なったが、他の材料、例えばG a A s系の半導
体材料、あるいはL i N b 03等の強誘電体材
料にも応用できることは言うまでもない。
Although this example has been explained with a configuration using an InP-based material, it can also be applied to other materials, such as GaAs-based semiconductor materials or ferroelectric materials such as L i N b 03. It goes without saying that it can be done.

本発明は、狭帯域光学フィルターとして光導波路上にグ
レーティングを形成した導波路型光分波器を用いており
、適当な設計を施せばフィルターのバンド巾は1Å以下
の特性も可能となり、レーザーの発振波長の微細な変化
に対しても十分なモニター機能を有することになる。第
2図にその代表的な導波路型分波器の斜視図を示す。図
中11は基板、12は光導波層、13は光導波層上に形
成された分波作用を持つグレーティングである。
The present invention uses a waveguide type optical demultiplexer in which a grating is formed on the optical waveguide as a narrow band optical filter, and with appropriate design, the filter can have a band width of 1 Å or less, which is suitable for lasers. This provides a sufficient monitoring function even for minute changes in the oscillation wavelength. FIG. 2 shows a perspective view of a typical waveguide type duplexer. In the figure, 11 is a substrate, 12 is an optical waveguide layer, and 13 is a grating having a splitting effect formed on the optical waveguide layer.

光導波路12に結合された入力光14は導波路中のグレ
ーティング13によって回折作用を受は偏向される。こ
の関係はブラッグ条件によって示される。第3図に示す
ように入射角二〇、媒質中における波長:λの光に対し
て、A−λ/ 2 sinθ で与えられる格子定数を
もつ回折格子13はブラッグ条件を満足することから、
入射光15は格子面に対して反射角θの方向へ回折を起
こしフィルターとして作用する。同時に、回折された光
の進行方向上に光を検出する受光素子を設置することに
よって、光波のモニターとして機能させることができる
Input light 14 coupled to the optical waveguide 12 is subjected to diffraction and deflected by the grating 13 in the waveguide. This relationship is expressed by the Bragg condition. As shown in FIG. 3, for light with an incident angle of 20 and a wavelength of λ in the medium, the diffraction grating 13 with a grating constant given by A-λ/2 sin θ satisfies the Bragg condition.
The incident light 15 is diffracted against the grating surface in the direction of the reflection angle θ and acts as a filter. At the same time, by installing a light receiving element that detects light in the traveling direction of the diffracted light, it can function as a light wave monitor.

発明の効果 以上述べたように本発明によれば、超波長多重伝送用光
源として非常に特性に優れた半導体レー91・−ノ ザー装置を実現できるものであり、その実用上の効果は
大である。
Effects of the Invention As described above, according to the present invention, it is possible to realize a semiconductor laser device with extremely excellent characteristics as a light source for ultra-wavelength multiplexed transmission, and its practical effects are great. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の半導体レーザー装置の構造を
示す斜視図、第2図は導波路型分波器の構造を示す斜視
図、第3図はブラッグ回折条件の説明図である。 1・・・・・・基板、2・・−・・DFBレーザー、3
・・・・・・光導波路、4・・・・・・グレーティング
、5・・・・・・受光素子、6・・・・・・レーザー出
力光、7・・・・・・レーザー光。
FIG. 1 is a perspective view showing the structure of a semiconductor laser device according to an embodiment of the present invention, FIG. 2 is a perspective view showing the structure of a waveguide type demultiplexer, and FIG. 3 is an explanatory diagram of Bragg diffraction conditions. 1... Board, 2... DFB laser, 3
...... Optical waveguide, 4... Grating, 5... Light receiving element, 6... Laser output light, 7... Laser light.

Claims (2)

【特許請求の範囲】[Claims] (1)基板面上に形成された半導体レーザと、前記半導
体レーザに結合された光導波路と、前記光導波路上に形
成され波長選択反射機能を有する導波路型光分波器と、
前記導波路型光分波器より所定の位置に設置され少なく
とも1つ以上の受光素子とをモノリシックに集積化し、
前記導波路型分波器および前記受光素子を用いて前記半
導体レーザの発振状態をモニターするようにした半導体
レーザ装置。
(1) a semiconductor laser formed on a substrate surface, an optical waveguide coupled to the semiconductor laser, and a waveguide-type optical demultiplexer formed on the optical waveguide and having a wavelength selective reflection function;
monolithically integrating at least one light receiving element installed at a predetermined position from the waveguide type optical demultiplexer;
A semiconductor laser device, wherein an oscillation state of the semiconductor laser is monitored using the waveguide type demultiplexer and the light receiving element.
(2)半導体レーザが分布帰還型あるいはブラッグ反射
型構造を有する特許請求の範囲第1項に記載の半導体レ
ーザ装置。
(2) The semiconductor laser device according to claim 1, wherein the semiconductor laser has a distributed feedback type or Bragg reflection type structure.
JP26455286A 1986-11-06 1986-11-06 Semiconductor laser device Pending JPS63119284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26455286A JPS63119284A (en) 1986-11-06 1986-11-06 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26455286A JPS63119284A (en) 1986-11-06 1986-11-06 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS63119284A true JPS63119284A (en) 1988-05-23

Family

ID=17404856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26455286A Pending JPS63119284A (en) 1986-11-06 1986-11-06 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS63119284A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043327A3 (en) * 1997-03-26 1998-12-23 Siemens Ag Method for stabilizing the wavelength of a laser and arrangement for implementing said method
JP2012151141A (en) * 2011-01-14 2012-08-09 Fujitsu Ltd Semiconductor laser
JP2017161765A (en) * 2016-03-10 2017-09-14 富士通株式会社 Optical element and light generating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154086A (en) * 1983-02-22 1984-09-03 Nec Corp Frequency stabilized semiconductor laser
JPS61168957A (en) * 1985-01-07 1986-07-30 シーメンス、アクチエンゲゼルシヤフト Bidirectional communication equipment and manufacture thereof
JPS61208281A (en) * 1985-03-13 1986-09-16 Canon Inc Semiconductor laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154086A (en) * 1983-02-22 1984-09-03 Nec Corp Frequency stabilized semiconductor laser
JPS61168957A (en) * 1985-01-07 1986-07-30 シーメンス、アクチエンゲゼルシヤフト Bidirectional communication equipment and manufacture thereof
JPS61208281A (en) * 1985-03-13 1986-09-16 Canon Inc Semiconductor laser device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043327A3 (en) * 1997-03-26 1998-12-23 Siemens Ag Method for stabilizing the wavelength of a laser and arrangement for implementing said method
JP2012151141A (en) * 2011-01-14 2012-08-09 Fujitsu Ltd Semiconductor laser
JP2017161765A (en) * 2016-03-10 2017-09-14 富士通株式会社 Optical element and light generating device

Similar Documents

Publication Publication Date Title
EP2575220B1 (en) Tunable laser with integrated wavelength reference
CA2101411C (en) Tunable optical filter
US7738794B2 (en) Optical transmitter
US5134671A (en) Monolithic integrated optical amplifier and photodetector
US5502783A (en) Polarization independent optical directional coupler wavelength tunable filters/receivers
US7983318B2 (en) Optical semiconductor device
KR100575964B1 (en) Electro-absorptive optical modulator module with monolithic integrated photo detector
US20170131577A1 (en) Temperature control of components on an optical device
Duan et al. Hybrid III-V silicon photonic integrated circuits for optical communication applications
WO2007107187A1 (en) Integrated laser optical source with active and passive sections formed in distinct substrates
JPH07307516A (en) Variable wavelength semiconductor laser device
JPS63119284A (en) Semiconductor laser device
US6453105B1 (en) Optoelectronic device with power monitoring tap
US5490226A (en) Zero holding power digital optical switches
CA2267018C (en) Optical wavelength converter with active waveguide
JPH02262366A (en) Photodetector and semiconductor laser equipped with photodetector
JPS6373585A (en) Frequency tunable distributed bragg reflection-type semiconductor laser
JPH08204271A (en) Variable-wavelength semiconductor laser device
Shibata et al. Semiconductor monolithic wavelength selective router using a grating switch integrated with a directional coupler
Okamoto et al. Monolithic integration of a 10 Gb/s Mach-Zehnder modulator and a widely tunable laser based on a 2-ring loop-filter
TSUZUKI et al. InP-based monolithic optical frequency discriminator module for WDM systems
JPH0656905B2 (en) Optical heterodyne receiver
JP3778829B2 (en) Light control element
JPS63122188A (en) Photo-semiconductor device
JP2014116352A (en) Chirp control semiconductor laser