JPH02262366A - Photodetector and semiconductor laser equipped with photodetector - Google Patents
Photodetector and semiconductor laser equipped with photodetectorInfo
- Publication number
- JPH02262366A JPH02262366A JP8158789A JP8158789A JPH02262366A JP H02262366 A JPH02262366 A JP H02262366A JP 8158789 A JP8158789 A JP 8158789A JP 8158789 A JP8158789 A JP 8158789A JP H02262366 A JPH02262366 A JP H02262366A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- photodetectors
- waveguide
- light
- waveguides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 15
- 230000003287 optical effect Effects 0.000 claims abstract description 47
- 238000002347 injection Methods 0.000 claims abstract description 7
- 239000007924 injection Substances 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光通信、光応用計測等に用いることができる
波長可変型動的単一モードレーザ等の発振波長及び光出
力の検出装置に関するものである。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a detection device for the oscillation wavelength and optical output of a wavelength tunable dynamic single mode laser, etc., which can be used for optical communication, optical applied measurement, etc. It is something.
[従来の技術]
光ファイバーを用いた長距離、大容量伝送を目的とする
光通信システムでは、光ファイバーの波長分散によるパ
ルス幅の拡がりが、伝送帯域上問題となる。このため、
高速変調時においても単一縦モードのスペクトラムで発
振する動的単一モードレーザがいくつか提案されている
。また、更なる大容量伝送を可能にする方式として波長
多重方式、コヒーレント通信方式が提案されているが、
これらを実現するには発振波長の制御及び安定化が必要
となる。[Prior Art] In optical communication systems that use optical fibers for long-distance, high-capacity transmission, pulse width broadening due to wavelength dispersion of optical fibers poses a problem in terms of transmission bandwidth. For this reason,
Several dynamic single-mode lasers have been proposed that oscillate in a single longitudinal mode spectrum even during high-speed modulation. In addition, wavelength multiplexing and coherent communication methods have been proposed as methods to enable even higher capacity transmission.
To realize these, it is necessary to control and stabilize the oscillation wavelength.
従来、半導体レーザの発振波長を一定に制御するには、
動作温度を一定にする方法が一般的であった。しかしな
がら、温度による制御は応答速度が遅く、また使用環境
に影響され易い欠点を有している。そこで、電気的に発
振波長を制御できる光源として、フラッグ波長制御領域
、位相調整領域をもち、10niの範囲で波長可変の動
的単一モードレーザが報告されている(Electro
nicsLatters1988 Vol、24 No
、]OP、577−579) 。この波長可変レーザは
、可変分布反射器用電極へ電流注入することによりバン
ド間吸収と、プラズマ吸収の分散のために媒質の屈折率
が変化し、導波路の伝搬定数が変化してフラッグ波長を
制御でき、また位相調整領域への注入電流量も同時に制
御して、安定にフラッグ波長発振を起こしている。Conventionally, in order to control the oscillation wavelength of a semiconductor laser to a constant value,
A common method was to keep the operating temperature constant. However, control based on temperature has the disadvantage that the response speed is slow and that it is easily influenced by the usage environment. Therefore, as a light source whose oscillation wavelength can be electrically controlled, a dynamic single mode laser that has a flag wavelength control region and a phase adjustment region and whose wavelength is tunable in the range of 10 ni has been reported (Electro
nicsLatters1988 Vol, 24 No.
,] OP, 577-579). This wavelength tunable laser changes the refractive index of the medium due to interband absorption and dispersion of plasma absorption by injecting current into the tunable distributed reflector electrode, which changes the propagation constant of the waveguide and controls the flag wavelength. In addition, the amount of current injected into the phase adjustment region is also controlled at the same time, resulting in stable flag wavelength oscillation.
このように広い可変波長域をもつ動的単一モードレーザ
は、波長安定化のためばかりでなく、波長多重化や、周
波数変調への応用にも好適である。Dynamic single mode lasers with such a wide variable wavelength range are suitable not only for wavelength stabilization but also for wavelength multiplexing and frequency modulation applications.
しかしながら、上記従来例においても、波長の制御が非
常に重要であるが、その検出には、一般に分光器、ファ
プソベロー干渉計等の大型システムを用いており、小型
化が強く望まれていた。However, even in the above-mentioned conventional examples, wavelength control is very important, and its detection generally uses a large system such as a spectrometer or a Fapsobell interferometer, and there is a strong desire for miniaturization.
そこで最近、発振波長制御の可能なモノリシックに形成
された分布帰還型半導体レーザ装置が出願され、公開さ
れた。この発明は、特開昭63−160391であり、
第4図に示すように利得領域と、この利得領域に結合さ
れた光の進行方向に対してグレーティングを有する1個
以上の分布反射器とを存する分布帰還型半導体レーザに
おいて、分布反射器のうち少なくとも1個は光の伝搬定
数が可変である可変分布反射器であり、かつこの分布反
射器のフラッグ波長より長いフラッグ波長を有する第1
の分布反射器と、この第1の分布反射器に結合された第
1の光検出器と、上記分布反射器のフラッグ波長より短
いフラッグ波長を有する第2の分布反射器と、この第2
の分布反射器に結合された第2の光検出器と1分布反射
器と第1の分布反射器および前記第2の分布反射器を光
学的に結合する領域を具備し、第1の光検出器と第2の
光検出器の出力の差信号により可変分布反射器の光の伝
搬定数を制御することを特徴とする分布帰還型半導体レ
ーザ装置である。Therefore, recently, a monolithically formed distributed feedback semiconductor laser device capable of controlling the oscillation wavelength has been applied for and published. This invention is disclosed in Japanese Patent Application Laid-Open No. 63-160391,
As shown in FIG. 4, in a distributed feedback semiconductor laser that includes a gain region and one or more distributed reflectors having a grating in the traveling direction of light coupled to the gain region, one of the distributed reflectors is At least one is a variable distributed reflector having a variable light propagation constant, and a first one having a flag wavelength longer than the flag wavelength of the distributed reflector.
a distributed reflector, a first photodetector coupled to the first distributed reflector, a second distributed reflector having a flag wavelength shorter than a flag wavelength of the distributed reflector;
a second photodetector coupled to a distributed reflector; a region optically coupling the first distributed reflector and the second distributed reflector; This distributed feedback semiconductor laser device is characterized in that the light propagation constant of the variable distribution reflector is controlled by a difference signal between the outputs of the detector and the second photodetector.
上述の構成により、第1の光検出器の出力および第2の
光検出器の出力は、共に発振波長に対応し変化する。ま
たこれら両信号の差信号は発振波長に対して単調に変化
するため、差信号により発振波長の測定が可能になる。With the above configuration, the output of the first photodetector and the output of the second photodetector both change in correspondence with the oscillation wavelength. Furthermore, since the difference signal between these two signals changes monotonically with respect to the oscillation wavelength, the oscillation wavelength can be measured using the difference signal.
従って、上記両光検出器の出力の差信号によって可変分
布反射器のフラッグ波長を制御すれば、半導体レーザの
発振波長の制御が可能になる。即ち、半導体レーザに波
長測定手段が一体に集積でき、発振波長の制御が可能な
半導体レーザ装置をコンパクトに構成できるというわけ
である。Therefore, by controlling the flag wavelength of the variable distribution reflector using the difference signal between the outputs of the two photodetectors, it becomes possible to control the oscillation wavelength of the semiconductor laser. That is, the wavelength measurement means can be integrated into the semiconductor laser, and a semiconductor laser device capable of controlling the oscillation wavelength can be constructed compactly.
[発明が解決しようとしている課題]
しかしながら、上記従来例では、光出力は第1と第2の
光検出器の出力の和信号として検出可能としているが、
分布反射器の透過率の波長依存性は、中心波長に対して
非対称であり、また非線形であるなどの理由により、単
純に和信号を用いることにより光出力を制御することは
困難である。[Problems to be Solved by the Invention] However, in the above conventional example, the optical output can be detected as a sum signal of the outputs of the first and second photodetectors, but the wavelength dependence of the transmittance of the distributed reflector It is difficult to control the optical output simply by using the sum signal because it is asymmetric with respect to the center wavelength and is nonlinear.
[課題を解決するための手段]
本発明は、被検出光を導波する導波路と、該導波路に光
学的に結合された3以上の光検出器を有し、少くとも2
以上の光検出器と該導波路との間には波長選択性を有す
る導波路型光分波器または分布反射器が設けられ、かつ
該導波路、該光検出器および該導波路型光分波器もしく
は分布反射器は同一・基板上にモノリシックに形成され
ていることを特徴とする光検出装置であり、特には、前
記導波路型光分波器または分布反射器は、電流注入によ
りフラッグ波長が可変であるグレーティングからなり、
かつ電流注入手段を有していることを特徴とする上記の
光検出装置である。[Means for Solving the Problems] The present invention includes a waveguide for guiding light to be detected, and three or more photodetectors optically coupled to the waveguide, and at least two photodetectors.
A waveguide type optical demultiplexer or a distributed reflector having wavelength selectivity is provided between the above photodetector and the waveguide, and the waveguide, the photodetector and the waveguide type optical demultiplexer are provided. A waveguide type optical demultiplexer or a distributed reflector is a photodetection device characterized by being monolithically formed on the same substrate. Consists of a grating whose wavelength is variable,
The above-mentioned photodetecting device is characterized in that it further includes current injection means.
また本発明は上記の光検出装置と波長可変型動的単一モ
ード半導体レーザとが同一基板上にモノリシックに形成
されてなる光検出装置を備えた半導体レーザをも含む。The present invention also includes a semiconductor laser equipped with a photodetector in which the above-described photodetector and a wavelength tunable dynamic single mode semiconductor laser are monolithically formed on the same substrate.
本発明によれば、被検出光を導波する光導波路から分波
器を用いることにより、光を分配し、方を光出力制御に
用い、他方を波長選択機能を有する分布反射器などを通
すことにより波長制御に用いることができ、波長選択機
能を内部に設けることによる光出力の変動の影響を受け
ることなく光出力と波長の制御を可能にし、得られる信
号を光源にフィードバックさせることにより安定な光出
力と波長の光源を実現できるようにしたものである。According to the present invention, by using a demultiplexer from an optical waveguide that guides the light to be detected, the light is distributed, one of which is used for optical output control, and the other is used to pass through a distributed reflector or the like having a wavelength selection function. By providing an internal wavelength selection function, it is possible to control the optical output and wavelength without being affected by fluctuations in the optical output, and by feeding the obtained signal back to the light source, it can be stabilized. This makes it possible to realize a light source with a certain optical output and wavelength.
また、波長選択機能を有する分布反射器等へキャリアの
注入を行なうことにより、電気信号による正確で急俊な
所望の波長への設定が可能となる。Further, by injecting carriers into a distributed reflector or the like having a wavelength selection function, it becomes possible to accurately and quickly set a desired wavelength using an electric signal.
(実施例)
第1図は、本発明の特徴を最もよく表わす化合物半導体
基板上に形成し集積型光検出装置の概略を示す。(Example) FIG. 1 schematically shows an integrated photodetection device formed on a compound semiconductor substrate that best represents the features of the present invention.
主光導波路1に入射する被検出光は分波路2により光導
波路3,4.5へ分かれ、導波路4を伝搬する光は光検
出器9で電気信号の出力となる。The detected light incident on the main optical waveguide 1 is split into optical waveguides 3, 4.5 by a branching path 2, and the light propagating through the waveguide 4 is output as an electrical signal by a photodetector 9.
被検出光の光出力は光導波路1と光導波路4の伝搬損失
、分波器2の放射損失により決定され一定であるため、
わずかに波長がシフトしてもその変化量は非常に小さい
。そのため、光検出器9を用い、光出力のモニターを行
なえばその出力信号の増減から負帰還によりAPC制御
が可能となる。Since the optical output of the detected light is determined by the propagation loss of the optical waveguide 1 and the optical waveguide 4 and the radiation loss of the demultiplexer 2, it is constant.
Even if the wavelength shifts slightly, the amount of change is very small. Therefore, if the optical output is monitored using the photodetector 9, APC control can be performed by negative feedback based on the increase or decrease in the output signal.
また光導波路3と5を伝搬する光については分布反射器
6と7が各々、フラッグ波長λ、、λ6のフィルターと
して作用するので、被検出光の波長λがλA≦λ≦λ8
にあれば光検出器8と9の出力の差信号として被検出光
の波長を知ることが可能である。Furthermore, for the light propagating through the optical waveguides 3 and 5, the distributed reflectors 6 and 7 act as filters with flag wavelengths λ, , λ6, respectively, so that the wavelength λ of the detected light is λA≦λ≦λ8.
If so, it is possible to know the wavelength of the detected light as a difference signal between the outputs of the photodetectors 8 and 9.
ここで分布反射器6と7へは各々注入電流の制御器11
と12によりキャリア注入が可能なように形成されてお
り、フラッグ波長が変化させられる6プラズマ効果によ
る屈折率の減少量δ、は、キャリア密度nと比例し、
λ0”0.85uのAlGaAs系ではδ、*−1.3
x 10−2λ□J、3 uIのInGaAs系ではδ
n=−3.7X 10−”である。このようにキャリア
注入層の屈折率が変化させられるので、フラッグ波長を
制御することができる。所望の波長λaに被検出光を合
わせたい場合は、波長λ。の光を分光器等によりモニタ
ーしながらえ。における光検出器8と10の出力を等し
くするように各々への注入電流量をあらかじめ設定して
おく。この状態で被検出光がλ。Here, the distributed reflectors 6 and 7 are each injected with a current controller 11.
The amount of decrease in the refractive index due to the 6 plasma effect, δ, which changes the flag wavelength, is proportional to the carrier density n, and in the AlGaAs system with λ0”0.85u, δ, *-1.3
x 10-2λ□J, δ in InGaAs system with 3 uI
n=-3.7X 10-". Since the refractive index of the carrier injection layer is changed in this way, the flag wavelength can be controlled. If you want to match the detected light to a desired wavelength λa, The amount of current injected into each of the photodetectors 8 and 10 is set in advance so that the outputs of the photodetectors 8 and 10 at wavelength λ are monitored by a spectrometer or the like.In this state, when the detected light is λ .
からλへ変化したならば、分布反射器6と7での出力レ
ベルに差が生じるので光検出器8.10の差信号から入
射している光の波長が検出されることになる。このよう
に被検出光の波長のずれの方向とおおまかなずれ量が検
出できれば、これを被検出光の光源の温度あるいは電流
・電界等へ帰還させることにより、所望の波長にもどす
ことが可能となる。When the wavelength changes from λ to λ, a difference occurs between the output levels of the distributed reflectors 6 and 7, so that the wavelength of the incident light can be detected from the difference signal of the photodetector 8.10. If the direction and approximate amount of wavelength shift of the detected light can be detected in this way, it is possible to return it to the desired wavelength by feeding it back to the temperature, current, electric field, etc. of the light source of the detected light. Become.
本実施例の場合主光導波路から光を分岐する方法として
対称3分岐導波路を用いたが第2図に示すような可変間
隔をもつIX3分岐の方向性結合器を用いることも有効
である。In this embodiment, a symmetrical three-branch waveguide is used as a method of branching light from the main optical waveguide, but it is also effective to use a directional coupler with three IX branches with variable spacing as shown in FIG.
第3図は波長選択性をもつフィルターとして光導波路3
1上に光の仏殿方向に対して斜めのベクトルをもつグレ
ーティングを形成した導波路型光分波器32を用いてお
り、入射した光の一部は前記光分波器32により回折を
受け、所定の位置に設置された光検出器34と35によ
って検出される。前記光分波器32により影響されない
光は直進し、光検出器36により検出される。Figure 3 shows an optical waveguide 3 as a filter with wavelength selectivity.
A waveguide type optical demultiplexer 32 in which a grating having a vector oblique to the direction of the light beam is formed on the optical demultiplexer 32 is used, and a part of the incident light is diffracted by the optical demultiplexer 32. It is detected by photodetectors 34 and 35 installed at predetermined positions. The light that is not affected by the optical demultiplexer 32 travels straight and is detected by the photodetector 36.
回折格子の光分波器32により回折される光の方向は、
フラッグ条件を満足する角度で回折され、被検出光の波
長λ、回折格子の周期Δ、光の回折格子への入射角θ等
によって決定される。The direction of the light diffracted by the optical demultiplexer 32 of the diffraction grating is
The light is diffracted at an angle that satisfies the flag condition, and is determined by the wavelength λ of the light to be detected, the period Δ of the diffraction grating, the incident angle θ of the light onto the diffraction grating, etc.
今、所望の波長λ。に対してその回折光が光検出器34
と35へ等量人射するような設計を行うと、回折光は、
透明な特性の領域33を通過した後、光検出器34と3
5によって検出されることになる。被検出光の波長が変
化すると、回折格子32によるフラッグ条件が変化し、
光検出器34.35への入射条件が変化することになる
。Now the desired wavelength λ. The diffracted light is detected by the photodetector 34.
If the design is such that the same amount of light is irradiated to 35 and 35, the diffracted light will be
After passing through the transparent characteristic region 33, the photodetectors 34 and 3
5 will be detected. When the wavelength of the detected light changes, the flag condition by the diffraction grating 32 changes,
The conditions of incidence on the photodetectors 34, 35 will change.
つまり、ある間隔で並置された光検出器の各々の出力を
モニターしその差信号を減算器38により得ることによ
って波長の変化量を検知することができる。また、光分
波器32に回折されない光は直進し、光検出器36によ
り出力として検出されるが、波長λ。からλへ変化して
も光検出器36の出力は変化しないので光出力のモニタ
ーとして用いれば、光源のAPC用に適している。In other words, the amount of change in wavelength can be detected by monitoring the outputs of the photodetectors arranged in parallel at a certain interval and obtaining a difference signal from the subtractor 38. Further, the light that is not diffracted by the optical demultiplexer 32 travels straight and is detected as an output by the photodetector 36, but it has a wavelength λ. Since the output of the photodetector 36 does not change even if it changes from λ to λ, it is suitable for APC of a light source if used as a monitor of optical output.
前記光分波器32は、電流注入が可能なように構成され
ているが、キャリア濃度の増加により先導波路の媒体の
屈折率が低下し回折格子32のフラッグ波長が変化する
ためにフラッグ波長の可変範囲内においてその可変範囲
内の所望の波長についての被検出光のモニターが可能で
ある。さらに、光検出器34と35への入射光量のバラ
ンスを設定するためにも有効である。The optical demultiplexer 32 is configured to be able to inject a current, but as the carrier concentration increases, the refractive index of the medium in the leading waveguide decreases and the flag wavelength of the diffraction grating 32 changes. Within the variable range, it is possible to monitor the detected light for a desired wavelength within the variable range. Furthermore, it is also effective for setting the balance between the amounts of light incident on the photodetectors 34 and 35.
以上説明した集積型光検出装置は波長可変型動的単一モ
ードレーザと同一基板上に集積化することが可能であり
、前記レーザの光出力制御及び発振波長制御を行なう上
で本発明は非常に有効である。The integrated photodetector described above can be integrated on the same substrate as a wavelength tunable dynamic single mode laser, and the present invention is very useful in controlling the optical output and oscillation wavelength of the laser. It is effective for
なお、本実施例では、GaAs系、InP系等の化合物
半導体材料を用いた構成を説明したが、他の材料、例え
ばSi等の半導体材料やLiNb0:+等の強誘電体材
料にも応用できることはいうまでもない。Note that in this example, a configuration using compound semiconductor materials such as GaAs-based and InP-based materials was explained, but the present invention can also be applied to other materials, such as semiconductor materials such as Si and ferroelectric materials such as LiNb0:+. Needless to say.
[発明の効果]
以上説明したように、本発明によりば被検出光を導波す
る導波路から光を分配して、一方を先出カモニター用に
、他方を波長選択機能を有するフィルターを介して波長
モニター用に用いることにより、被検出光の光出力制御
と波長制御を同時におこなうことができる。[Effects of the Invention] As explained above, according to the present invention, light is distributed from the waveguide that guides the light to be detected, and one side is used as a first output monitor and the other side is passed through a filter having a wavelength selection function. By using it for wavelength monitoring, it is possible to control the optical output and wavelength of the detected light at the same time.
また、波長可変型動的単一モードレーザと同一基板上に
モノリシックに形成することにより、発振波長と光出力
の安定な光通信用または光応用計測用の光源が得られる
。Furthermore, by monolithically forming the laser on the same substrate as the wavelength tunable dynamic single mode laser, a light source for optical communication or optical applied measurement with stable oscillation wavelength and optical output can be obtained.
第1図は本発明を実施した対称3分岐動波路を有する集
積型光検出装置、
第2図は本発明を実施した可変間隔をもつ3分岐方向性
結合導波路を有する集積型光検出装置、
第3図は本発明を実施した導波路型光分波器を有する集
積型光検出装置、
第4図は、従来の2分岐導波路を有する光検出装置を同
一基板上に形成した波長可変型DBPレーザ装置である
。
1.3,4,5.31は光導波路、
2は対称3分岐導波路、
6.7.32は回折格子を形成した分布ブラック反射器
、
8.9,10.34.35.36は光検出器、33は光
の回折路に対応する透明な導波層、11.12.37は
注入電流制御器、
13.38は減算器である。
特許出願人 キャノン株式会社FIG. 1 shows an integrated photodetection device having a symmetrical three-branch dynamic waveguide embodying the present invention. FIG. 2 shows an integrated photodetection device having a three-branch directional coupling waveguide with variable spacing embodying the present invention. Fig. 3 shows an integrated photodetection device having a waveguide type optical demultiplexer according to the present invention, and Fig. 4 shows a wavelength variable type photodetection device having a conventional two-branch waveguide formed on the same substrate. This is a DBP laser device. 1.3, 4, 5.31 are optical waveguides, 2 is a symmetrical three-branch waveguide, 6.7.32 is a distributed black reflector with a diffraction grating, 8.9, 10.34, 35.36 is an optical waveguide. Detector, 33 is a transparent waveguide layer corresponding to the light diffraction path, 11, 12, 37 is an injection current controller, and 13, 38 is a subtractor. Patent applicant Canon Co., Ltd.
Claims (1)
結合された3以上の光検出器を有し、少くとも2以上の
光検出器と該導波路との間には波長選択性を有する導波
路型光分波器または分布反射器が設けられ、かつ該導波
路、該光検出器および該導波路型光分波器もしくは分布
反射器は同一基板上にモノリシックに形成されているこ
とを特徴とする光検出装置。 2、前記導波路型光分波器または分布反射器は、電流注
入によりフラッグ波長が可変であるグレーティングから
なり、かつ電流注入手段を有していることを特徴とする
請求項1記載の光検出装置。 3、請求項2に記載の光検出装置と波長可変型動的単一
モード半導体レーザとが同一基板上にモノリシックに形
成されてなる光検出装置を備えた半導体レーザ。[Claims] 1. A waveguide for guiding light to be detected, and three or more photodetectors optically coupled to the waveguide, and at least two or more photodetectors and the guide. A waveguide type optical demultiplexer or distributed reflector having wavelength selectivity is provided between the waveguide, and the waveguide, the photodetector, and the waveguide type optical demultiplexer or distributed reflector are the same. A photodetection device characterized by being monolithically formed on a substrate. 2. The optical detection according to claim 1, wherein the waveguide type optical demultiplexer or distributed reflector is composed of a grating whose flag wavelength is variable by current injection, and has current injection means. Device. 3. A semiconductor laser comprising a photodetecting device in which the photodetecting device according to claim 2 and a wavelength tunable dynamic single mode semiconductor laser are monolithically formed on the same substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8158789A JPH02262366A (en) | 1989-04-03 | 1989-04-03 | Photodetector and semiconductor laser equipped with photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8158789A JPH02262366A (en) | 1989-04-03 | 1989-04-03 | Photodetector and semiconductor laser equipped with photodetector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02262366A true JPH02262366A (en) | 1990-10-25 |
Family
ID=13750451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8158789A Pending JPH02262366A (en) | 1989-04-03 | 1989-04-03 | Photodetector and semiconductor laser equipped with photodetector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02262366A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003521728A (en) * | 2000-01-27 | 2003-07-15 | ユナキス・バルツェルス・アクチェンゲゼルシャフト | Process for generating a grating structure, optical element, evanescent field sensor plate, microtiter plate, optical coupler for communication technology, and apparatus for wavelength monitoring |
JP2011003591A (en) * | 2009-06-16 | 2011-01-06 | Sumitomo Electric Ind Ltd | Wavelength locker integrated type semiconductor laser element |
-
1989
- 1989-04-03 JP JP8158789A patent/JPH02262366A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003521728A (en) * | 2000-01-27 | 2003-07-15 | ユナキス・バルツェルス・アクチェンゲゼルシャフト | Process for generating a grating structure, optical element, evanescent field sensor plate, microtiter plate, optical coupler for communication technology, and apparatus for wavelength monitoring |
JP2011003591A (en) * | 2009-06-16 | 2011-01-06 | Sumitomo Electric Ind Ltd | Wavelength locker integrated type semiconductor laser element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7230963B2 (en) | Monolithic wavelength stabilized asymmetric laser | |
US7257142B2 (en) | Semi-integrated designs for external cavity tunable lasers | |
US8068744B2 (en) | Optical transmitter | |
KR101004228B1 (en) | Integrated monitoring and feedback designs for external cavity tunable lasers | |
EP2575220B1 (en) | Tunable laser with integrated wavelength reference | |
US20090122817A1 (en) | Variable-wavelength filter and variable-wavelength laser | |
US7983318B2 (en) | Optical semiconductor device | |
JP5212475B2 (en) | Tunable optical transmitter | |
KR100575964B1 (en) | Electro-absorptive optical modulator module with monolithic integrated photo detector | |
EP0591863B1 (en) | Optical receiver, optical semiconductor apparatus, and optical communication system utilizing the same | |
US20060140228A1 (en) | Semi-integrated designs with in-waveguide mirrors for external cavity tunable lasers | |
US20060140569A1 (en) | Planar waveguides with air thin films used as anti-reflective layers, beam splitters and mirrors | |
Sneh et al. | Indium phosphide-based photonic circuits and components | |
JPS63160391A (en) | Distributed feedback type semiconductor laser device | |
JPH07307516A (en) | Variable wavelength semiconductor laser device | |
Kohtoku et al. | Control of higher order leaky modes in deep-ridge waveguides and application to low-crosstalk arrayed waveguide gratings | |
CN111463657A (en) | Tunable laser | |
JPH02262366A (en) | Photodetector and semiconductor laser equipped with photodetector | |
US20040033021A1 (en) | Wavelength stabilized module, stable wavelength laser beam generating device and optical communication system | |
JP3433044B2 (en) | Frequency stabilized light source | |
JPH085834A (en) | Optical filter and oscillation wavelength stabilizing power source | |
WO2007107186A1 (en) | Integrated laser optical source | |
JPS63119284A (en) | Semiconductor laser device | |
JPH08204271A (en) | Variable-wavelength semiconductor laser device | |
JPH02262387A (en) | Wavelength variable laser, control of its wavelength and photodetector |