JPS59154086A - Frequency stabilized semiconductor laser - Google Patents

Frequency stabilized semiconductor laser

Info

Publication number
JPS59154086A
JPS59154086A JP2799783A JP2799783A JPS59154086A JP S59154086 A JPS59154086 A JP S59154086A JP 2799783 A JP2799783 A JP 2799783A JP 2799783 A JP2799783 A JP 2799783A JP S59154086 A JPS59154086 A JP S59154086A
Authority
JP
Japan
Prior art keywords
semiconductor laser
oscillation frequency
laser
optical waveguide
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2799783A
Other languages
Japanese (ja)
Inventor
Isao Kobayashi
功郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2799783A priority Critical patent/JPS59154086A/en
Publication of JPS59154086A publication Critical patent/JPS59154086A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive to stabilize the oscillation frequency in a simple constitution by providing a semiconductor laser oscillating by a nearly single axial mode, a specific detection circuit detecting the variation of oscillation frequency thereof, and a feedback means for stabilizing said frequency. CONSTITUTION:A sufficient gain is generated by injecting a current to a laser activating part 40 by impressing a voltage between the first electrode 52 and a negative side electrode 55, and then the semiconductor laser 1 oscillates by a single axial mode. The oscillated light thereof is coupled to an output optical wave guide 2 and utilized as a photo output 80. A part of said light couples with a ring-like optical wave guide 3, and only the oscillated light coincident with the resonance frequency of said light is coupled to a monitor optical wave guide 4 with hardly receiving attenuation and further converted into an electric signal by a photo detector 5. Signal processing is performed by a feedback amplifying circuit 6 so that the electric signal becomes maximum, and accordingly the voltage is impressed on the second electrode 53 of a laser reflection part 41. Thereby, the oscillation frequency can be stabilized in a simple constitution.

Description

【発明の詳細な説明】 この発明は、半導体レー ザ、特に発振周波数を安定化
した半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser, and particularly to a semiconductor laser with a stabilized oscillation frequency.

半導体レーザは、小形、高効率な光源として、光フアイ
バ通信をはじめとして各種の分野で使われはじめている
。半導体レーザはさらに今後、ヘテロダイン通信や光フ
アイバジャイロ等にも使われようとしている。これらの
光源には安定な単一周波数で発振する半導体レーザが望
まれる。良く知られているように、単純なファブリペロ
共振器のレーザでは、通常3〜4本の軸モードで発振す
る。この点を改善して単一の軸モードで発振させること
を可能にした半導体レーザとして分布帰還型や分布反射
型の半導体レーザがある。これらは、レーザ共振器とし
てレーザ結晶中に作られた回折格子を利用することによ
り単一軸モード発振を実現したものである。しかし左か
ら、これらの半導体レーザにおいても、注入電流の変化
や周囲温度の変化によって結晶の屈折率が変化するため
、発振波長、すなわち発振周波数が変動するととはさけ
がたかった。この大きさは、例えば約IX/℃である。
Semiconductor lasers are beginning to be used as small, highly efficient light sources in various fields including optical fiber communications. Semiconductor lasers are also expected to be used in heterodyne communications and optical fiber gyros in the future. For these light sources, a semiconductor laser that oscillates at a stable single frequency is desired. As is well known, a simple Fabry-Perot cavity laser typically oscillates in three to four axial modes. Distributed feedback type and distributed reflection type semiconductor lasers are semiconductor lasers that have improved this point and made it possible to oscillate in a single axial mode. These devices achieve single-axis mode oscillation by using a diffraction grating made in a laser crystal as a laser resonator. However, from the left, even in these semiconductor lasers, the refractive index of the crystal changes with changes in the injection current and ambient temperature, so it is inevitable that the oscillation wavelength, or oscillation frequency, will fluctuate. This magnitude is, for example, approximately IX/°C.

これは、1.3μm波長帯では、10数GHz/Cに相
当し、ヘテロゲイン通信やジャイロ用の光源にはとても
使えないものであり、よシ発振周波数が安定な半導体レ
ーザの実現が望まれていた。
This corresponds to 10-odd GHz/C in the 1.3 μm wavelength band, making it extremely difficult to use as a light source for heterogain communications or gyros, and it is desired to realize a semiconductor laser with a more stable oscillation frequency. Ta.

従来、半導体レーザの出力光の波長を検出して半導体レ
ーザへ電気的な帰還をかけることにょ9その発振波長を
安定化することが試みられてはいるが、これまでのもの
は、波長の検出系の構成が複雑でかつ大形のものとなっ
ておシ、実用的なものではなかった。
Conventionally, attempts have been made to stabilize the oscillation wavelength by detecting the wavelength of the output light of a semiconductor laser and applying electrical feedback to the semiconductor laser. The structure of the system was complicated and large, making it impractical.

この発明の目的は、簡単な構成の、発振周波数が安定化
された半導体レーザを提供することにある。
An object of the present invention is to provide a semiconductor laser with a simple configuration and a stabilized oscillation frequency.

この発明の半導体レーザは、はぼ単一の軸モードで発振
する半導体レーザと、その発振周波数の変動を検出する
回路と、その発振周波数を安定化するための帰還手段と
から構成されておシ、発振周波数検出回路は、上記半導
体レーザの出力側に接続された出刃先導波路と、リング
状光導波路と、モニタ光導波路と光検出器とから成って
いる。
The semiconductor laser of the present invention is composed of a semiconductor laser that oscillates in a substantially single axial mode, a circuit that detects fluctuations in the oscillation frequency, and feedback means for stabilizing the oscillation frequency. The oscillation frequency detection circuit includes a leading waveguide connected to the output side of the semiconductor laser, a ring-shaped optical waveguide, a monitor optical waveguide, and a photodetector.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明の最も基本的な実施例を説明するための
ブロック図をあられす。はぼ単一軸モード発振する半導
体レーザ1の一方の出力側には出力タ光導波路4が接続
されている。モニタ光導波路4の出口には光検出器5が
接続されその出力光強度を検出する。
FIG. 1 shows a block diagram for explaining the most basic embodiment of the present invention. An output optical waveguide 4 is connected to one output side of a semiconductor laser 1 that oscillates in a single-axis mode. A photodetector 5 is connected to the exit of the monitor optical waveguide 4 and detects the output light intensity.

帰還増幅回路6は、光検出器5の出力が最大となるよう
に半導体レーザ1へ電気信号を印加する。
Feedback amplifier circuit 6 applies an electric signal to semiconductor laser 1 so that the output of photodetector 5 is maximized.

この構成でリング状光導波路3は、共振器を形成してお
り、その長さをり、実効屈折率をn、光速なC9mを任
意の整数とするとき、f=mC/2・n−Lで決まる共
振周波数の晃の減衰が選択的に小さい。
With this configuration, the ring-shaped optical waveguide 3 forms a resonator, which is determined by f=mC/2・n−L, where its length is given, the effective refractive index is n, and the speed of light C9m is an arbitrary integer. Attenuation of the resonance frequency is selectively small.

したがって、半導体レーザ1の出力光で出力光導波路2
からリング状先導波路3へ結合した光のうち、周波数f
成分のみがモニタ先導波路4へ強く結合する。故に、そ
の出力光強度が最大になるように半導体レーザ1へ電気
信号を印加してやれば、半導体レーザ1は安定な単一周
波ifで発振する。
Therefore, the output light from the semiconductor laser 1 leads to the output optical waveguide 2.
Of the light coupled from to the ring-shaped leading waveguide 3, the frequency f
Only the component is strongly coupled to the monitor leading wavepath 4. Therefore, if an electric signal is applied to the semiconductor laser 1 so that its output light intensity is maximized, the semiconductor laser 1 will oscillate at a stable single frequency if.

このように、本発明では、単にモニタ光導波路4の出力
光強度を最大にするように帰還をかけるだけで良いので
、簡単な構成で、発振周波数が安定化された半導体レー
ザが実現できる。このとき、はぼ単一軸モードで発振す
る半導体レーザ1の発振周波数はリング状光導波路3の
共振周波数fのどれかにほぼ等しい必要がある。また、
リング状光導波路3等を半導体で構成した場合には、周
囲温度の変動による屈折率の変化によってその共振周波
数が変動するので、少なくともリング状先導波路3の部
分は温度安定化することが望ましい。
As described above, in the present invention, it is sufficient to simply apply feedback to maximize the output light intensity of the monitor optical waveguide 4, so that a semiconductor laser with a stabilized oscillation frequency can be realized with a simple configuration. At this time, the oscillation frequency of the semiconductor laser 1 that oscillates in a nearly single-axis mode needs to be approximately equal to one of the resonance frequencies f of the ring-shaped optical waveguide 3. Also,
When the ring-shaped optical waveguide 3 and the like are made of a semiconductor, the resonant frequency changes due to changes in the refractive index due to changes in ambient temperature, so it is desirable that at least the ring-shaped leading waveguide 3 is temperature stabilized.

さらに、半導体レーザ1も同時に温度安定化すればなお
周波数安定化が良好に行なえる。
Furthermore, if the temperature of the semiconductor laser 1 is also stabilized at the same time, the frequency can be stabilized better.

第2図は、本発明の一実施例の斜視図を、第3図、第4
図はその中の半導体レーザ1および光検出器5の部分の
A−A’およびB−B’における断面図をそれぞれあら
れす。この実施例は主として3つの部分で構成されてい
る。すなわち、半導体基板10上に形成された半導体レ
ーザ1と光検出器5からなる能動光素子部100と、誘
電体基光導波路3.およびモニタ光導波路4を含む光導
波路部200と、帰還増幅回路6である。
FIG. 2 shows a perspective view of an embodiment of the present invention, and FIG.
The figures show cross-sectional views along lines AA' and BB' of the semiconductor laser 1 and photodetector 5, respectively. This embodiment mainly consists of three parts. That is, an active optical element section 100 consisting of a semiconductor laser 1 and a photodetector 5 formed on a semiconductor substrate 10, and a dielectric-based optical waveguide 3. and an optical waveguide section 200 including a monitor optical waveguide 4, and a feedback amplification circuit 6.

まず能動光素子部100について説明する。First, the active optical element section 100 will be explained.

(100)方位n−InPの基板10上に、従来から良
く知られた液相成長法によF)、n−InPのバッフ7
層11 、 n Ino、asGaoasA8o、ax
Po、n7の光導波層12(組成波長1.10μm)、
アンドープのIn(1,y2 Gao、15 Ag3.
3 、Pa、6 gの活性層13(組成波長1.3μr
n ) + p  InPのクラッド層14を連続的に
成長して二重へテロ接合結晶を製作する。これ  −ら
の各層の厚さはそれぞれ約5μm、1μm、0.1μm
、1μmである。次に、フォトリソグラフィ法及び化学
エツチング法を用いて、(011)方向に幅約7μmの
4本の平行な溝15a、15b。
A buffer 7 of n-InP is deposited on a substrate 10 of (100) orientation n-InP by a conventionally well-known liquid phase growth method.
Layer 11, n Ino, asGaoasA8o, ax
Po, n7 optical waveguide layer 12 (composition wavelength 1.10 μm),
Undoped In(1,y2 Gao, 15 Ag3.
3, Pa, 6 g active layer 13 (composition wavelength 1.3 μr
A cladding layer 14 of n ) + p InP is continuously grown to produce a double heterojunction crystal. The thickness of each of these layers is approximately 5 μm, 1 μm, and 0.1 μm, respectively.
, 1 μm. Next, using photolithography and chemical etching, four parallel grooves 15a and 15b each having a width of about 7 μm are formed in the (011) direction.

16aおよび16bを少なくともバッファ層11に到達
するまで堀り、幅1.5μmのレーザ用ストライプ17
および幅20μmの受光器用ストライプ18を形成する
。その後、レーザ用ストライプ17の長手方向の一部分
の活性層13を除去し、干渉法と化学エツチング法を組
み合わせて周期0.163μmの回折格子30を形成す
る。その後再び液相成長炉に入れて、p−InPの電流
ブロック層19.n−InPの電流とじ込め層20.p
−InPの埋め込み層21.p−In。、720ao、
ts 4soJx Po、6+1の電極層22(組成波
長1.3μm)を順次成長する。
16a and 16b are excavated until at least the buffer layer 11 is reached, and a laser stripe 17 with a width of 1.5 μm is formed.
Then, a photodetector stripe 18 having a width of 20 μm is formed. Thereafter, a portion of the active layer 13 in the longitudinal direction of the laser stripe 17 is removed, and a diffraction grating 30 with a period of 0.163 μm is formed by a combination of interference method and chemical etching method. Thereafter, the p-InP current blocking layer 19. n-InP current confinement layer 20. p
- InP buried layer 21. p-In. , 720ao,
ts 4soJx Po, 6+1 electrode layers 22 (composition wavelength 1.3 μm) are sequentially grown.

これらの各層の厚さは、溝15bと溝16aの間のいわ
ゆる平坦部分で測定してそれぞれ約0.8μm。
The thickness of each of these layers is approximately 0.8 μm as measured at the so-called flat portion between the grooves 15b and 16a.

0.5μm、1.5μm、1μmになるようにした。こ
の埋め込み成長においては、すでに本願の発明者らがた
とえば特願昭56−166666で明らかにしたように
、幅の狭いメサストライプの上部にはn  InPの電
流閉じ込め層20は成長しない成長条件があり得る。こ
の実施例においては、レーザ用ストライプ17の上部に
は電流閉じ込め層20が形成されなかったが、光検出器
用ストライプ18の上部には、電流ブロック層19.電
流閉じ込め層20がともに平坦部よシはやや薄く成長し
ていた。そこで光検出器5を形成するために、窓明けを
した5in2マスクを通してZnを拡散するととによシ
、少なくとも電流ブロック層19に達するZn拡散層3
1を形成した。その後、レーザ活性部40.レーザ反射
部41.受光部42を電気的に分離するための分離層5
oをイオン打ち込み法によシ形成した後、その分離層5
oをおおうように5i02の絶縁層51を形成し、さら
Kその絶縁層51のところで分離した第1から第3の電
極52.53.54をAu −Znの合金の蒸着、熱処
理によって形成した。この後、全体の厚さが約100μ
mになるまで基板1oを研磨した後に、n側電極55を
形成し、上述のストライプに直角な方向にへき開して能
動光素子部100の製作を終える。
The thicknesses were set to 0.5 μm, 1.5 μm, and 1 μm. In this buried growth, as the inventors of the present application have already clarified in Japanese Patent Application No. 56-166666, there are growth conditions in which the current confinement layer 20 of nInP does not grow on the upper part of the narrow mesa stripe. obtain. In this example, the current confinement layer 20 was not formed on the laser stripe 17, but the current blocking layer 19. The current confinement layer 20 had grown slightly thinner in both flat areas. Therefore, in order to form the photodetector 5, it is recommended to diffuse Zn through a 5in2 mask with an open window, so that the Zn diffusion layer 3 reaches at least the current blocking layer 19.
1 was formed. After that, the laser active section 40. Laser reflection section 41. Separation layer 5 for electrically isolating the light receiving section 42
After forming the separation layer 5 by the ion implantation method,
An insulating layer 51 of 5i02 was formed to cover the insulating layer 51, and first to third electrodes 52, 53, and 54 separated at the insulating layer 51 were formed by vapor deposition of an Au-Zn alloy and heat treatment. After this, the total thickness is about 100μ
After polishing the substrate 1o to a thickness of m, an n-side electrode 55 is formed and cleaved in a direction perpendicular to the above-mentioned stripes to complete the production of the active optical element section 100.

次に、先導波路部200について説明する。これは、ガ
ラス基板7oの上に、真空蒸着にょシ厚さ1μmの8i
0膜を形成し、それを出力光導波路2、リング状光導波
路3.モニタ光導波路4とするために幅4μmのパター
ンで残し、その上にOVD法によ、9Si02膜を約5
μmかぶせたものである。上述の先導波路間は弱結合と
なるようKその間隔を約6μmに設定した。リング状光
導波路3の共振周波数のうちのひとつが、半導体レーザ
1の発振周波数の近傍になるように、その形状寸法を設
定した。両者の精密な周波数整合は、温度安定化のため
に光能動素子部100の下部に設置したペルチェ素子(
図は省略)の温度や、半導体レーザlのレーザ反射部4
1への印加バイアス電界等で行なった。
Next, the leading waveguide section 200 will be explained. This is an 8i film with a thickness of 1 μm that is vacuum-deposited on a glass substrate 7o.
0 film is formed, and it is connected to an output optical waveguide 2, a ring-shaped optical waveguide 3. A pattern with a width of 4 μm is left to serve as a monitor optical waveguide 4, and a 9Si02 film of approximately 5 μm is deposited on it by the OVD method.
It is covered with μm. The spacing between the above-mentioned leading waveguides was set to about 6 μm to provide weak coupling. The shape and dimensions of the ring-shaped optical waveguide 3 were set so that one of the resonance frequencies of the ring-shaped optical waveguide 3 was close to the oscillation frequency of the semiconductor laser 1. Precise frequency matching between the two is achieved by a Peltier element (
) and the temperature of the laser reflector 4 of the semiconductor laser l.
This was carried out using a bias electric field applied to 1.

帰還増幅回路6は通常の電気信号増幅回路であり、主と
してオペレーショナル・アンプ素子で構成され、光検出
器5の出力が常に最大となるようにレーザ反射部41へ
の印加電圧を調整する動作をする。
The feedback amplification circuit 6 is a normal electric signal amplification circuit, mainly composed of an operational amplifier element, and operates to adjust the voltage applied to the laser reflection section 41 so that the output of the photodetector 5 is always maximized. .

以上の3主要構成要素を組み合わせた半導体レーザ装置
くおいぞ、まず、半導体レーザ1は、第1の電極52と
負側電極55との間に電圧を印加して、レーザ活性部4
0に電流を注入することにより十分な利得が生じ、へき
開面60とレーザ反射部41の回折格子30とで構成さ
れる共振器により単一の軸モードで発振する。その発振
光は出刃先導波路2へ結合され、光出力80として利用
される。発振光の一部はリング状光導波路3へ結合し、
その中を周回するが、その共振周波数に一致し次発振売
のみがほとんど減衰を受けずにモニタ光導波路4に結合
され、さらに、光検出器5で電気信号に変換される。そ
の電気信号が最大になるように帰還増幅回路6で信号処
理され、レーザ反射部41の第2の電極53へ電圧が印
加される。
Let's move on to the semiconductor laser device that combines the above three main components. First, the semiconductor laser 1 is operated by applying a voltage between the first electrode 52 and the negative electrode 55 to form the laser active part 4.
Sufficient gain is generated by injecting a current to zero, and the resonator formed by the cleavage plane 60 and the diffraction grating 30 of the laser reflection section 41 oscillates in a single axial mode. The oscillated light is coupled to the lead waveguide 2 and used as an optical output 80. A part of the oscillated light is coupled to the ring-shaped optical waveguide 3,
However, only the next oscillation that matches the resonant frequency is coupled to the monitor optical waveguide 4 with almost no attenuation, and is further converted into an electrical signal by the photodetector 5. The signal is processed by the feedback amplifier circuit 6 so that the electric signal is maximized, and a voltage is applied to the second electrode 53 of the laser reflection section 41.

この電圧は回折格子30附近の電界を変化させ、電気光
学効果による屈折率の変化を通じてその実効的な周期を
変える。その結果、発振周波数が変化する。すなわち、
この半導体レーザ装置では、光検出器5の出力が最大と
なるように帰還をかけるだけで、その出力光の発振周波
数をリング状光導波路3の共振周波数に固定することが
でき、簡単な構成で、発振周波数を安定化することがで
きた。
This voltage changes the electric field near the diffraction grating 30 and changes its effective period through a change in the refractive index due to the electro-optic effect. As a result, the oscillation frequency changes. That is,
In this semiconductor laser device, the oscillation frequency of the output light can be fixed to the resonance frequency of the ring-shaped optical waveguide 3 by simply applying feedback so that the output of the photodetector 5 is maximized, and has a simple configuration. , the oscillation frequency could be stabilized.

この発明は、上述の実施例の他にいくつかの変形が可能
である。実施例では、能動光素子部と光導波路部を別の
材料で作り後でハイブリッドに組み合わせだが、光導波
路部を同一の半導体材料で作る、いわゆるモノリシック
構成も可能である。
This invention can be modified in several ways in addition to the embodiments described above. In the embodiment, the active optical element section and the optical waveguide section are made of different materials and later combined into a hybrid, but a so-called monolithic configuration in which the optical waveguide section is made of the same semiconductor material is also possible.

半導体レーザ1は、分布反射型レーザを例にしたが、活
性層と回折格子の位置がほぼ一致している分布帰還型レ
ーザでも良い。その場合にも、電極を共振器方向に分割
して一部を帰還回路からの信号入力部とすることが可能
である。
The semiconductor laser 1 is a distributed reflection type laser as an example, but it may also be a distributed feedback type laser in which the active layer and the diffraction grating are substantially aligned. In that case as well, it is possible to divide the electrode in the direction of the resonator and use a portion as a signal input section from the feedback circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的な構成をあられすためのブロッ
ク図、第2図は本発明の一実施例の斜視図、第3図、第
4図はその部分断面図をそれぞれあられす。図において
、1は半導体し〜ザ、2は出力光導波路、3はリング状
光導波路、4はモニタ光導波路、5は光検出器、6は帰
還光増幅器をそれぞれあられす。 代理人弁理士内原 第1図
FIG. 1 is a block diagram showing the basic structure of the present invention, FIG. 2 is a perspective view of an embodiment of the present invention, and FIGS. 3 and 4 are partial sectional views thereof. In the figure, 1 is a semiconductor, 2 is an output optical waveguide, 3 is a ring-shaped optical waveguide, 4 is a monitor optical waveguide, 5 is a photodetector, and 6 is a feedback optical amplifier. Representative Patent Attorney Uchihara Figure 1

Claims (1)

【特許請求の範囲】[Claims] はぼ単一の軸モードで発振し、かつ印加電気信号によシ
発振周波数が変化する半導体レーザと、その半導体レー
ザの少なくとも一方の出力側に接続された出力光導波路
と、その出刃先導波路と光学的結合を有するリング状導
波路と、そのリング状導波路に光学的に結合されたモニ
タ光導波路と、そのモニタ光導波路に接続された光検出
器と、その光検出器出力が最大となるように前記半導体
レーザへ帰還させる電気信号を送り出す帰還手段とを含
む周波数安定化半導体レーザ。
A semiconductor laser which oscillates in a single axial mode and whose oscillation frequency changes depending on an applied electric signal, an output optical waveguide connected to at least one output side of the semiconductor laser, and a leading waveguide thereof. A ring-shaped waveguide having optical coupling, a monitor optical waveguide optically coupled to the ring-shaped waveguide, a photodetector connected to the monitor optical waveguide, and the output of the photodetector is maximized. and feedback means for sending an electrical signal back to the semiconductor laser.
JP2799783A 1983-02-22 1983-02-22 Frequency stabilized semiconductor laser Pending JPS59154086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2799783A JPS59154086A (en) 1983-02-22 1983-02-22 Frequency stabilized semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2799783A JPS59154086A (en) 1983-02-22 1983-02-22 Frequency stabilized semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59154086A true JPS59154086A (en) 1984-09-03

Family

ID=12236459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2799783A Pending JPS59154086A (en) 1983-02-22 1983-02-22 Frequency stabilized semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59154086A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119284A (en) * 1986-11-06 1988-05-23 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS63318528A (en) * 1987-06-22 1988-12-27 Matsushita Electric Ind Co Ltd Optical integrated circuit
JPH0263691U (en) * 1988-11-04 1990-05-14
JPH0394237A (en) * 1989-09-07 1991-04-19 Sharp Corp Optical wavelength converting device
KR100416999B1 (en) * 2001-10-12 2004-02-05 삼성전자주식회사 Planar waveguide circuit type optical amplifier
JP2009252905A (en) * 2008-04-03 2009-10-29 Sumitomo Electric Ind Ltd Semiconductor light-emitting element and semiconductor light source
JP4690521B2 (en) * 1999-05-17 2011-06-01 アイメック Integrated semiconductor device tunable over a wide range of wavelengths and method for semiconductor devices tunable over a wide range of wavelengths

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119284A (en) * 1986-11-06 1988-05-23 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS63318528A (en) * 1987-06-22 1988-12-27 Matsushita Electric Ind Co Ltd Optical integrated circuit
JPH0263691U (en) * 1988-11-04 1990-05-14
JPH0394237A (en) * 1989-09-07 1991-04-19 Sharp Corp Optical wavelength converting device
JP4690521B2 (en) * 1999-05-17 2011-06-01 アイメック Integrated semiconductor device tunable over a wide range of wavelengths and method for semiconductor devices tunable over a wide range of wavelengths
KR100416999B1 (en) * 2001-10-12 2004-02-05 삼성전자주식회사 Planar waveguide circuit type optical amplifier
JP2009252905A (en) * 2008-04-03 2009-10-29 Sumitomo Electric Ind Ltd Semiconductor light-emitting element and semiconductor light source

Similar Documents

Publication Publication Date Title
EP0781465B1 (en) Optical device
EP0314490B1 (en) Semiconductor laser
EP0213965B1 (en) Semiconductor laser devices
US5463647A (en) Broadband multi-wavelength narrow linewidth laser source using an electro-optic modulator
EP0300790B1 (en) Semiconductor laser
JPS62128587A (en) Semiconductor laser
JP3198338B2 (en) Semiconductor light emitting device
CN113644542B (en) Frequency stabilizing and frequency regulating laser based on erbium-doped lithium niobate film and preparation method thereof
JP2708467B2 (en) Tunable semiconductor laser
JPS59154086A (en) Frequency stabilized semiconductor laser
JP2808562B2 (en) Semiconductor optical amplifier
JPH0311554B2 (en)
JP3227701B2 (en) Mode-locked semiconductor laser
JP3072123B2 (en) Optically integrated tunable semiconductor laser device
JPH0373583A (en) Semiconductor laser light source device
JPS6134988A (en) Semiconductor laser
JP2544410B2 (en) Tunable semiconductor device
JPS6289378A (en) Semiconductor laser device with stabilized frequency
JP3072124B2 (en) Optically integrated semiconductor laser device
JP2000294870A (en) Light emitting device
JPH08204271A (en) Variable-wavelength semiconductor laser device
JPS6342866B2 (en)
JPH042192A (en) Hybrid laser device for frequency modulation
JPS63246884A (en) Single-wavelength semiconductor laser
JPS6178190A (en) Integrated type semiconductor laser device