JPS63160367A - Plastic-sealed semiconductor device - Google Patents

Plastic-sealed semiconductor device

Info

Publication number
JPS63160367A
JPS63160367A JP30658686A JP30658686A JPS63160367A JP S63160367 A JPS63160367 A JP S63160367A JP 30658686 A JP30658686 A JP 30658686A JP 30658686 A JP30658686 A JP 30658686A JP S63160367 A JPS63160367 A JP S63160367A
Authority
JP
Japan
Prior art keywords
resin
lead frame
sealed
epoxy resin
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30658686A
Other languages
Japanese (ja)
Other versions
JPH0521343B2 (en
Inventor
Masaji Ogata
正次 尾形
Hidetoshi Abe
英俊 阿部
Masanori Segawa
正則 瀬川
Shigeo Suzuki
重雄 鈴木
Hiroyuki Hozoji
裕之 宝蔵寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30658686A priority Critical patent/JPS63160367A/en
Publication of JPS63160367A publication Critical patent/JPS63160367A/en
Publication of JPH0521343B2 publication Critical patent/JPH0521343B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance the thermal resistance against a solder material and the reliability against dampproofness by a method wherein an iron-related lead frame is used as a lead frame whose part to be sealed by using a thermosetting epoxy resin molding material is formed by a film containing copper, zinc or the like in the form of a metal and/or its compound. CONSTITUTION:An epoxy resin molding material is normally the epoxy resin molding material for semiconductor-sealing use, e.g., a cresol-novolac epoxy resin, a phenol- novolac epoxy resin or a material which is composed by adding a hardening agent to a brominated substance of each of these epoxy resins. An iron lead frame is composed of an iron/nickel alloy; the part to be sealed is formed by a film composed mainly of at least one out of metals, i.e., copper, zinc, tin, nickel, and/or its compound whose adhesion performance in relation to a sealing resin is good; the surface roughness of the coated film is made to be at least more than 1 mum according to the requirement in order to strengthen the adhesion between this coated film and a sealing resin; in addition, it surface is treated by various chemical processes so that the affinity to the sealing resin can be enhanced. Accordingly, the airtightness is excellent; no crack is caused at the package when the package is treated by heating a solder material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は樹脂封止型半導体装置に係シ、特にはんだ耐熱
性に優れた樹脂封止型半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resin-sealed semiconductor device, and particularly to a resin-sealed semiconductor device that has excellent solder heat resistance.

〔従来の技術〕[Conventional technology]

半導体素子のパッケージングには金属、セラミックス、
ガラス等を用いた気密封止品とエポキシ樹脂系成形材料
を主流とする樹脂封止品の2つのタイプがある。前者は
気密性や耐熱性が優れている反面、生産性が劣シ極めて
高価である。一方、後者は前者に比べると気密性や耐熱
性が若干劣るが大量生産が可能なため経済的には極めて
有利である。しかも、最近は樹脂封止型半導体の各種信
頼性が大幅に改善されてきたため、現在全半導体製品の
80%以上が樹脂封止型で占められるようになっている
。しかし、近年、半導体素子の容量化に伴いチップサイ
ズが著しく大型化している。
Metals, ceramics,
There are two types: hermetically sealed products using glass or the like, and resin-sealed products that are mainly made of epoxy resin molding materials. Although the former has excellent airtightness and heat resistance, it has poor productivity and is extremely expensive. On the other hand, although the latter is slightly inferior in airtightness and heat resistance to the former, it is extremely advantageous economically because it can be mass-produced. Moreover, recently, the reliability of various types of resin-sealed semiconductors has been greatly improved, so that more than 80% of all semiconductor products are now resin-sealed. However, in recent years, as the capacitance of semiconductor elements increases, the chip size has significantly increased.

また、パッケージ形状は実装密度を高めるために小型薄
型化が望まれ、チップサイズの大型化が進むにつれて封
止樹脂層の肉厚が減少する方向にある。そのため、封止
樹脂に対する耐熱衝撃性の要求が一段と厳しくなってい
る。特に、最近は部品を高密度実装するためパッケージ
の形状がDILP(Dual In−Line Pac
kage )やZ I P (ZigzagInnin
8Package )  のようなビン挿入型からFP
P(Flat Plastic Package ) 
 、S OP (SmallOutline Pack
age )、80 J (Small 0utline
Jbendel package )、P L CC(
Plastic LeadedChip Carrie
r )  のような面付は型パッケージに変わシ、従来
のDILPやZIP部品は基板にはんだ付けする際リー
ドの先端のみをはんだで加熱し、パッケージ自体Fi直
接高温にさらされることはなかったが、PPP、80P
、80JあるいはPLCCなどの面付は型パッケージの
はんだ付けには赤外線リフローやペーパーリフ0一方式
が採用され、パッケージ全体が直接高温にさらされるよ
うになってきた。そのため、パッケージが一定量以上の
水分を含有するような場合、パッケージ内で水分が気化
し、その蒸気圧によってパッケージにクラックを生じる
というパッケージのはんだ耐熱性が大きな問題になって
いる〔第23回 アニュアル プロシーディンゲス リ
フイアビリテイ フィツクス(25rd annual
 proceeding5re1.1ability 
physics )第192〜197頁(1985))
Furthermore, it is desired that the package shape be made smaller and thinner in order to increase the packaging density, and as the chip size increases, the thickness of the sealing resin layer tends to decrease. Therefore, the requirements for thermal shock resistance of the sealing resin have become even more severe. In particular, recently the package shape has changed to DILP (Dual In-Line Pac) to allow high-density mounting of components.
kage ) and Z I P (ZigzagInnin
8Package) to FP
P (Flat Plastic Package)
, S OP (Small Outline Pack
age), 80 J (Small 0utline
Jbendel package), P L CC (
Plastic Leaded Chip Carrier
r) Surface mounting has changed to molded packages, and when conventional DILP and ZIP components are soldered to the board, only the tips of the leads are heated with solder, and the package itself is not directly exposed to high temperatures. , PPP, 80P
, 80J or PLCC, etc., infrared reflow or paper reflow soldering methods have been adopted for soldering of type packages, and the entire package has come to be directly exposed to high temperatures. Therefore, when a package contains more than a certain amount of moisture, the moisture evaporates inside the package, and the vapor pressure causes cracks in the package, which has become a major problem in the package's soldering heat resistance [Part 23] Annual proceedings repairability fixes (25th annual
proceeding5re1.1ability
physics), pp. 192-197 (1985))
.

また、封止品の耐湿信頼性をはんだ加熱処理前後で比較
すると、はんだ加熱時の熱衝撃によって信頼性レベルの
低下が起り、パッケージクラック以外の観点からもはん
だ耐熱性の向上が望まれている。
In addition, when comparing the moisture resistance reliability of sealed products before and after soldering heat treatment, the reliability level decreases due to thermal shock during solder heating, and it is desired to improve the solder heat resistance from the viewpoint other than package cracking. .

このような問題を解決するため、上記文献においてはパ
ッケージの一部に穴を開け、パッケージ内部で気化した
水蒸気を飛散しやすくする方法が提案されているが、こ
の方法は樹脂封止型半導体装置の欠点とされる気密性を
ますます低下させることになシ、特に、素子の耐湿信頼
性の低下を招く恐れがある。筐た、この問題は封止樹脂
とリードフレームの接着性が大きな要因と考えられるこ
とから、特開昭61−1231.62号公報にはリード
フレームのリード部に透孔を開けたシ、リードフレーム
の半導体素子搭載部(ベッド部)の裏面に多数の凹部を
設けたシ、ベッド部の周縁に入り組んだ凹凸形状を設け
る方法が提案されている。
In order to solve this problem, the above literature proposes a method of making a hole in a part of the package to make it easier for the vaporized water vapor to scatter inside the package, but this method is not suitable for resin-sealed semiconductor devices. If the air-tightness, which is a drawback of the device, is further deteriorated, there is a risk that the moisture resistance reliability of the device will be deteriorated. However, since this problem is thought to be largely caused by the adhesiveness between the sealing resin and the lead frame, Japanese Patent Application Laid-Open No. 1231.62/1987 discloses a method for making a lead frame with a through hole in the lead part of the lead frame. A method has been proposed in which a large number of recesses are provided on the back surface of a semiconductor element mounting portion (bed portion) of a frame, and an intricate uneven shape is provided at the periphery of the bed portion.

この方法は、リードフレームに特別な加工を施さない場
合に比べてパッケージの耐クラツク性をかなり向上させ
る効果があるが、前述のようなチップの大型化、パッケ
ージの小型薄型化の動向に対処するためには、よシ抜本
的な対策が望まれていた0 〔発明が解決しようとする問題点〕 面付は型パッケージのはんだ耐熱不良特にパッケージク
ラックはパッケージが吸湿した場合に発生する問題でち
ゃ、これを解決するためには、ノクツケージの吸湿を防
止すれば良い。しかし、封止材料にプラスチック材料を
使用する限り、程度の差こそあれ現在の技術では吸湿を
皆無にすることは極めて困難である。また、パッケージ
クラックは封止樹脂の高温強度がパッケージ内に生ずる
水蒸気圧によって発生する応力よシも低いために起るも
のであり、封止樹脂の高温強度(耐熱性)を大幅に向上
すれば解決できる問題であるが、例えば耐熱性の優れた
ポリイミド樹脂はリードフレームとの接着性が劣り、ま
たエポキシ樹脂に比べると吸湿率が著しく大きいといっ
た問題がある。また、エポキシ樹脂として多官能エポキ
シや多官能硬化剤を用い硬化樹脂の橋架は密度を高め耐
熱性を向上する方法も考えられるが、このような高架橋
型樹脂はやはり硬化物の吸湿性が大きく、はんだ耐熱不
良の充分な解決策にはなり得ない。
This method has the effect of significantly improving the crack resistance of the package compared to the case where no special processing is applied to the lead frame, but it also addresses the aforementioned trends of larger chips and smaller and thinner packages. [Problems to be solved by the invention] Imposition is a problem in which mold packages have poor solder heat resistance, especially package cracks, which occur when the package absorbs moisture. In order to solve this problem, it is sufficient to prevent the cage from absorbing moisture. However, as long as plastic materials are used as sealing materials, it is extremely difficult to eliminate moisture absorption to varying degrees with current technology. Additionally, package cracks occur because the high-temperature strength of the sealing resin is less resistant to the stress generated by the water vapor pressure generated inside the package, so if the high-temperature strength (heat resistance) of the sealing resin is significantly improved, Although this problem can be solved, for example, polyimide resin, which has excellent heat resistance, has poor adhesion to lead frames, and also has a significantly higher moisture absorption rate than epoxy resin. Another possibility is to use a polyfunctional epoxy or a polyfunctional curing agent as the epoxy resin to increase the density and improve heat resistance by cross-linking the cured resin, but such highly cross-linked resins still have high hygroscopicity as a cured product. This cannot be a sufficient solution to poor solder heat resistance.

本発明は上記のような状況にかんがみてなされたもので
アシ、その目的とするところは高湿下に放置してもはん
だ耐熱性の低下、特にパッケージクラックが起りにくい
樹脂封止型半導体装置を提供することにある。
The present invention was developed in view of the above-mentioned circumstances, and its purpose is to develop resin-sealed semiconductor devices that are less susceptible to deterioration in solder heat resistance, especially package cracks, even when left in high humidity environments. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明は樹脂封止型半導体装置に
関する発明であって、金属製リードフレームと該リード
フレームに搭載された半導体素子を熱硬化性エポキシ樹
脂系成形材料で封止した樹脂封止型半導体装置において
、該リードフレームが、その少なくとも樹脂封止部分に
、銅、亜鉛、スズ及びニッケルよシなる群から選択した
少なくとも1mを金属及び/又は化合物の形で含有する
被膜が形成された鉄系リードフレームであることを特徴
とする。
To summarize the present invention, the present invention relates to a resin-sealed semiconductor device, in which a metal lead frame and a semiconductor element mounted on the lead frame are sealed with a thermosetting epoxy resin molding material. In the sealed semiconductor device, the lead frame has a coating containing at least 1 m of a metal and/or compound selected from the group consisting of copper, zinc, tin, and nickel formed on at least the resin-sealed portion thereof. It is characterized by its iron-based lead frame.

本発明者等は、はんだ耐熱性不良、特にパッケージクラ
ックの発生機構を詳細に検討した結果、樹脂封止型半導
体装置においては半導体装置を構シ 成するリコン基板やリードフレーム、封止樹脂等Δ の熱膨張係数が著しく異なるために、半導体封止を高温
(一般には160〜190℃)で封止した後封止品を室
温まで冷却あるいは封止品を2次硬化後室温まで冷却す
ると各構成素材の熱収縮量の違いによって封止樹脂に熱
応力が生じ、その熱応力によってリードフレームと封止
樹脂の接着界面にはく離が生じ、このような封止品を高
湿下に放置するとそのはく雌部からパッケージ内部に水
分が浸入し、耐湿信頼性が低下し、またその状態で封止
品を加熱するとパッケージ内部で気化した水分の蒸気圧
によってパッケージが変形(膨らみ)し、パッケージク
ラックを誘発させることが明らかになった。そのため、
パッケージのはんだ耐熱性を向上するためには、半導体
装置を構成する各素材の熱膨張係数の差異をなるべく少
なくして熱応力の発生を低減すると同時にリードフレー
ムと封止樹脂の接着性を更に改善すれば良いことが明ら
かになシ本発明に至った。
As a result of a detailed study of the mechanism of occurrence of poor solder heat resistance, especially package cracks, the present inventors found that in resin-sealed semiconductor devices, the recon board, lead frame, and sealing resin that make up the semiconductor device, etc. Because the thermal expansion coefficients of the semiconductors are significantly different, if the semiconductor is sealed at a high temperature (generally 160 to 190°C) and then the sealed product is cooled to room temperature, or the sealed product is cooled to room temperature after secondary curing, each configuration will be different. Thermal stress occurs in the encapsulating resin due to the difference in the amount of thermal contraction of the materials, and this thermal stress causes peeling at the adhesive interface between the lead frame and the encapsulating resin. Moisture can enter the inside of the package through the grooves, reducing moisture resistance reliability.If the sealed product is heated in this state, the package will deform (bulge) due to the vapor pressure of the moisture vaporized inside the package, causing package cracks. It has been shown that it can be induced. Therefore,
In order to improve the soldering heat resistance of the package, it is necessary to minimize the difference in the coefficient of thermal expansion of each material that makes up the semiconductor device to reduce the occurrence of thermal stress, and at the same time further improve the adhesion between the lead frame and the encapsulating resin. The present invention has been made because it is clear what should be done.

前記目的を達成するためには、前述のようにリードフレ
ームと封止樹脂の接着力を高め、しかも、封止品が封止
後の後工程で受ける種々の熱処理によって発生する熱応
力によって接着部分にはく離が生じないようにするため
に、半導体素子を構成する各素材の熱膨張係数をなるべ
くそろえることが重要でおる。
In order to achieve the above objective, as mentioned above, it is necessary to increase the adhesive strength between the lead frame and the encapsulating resin, and in addition, the bonded area can be damaged by the thermal stress generated by the various heat treatments that the encapsulated product undergoes in the post-processing process after encapsulation. In order to prevent peeling, it is important to make the thermal expansion coefficients of the materials constituting the semiconductor element as similar as possible.

樹脂封止型半導体装置を構成する各素材のうちで従来熱
膨張係数が最も大きいのは封止樹脂であるが、最近は球
形の無機質充てん剤の高充てん化やペース樹脂としてエ
ポキシ樹脂よりも熱膨張係数がかなシ小さいポリイミド
系樹脂を用いることによって、封止樹脂の熱膨張係数は
1−OXlo−s/℃程度に下げることが極めて容易に
なった。一方、リードフレームも4270イの熱膨張係
数が小さく(17X1 a−”/c)、これらの素材の
組合せによシ封止品に発生する熱応力はかなり小さくな
る。
Of all the materials that make up resin-encapsulated semiconductor devices, encapsulation resin has traditionally had the largest coefficient of thermal expansion, but recently, spherical inorganic fillers have become more highly packed, and paste resins have a higher coefficient of thermal expansion than epoxy resins. By using a polyimide resin with a very small coefficient of expansion, it has become extremely easy to lower the coefficient of thermal expansion of the sealing resin to about 1-OXlo-s/°C. On the other hand, the lead frame also has a small thermal expansion coefficient of 4270 mm (17 x 1 a-''/c), and the combination of these materials significantly reduces the thermal stress generated in the sealed product.

しかし、鉄系フレームは一般に熱伝導性が劣るため、熱
放散性の観点から熱膨張係数が大きい銅系フレームが良
く用いられる。この銅系フレームは一般に封止樹脂との
接着性が良好であるが、熱膨張係数が大きい。そこで、
本発明者らは鉄系リードフレームの少lくとも樹脂封止
部分に封止樹脂との接着性が良好な、銅、亜鉛、スズ、
ニッケルの金属及び/又は化合物の少なくとも11aを
主成分とする被膜を形成し、当該被膜と封止樹脂の接着
をよ゛り強固にするため必要に応じて当該被膜の表面粗
さを粗くシ、更に、その表面に各種化成処理を施し封止
樹脂との親和性を高めることによって封止樹脂との接着
力を大幅に向上できることを見出した。
However, since iron-based frames generally have poor thermal conductivity, copper-based frames with a large coefficient of thermal expansion are often used from the viewpoint of heat dissipation. This copper-based frame generally has good adhesion to the sealing resin, but has a large coefficient of thermal expansion. Therefore,
The present inventors have proposed that copper, zinc, tin, etc., which have good adhesion to the sealing resin, be used in at least the resin-sealed portion of the iron-based lead frame.
A film containing at least 11a of nickel metal and/or compound as a main component is formed, and the surface roughness of the film is roughened as necessary to further strengthen the adhesion between the film and the sealing resin. Furthermore, it has been found that the adhesive force with the sealing resin can be significantly improved by subjecting the surface to various chemical conversion treatments to increase the affinity with the sealing resin.

上記リードフレームと無機質充てん剤を多量に配合した
封止樹脂は相互の接着が極めて良好な上に熱膨張係数が
シリコンウェハに極めて近いため、これら素材で構成さ
れた半導体装置はけんだ加熱処理のような熱衝撃を加え
ても各素材の熱膨張係数の違いによって発生する熱応力
が極めて小さい。
The lead frame and the encapsulating resin containing a large amount of inorganic filler have extremely good mutual adhesion and have a coefficient of thermal expansion very close to that of silicon wafers, so semiconductor devices made of these materials cannot be heated through solder heat treatment. Even if such a thermal shock is applied, the thermal stress generated due to the difference in the coefficient of thermal expansion of each material is extremely small.

すなわち、本発明の樹脂封止型半導体装置は気密性が極
めて優れており高温高湿下に放置してもパッケージ内へ
の水分の浸入が少なく、シかも封止樹脂とリードフレー
ム間の接着が良好なため、はんだ加熱処理時にパッケー
ジクラックの発生−bs起らない。更に、加熱時の変形
量が少ないために金ワイヤとリードあるいけアルミニウ
ム電極パッドの接合部、アルミニウム配線等に及ぼす熱
的ストレスも小さく、はんだ加熱処理のような熱衝撃を
加えても耐湿信頼性の低下や素子特性の変動が少ない0 本発明におけるエポキシ樹脂系成形材料とは通常半導体
、封正に用いられるエポキシ樹脂系成形材料を指し、例
えば、クレゾールノボラック型エポキシ樹脂、フェノー
ルノボラック型エポキシ樹脂、ビスフェノールA型エポ
キシ樹脂あるいはこれら各エポキシ樹脂の臭素化物に硬
化剤としてフェノールノボラック樹脂、酸無水物、アミ
ン類等を加え、必要に応じて、更に、硬化促進剤、充て
ん剤、難燃化助剤、カップリング剤、離型剤、着色剤等
の各種添加剤を配合したものである。上記各添加剤のう
ち、充てん剤は成形品の熱膨張係数や熱伝導率との関係
で極めて重要な素材であり、一般にはシリカ、アルミナ
等の粉末が用いられる。特に、原石を微粉枠抜溶射によ
シ溶融球状化した充てん剤は原石を微粉砕したままの角
ばった充てん剤に比べて成形材料の流動性t−損わずに
多量に配合することが可能でアシ、成形品の低熱膨張化
や高熱伝導性化を図る上で極めて重要である。
In other words, the resin-sealed semiconductor device of the present invention has extremely excellent airtightness, and even when left under high temperature and high humidity, there is little moisture intrusion into the package, and the adhesive between the encapsulation resin and the lead frame can be easily maintained. Due to its good quality, package cracks do not occur during solder heat treatment. Furthermore, because the amount of deformation during heating is small, the thermal stress exerted on the joint between the gold wire and the lead aluminum electrode pad, the aluminum wiring, etc. is also small, and the moisture resistance is reliable even when thermal shocks such as those in soldering heat treatment are applied. The epoxy resin molding material in the present invention refers to an epoxy resin molding material usually used for semiconductors and encapsulation, such as cresol novolac type epoxy resin, phenol novolac type epoxy resin, Phenol novolak resin, acid anhydride, amines, etc. are added as a curing agent to bisphenol A type epoxy resin or brominated products of these epoxy resins, and if necessary, a curing accelerator, filler, flame retardant aid is added. , a coupling agent, a mold release agent, a coloring agent, and other various additives. Among the above-mentioned additives, the filler is an extremely important material in relation to the coefficient of thermal expansion and thermal conductivity of the molded article, and powders of silica, alumina, etc. are generally used. In particular, a filler made by melting ore into a spherical shape by thermal spraying into a fine powder can be blended in larger amounts without impairing the fluidity of the molding material, compared to a angular filler made from finely pulverized ore. This is extremely important in achieving low thermal expansion and high thermal conductivity of molded products.

次に、本発明の鉄系リードフレームとは鉄/ニッケル系
合金(例えば4270イ)t−指し、その樹脂封止部分
に被膜する銅、亜鉛、スズ又はニッケルの金属及び/又
は化合物の少なくとも1種を成分とする被膜は電気又は
無電解メッキ法によシ形成するものであり、当該被膜の
表面粗さはメッキ条件例えば電流密度、析出温度等を変
えることによって調整できる。また、メッキ後、例えば
表面を塩化第2銅/塩酸系水溶液、過硫酸アンモニウム
水溶液等で化学的にエツチングによシ粗化することもで
きる。更に、当該被膜の封止樹脂に対する親和性を高め
る化学的処理としてはカップリング剤塗布、クロメート
処理、リン酸−3−ナトリウム/水酸化ナトリウム/亜
塩素酸ナトリウム系の加熱水溶液、酢酸アンモニウム/
酢酸銅/硫酸銅/塩化アンモニウム/アンモニア水系の
加熱水溶液等を用いた化成処理を用いることができる。
Next, the iron-based lead frame of the present invention refers to an iron/nickel-based alloy (for example, 4270), and at least one of copper, zinc, tin, or nickel metal and/or compound coated on the resin-sealed part. A film containing seeds as a component is formed by an electric or electroless plating method, and the surface roughness of the film can be adjusted by changing plating conditions such as current density and deposition temperature. Further, after plating, the surface can be roughened by chemically etching with a cupric chloride/hydrochloric acid aqueous solution, an ammonium persulfate aqueous solution, or the like. Furthermore, chemical treatments to increase the affinity of the coating for the sealing resin include application of a coupling agent, chromate treatment, heated aqueous solution of 3-sodium phosphate/sodium hydroxide/sodium chlorite, and ammonium acetate/sodium chlorite.
A chemical conversion treatment using a heated aqueous solution of copper acetate/copper sulfate/ammonium chloride/ammonia aqueous system or the like can be used.

〔実施例〕〔Example〕

以下、本発明を実施例によシ更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1〜6 42アロイ(Ni42重量%、残9Fe)  製リード
フレームの樹脂封止部分に銅、真ちゅう、スズ/ニッケ
ル合金を厚さが10〜15μm1表面粗さが2〜5μm
の範囲に入るように電気メッキした。銅メッキを施した
リードフレームには更にアルミキレート系カップリング
剤処理、クロメート処理及び酢酸アンモニウム/酢酸銅
/硫酸銅/塩化アンモニウム/アンモニア水系の加熱水
溶液による酸化処理を行い、合計Afil類のリードフ
レームを準備した。
Examples 1 to 6 Copper, brass, and tin/nickel alloy were applied to the resin-sealed part of the lead frame made of 42 alloy (Ni: 42% by weight, balance: 9Fe) with a thickness of 10 to 15 μm and a surface roughness of 2 to 5 μm.
Electroplated to fall within the range of . The copper-plated lead frame is further treated with an aluminum chelate coupling agent, chromate treatment, and oxidized with a heated aqueous solution of ammonium acetate/copper acetate/copper sulfate/ammonium chloride/ammonia, resulting in a total Afil type lead frame. prepared.

上記リードフレームにアルミニウムのジグザグ配線を有
する半導体素子を搭載し金線をボンディングした後、エ
ポキシ樹脂系成形材料で封止した0成形材料としては下
記素材: 0−クシ−ルツボラック型エポキシ樹脂   90重量
部臭素化ビスフェノールA型         10 
lエポキシ変性シリコーン樹脂        15 
1フエノールノボラツク樹脂         54 
I三酸化アンチモン          81モンタン
酸エステル          21カーボンブラツク
            21を、約80℃に加熱した
2軸ロールで約10分間混練したものを冷却後粉砕、タ
ブレット化したものを用いた。成形にはトランスファ成
形機を用い、金型温度180℃、成形圧カフ5にgf/
crn” 、硬化時間1.5分で行った。成形品はその
後180℃で6時間の二次硬化を行い試験に供した。な
お、上記成形材料の成形品は線熱膨張係数が1. OX
 10″″S/℃であった。
After mounting a semiconductor element having aluminum zigzag wiring on the above lead frame and bonding a gold wire, the molding material was sealed with an epoxy resin molding material. Partially brominated bisphenol type A 10
l Epoxy modified silicone resin 15
1 Phenol novolac resin 54
I Antimony trioxide 81 Montanic acid ester 21 Carbon black 21 were kneaded for about 10 minutes with a twin-screw roll heated to about 80°C, cooled, and then ground and tableted. A transfer molding machine was used for molding, the mold temperature was 180°C, and the molding pressure cuff 5 was gf/
crn", and the curing time was 1.5 minutes. The molded product was then subjected to secondary curing at 180°C for 6 hours and then subjected to the test. The molded product made of the above molding material had a linear thermal expansion coefficient of 1.OX.
The temperature was 10″S/°C.

比較例1及び2 4270イ製リードフレームにめっき処理を行うことな
く、上記実施例と同様に半導体素子を搭載し金線をボン
ディング後上記エポキシ系成形材料及び充てん列配合量
を少なく線熱膨張係数を大きくした成形材料で封止した
Comparative Examples 1 and 2 A semiconductor element was mounted on a 4270I lead frame without plating, and a gold wire was bonded in the same manner as in the above example, and then the linear thermal expansion coefficient was reduced by reducing the amount of the epoxy molding material and filling row. It was sealed with a molding material made larger.

比較例3〜6 上記実施例で用いた銅メツキリードクレームに更にアル
ミキレート系カップリング剤処理、クロメート処理及び
酸化処理を行ったリードフレームに半導体素子を搭載し
金線をボンディングしたものを熱膨張係数が大きな成形
材料で封止した。
Comparative Examples 3 to 6 The copper-plated lead frame used in the above examples was further treated with an aluminum chelate coupling agent, chromate treatment, and oxidation treatment. A semiconductor element was mounted on a lead frame and a gold wire was bonded to the lead frame, which was thermally expanded. It was sealed with a molding material with a large coefficient.

次に、上記で得られた各樹脂封止型半導体装置を65℃
、95%RH下に168時間放置し吸湿させた後各装置
を赤外線ランプで加熱した場合にパッケージにクラック
が発生する温度を測定した。
Next, each resin-sealed semiconductor device obtained above was heated to 65°C.
The temperature at which cracks occur in the package was measured when each device was heated with an infrared lamp after being left under 95% RH for 168 hours to absorb moisture.

また、これとは別に上記で得られた各樹脂封止型半導体
装置を260℃に加熱したけんだ浴中に30秒間浸漬し
た後121℃、100sRH下に放置した場合の放置時
間とアルミニウム配線の腐食断線不良率との関係につい
て検討した。
Separately, we also investigated the standing time when each resin-sealed semiconductor device obtained above was immersed for 30 seconds in a smoldering bath heated to 260°C, and then left at 121°C and 100 sRH, and the aluminum wiring. We investigated the relationship with the corrosion breakage failure rate.

上記検討結果を第1表に示す。The results of the above study are shown in Table 1.

第1表より本発明の樹脂封止型半導体装置は吸湿後のは
んだ耐熱性(耐クラツク性)並びにはんだ加熱処理後の
耐湿信頼性が優れていることが分る0 〔発明の効果〕 上述のように、本発明の樹脂封止型半導体装置はリード
フレームと封止樹脂の接着性が優れ、各構成素材の熱膨
張係数が接近しているために、はんだ加熱のような熱衝
撃を加えた場合にも熱膨張係数の違いによって発生する
熱応力が小さく、シたがって接着界面のはく離や金線接
合部の損傷が起シに<<、はんだ耐熱性や耐湿信頼性が
極めて良好である。
From Table 1, it can be seen that the resin-sealed semiconductor device of the present invention has excellent solder heat resistance (cracking resistance) after moisture absorption and moisture resistance reliability after solder heat treatment. As shown, the resin-sealed semiconductor device of the present invention has excellent adhesion between the lead frame and the encapsulating resin, and the thermal expansion coefficients of each component material are close to each other, so it is difficult to apply thermal shock such as solder heating. In this case, the thermal stress generated due to the difference in thermal expansion coefficients is small, so that peeling of the adhesive interface and damage to the gold wire joints will not occur.Soldering heat resistance and moisture resistance reliability are extremely good.

Claims (1)

【特許請求の範囲】 1、金属製リードフレームと該リードフレームに搭載さ
れた半導体素子を熱硬化性エポキシ樹脂系成形材料で封
止した樹脂封止型半導体装置において、該リードフレー
ムが、その少なくとも樹脂封止部分に、銅、亜鉛、スズ
及びニッケルよりなる群から選択した少なくとも1種を
金属及び/又は化合物の形で含有する被膜が形成された
鉄系リードフレームであることを特徴とする樹脂封止型
半導体装置。 2、該被膜は、少なくとも1μm以上の表面粗さを有し
ている特許請求の範囲第1項記載の樹脂封止型半導体装
置。 3、該被膜の表面には、樹脂との親和性を付与するため
の化学的処理が施されている特許請求の範囲第1項記載
の樹脂封止型半導体装置。 4、該封止樹脂、及び該被膜を形成したリードフレーム
の熱膨張係数が、いずれも1.4×10^−^3/℃以
下である特許請求の範囲第1項記載の樹脂封止型半導体
装置。
[Claims] 1. In a resin-sealed semiconductor device in which a metal lead frame and a semiconductor element mounted on the lead frame are sealed with a thermosetting epoxy resin molding material, the lead frame has at least A resin characterized in that it is an iron-based lead frame in which a coating containing at least one member selected from the group consisting of copper, zinc, tin, and nickel in the form of a metal and/or a compound is formed on the resin-sealed part. Sealed semiconductor device. 2. The resin-sealed semiconductor device according to claim 1, wherein the coating has a surface roughness of at least 1 μm or more. 3. The resin-sealed semiconductor device according to claim 1, wherein the surface of the coating is chemically treated to impart affinity with the resin. 4. The resin-sealed mold according to claim 1, wherein the sealing resin and the lead frame on which the coating is formed have thermal expansion coefficients of 1.4 x 10^-^3/°C or less. Semiconductor equipment.
JP30658686A 1986-12-24 1986-12-24 Plastic-sealed semiconductor device Granted JPS63160367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30658686A JPS63160367A (en) 1986-12-24 1986-12-24 Plastic-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30658686A JPS63160367A (en) 1986-12-24 1986-12-24 Plastic-sealed semiconductor device

Publications (2)

Publication Number Publication Date
JPS63160367A true JPS63160367A (en) 1988-07-04
JPH0521343B2 JPH0521343B2 (en) 1993-03-24

Family

ID=17958848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30658686A Granted JPS63160367A (en) 1986-12-24 1986-12-24 Plastic-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPS63160367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634762A1 (en) * 1990-09-13 1995-01-18 Matsushita Electric Industrial Co., Ltd. A method for producing a solid electrolytic capacitor
US5585195A (en) * 1992-07-11 1996-12-17 Shinko Electric Industries Company, Limited Metal insert and rough-surface treatment method thereof
EP1480270A3 (en) * 2003-05-22 2005-07-13 Shinko Electric Industries Co., Ltd. Packaging component and semiconductor package
EP2461357A2 (en) 2010-12-01 2012-06-06 Hitachi, Ltd. Metal-resin composite, method for producing the same, busbar, module case, and resinous connector part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792854A (en) * 1980-11-29 1982-06-09 Toshiba Corp Plastic molded type semiconductor device
JPS5799763A (en) * 1980-12-12 1982-06-21 Hitachi Cable Ltd Manufacture of lead frame for integrated circuit
JPS6097651A (en) * 1983-11-02 1985-05-31 Hitachi Ltd Semiconductor device
JPS60119765A (en) * 1983-12-02 1985-06-27 Hitachi Ltd Resin-sealed semiconductor device and lead frame used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792854A (en) * 1980-11-29 1982-06-09 Toshiba Corp Plastic molded type semiconductor device
JPS5799763A (en) * 1980-12-12 1982-06-21 Hitachi Cable Ltd Manufacture of lead frame for integrated circuit
JPS6097651A (en) * 1983-11-02 1985-05-31 Hitachi Ltd Semiconductor device
JPS60119765A (en) * 1983-12-02 1985-06-27 Hitachi Ltd Resin-sealed semiconductor device and lead frame used therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634762A1 (en) * 1990-09-13 1995-01-18 Matsushita Electric Industrial Co., Ltd. A method for producing a solid electrolytic capacitor
US5585195A (en) * 1992-07-11 1996-12-17 Shinko Electric Industries Company, Limited Metal insert and rough-surface treatment method thereof
EP1480270A3 (en) * 2003-05-22 2005-07-13 Shinko Electric Industries Co., Ltd. Packaging component and semiconductor package
US7190057B2 (en) 2003-05-22 2007-03-13 Shinko Electric Industries Co., Ltd. Packaging component and semiconductor package
EP2461357A2 (en) 2010-12-01 2012-06-06 Hitachi, Ltd. Metal-resin composite, method for producing the same, busbar, module case, and resinous connector part
US9209044B2 (en) 2010-12-01 2015-12-08 Hitachi, Ltd. Metal-resin composite, method for producing the same, busbar, module case, and resinous connector part

Also Published As

Publication number Publication date
JPH0521343B2 (en) 1993-03-24

Similar Documents

Publication Publication Date Title
US5043534A (en) Metal electronic package having improved resistance to electromagnetic interference
EP1480270B1 (en) Packaging component and semiconductor package
US6221692B1 (en) Method of fabricating solder-bearing silicon semiconductor device and circuit board mounted therewith
JP5264939B2 (en) Package parts and semiconductor packages
JPS63160367A (en) Plastic-sealed semiconductor device
JP4628263B2 (en) Package component, manufacturing method thereof, and semiconductor package
JPH0445985B2 (en)
JPH08162573A (en) Semiconductor device
JP3155811B2 (en) Method for manufacturing resin-encapsulated semiconductor device
JPH05152362A (en) Manufacture of semiconductor device
JP2673764B2 (en) Resin-sealed semiconductor device
JPS62210651A (en) Resin sealed type semiconductor device
JP3070929B2 (en) Package assembly method and package
JP2970548B2 (en) Semiconductor device
JP2892055B2 (en) Resin-sealed semiconductor device
JPH05152378A (en) Tape carrier package
JPH09199518A (en) Semiconductor device
JPH0239443A (en) Semiconductor device
JPH07135203A (en) Semiconductor device
JPH0322465A (en) Resin-sealed semiconductor device
JPS60119765A (en) Resin-sealed semiconductor device and lead frame used therefor
JP2972679B2 (en) Lead frame, resin-encapsulated semiconductor device and method of manufacturing the same
JP2743567B2 (en) Resin-sealed integrated circuit
TW434762B (en) Flexible substrate based ball grid array package structure
JPH01208846A (en) Semiconductor device