JPS6315540B2 - - Google Patents
Info
- Publication number
- JPS6315540B2 JPS6315540B2 JP55051748A JP5174880A JPS6315540B2 JP S6315540 B2 JPS6315540 B2 JP S6315540B2 JP 55051748 A JP55051748 A JP 55051748A JP 5174880 A JP5174880 A JP 5174880A JP S6315540 B2 JPS6315540 B2 JP S6315540B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- circulation system
- test chamber
- blower
- cooler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000012360 testing method Methods 0.000 claims description 116
- 238000001816 cooling Methods 0.000 claims description 23
- 238000002474 experimental method Methods 0.000 claims description 15
- 230000007613 environmental effect Effects 0.000 claims description 10
- 230000007246 mechanism Effects 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000007664 blowing Methods 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 5
- 238000009833 condensation Methods 0.000 description 9
- 230000005494 condensation Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 239000004020 conductor Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000004567 concrete Substances 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000011210 fiber-reinforced concrete Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- 229920001875 Ebonite Polymers 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004590 silicone sealant Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/044—Systems in which all treatment is given in the central station, i.e. all-air systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は零下数十度の低温環境下での各種の実
験を行なうことができる低温環境風洞実験装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low-temperature environment wind tunnel experiment device capable of conducting various experiments in a low-temperature environment of several tens of degrees below zero.
各種の試験研究において低温実験室の果たす役
割が増大しているが、例えば自動車の風洞実験室
も例外ではない。寒冷地帯と高所地帯での走行安
全性はもとより、予期せぬ事態に備えて、自動車
を構成する各種部品が異常環境下でも本来の性能
を発揮する高性能の自動車の開発が必要とされて
いるからである。
Low-temperature laboratories are playing an increasing role in various test and research studies, and wind tunnel laboratories for automobiles, for example, are no exception. There is a need to develop high-performance automobiles that not only ensure driving safety in cold regions and high-altitude regions, but also ensure that the various parts that make up the automobile perform as intended even in abnormal environments, in preparation for unexpected situations. Because there is.
これまでも、自動車の技術開発においてロード
テストに加え、実用車を対象とした大型の風洞試
験がその再現性のよさから重視される傾向にある
が、より高性能な自動車開発の高まりにつれて、
かような大型風洞試験において零下数十度の(例
えばマイナス30℃といつた)低温環験を作りだす
ことの必要性が叫ばれるようになつた。 Until now, in addition to road tests, large-scale wind tunnel tests for practical vehicles have tended to be emphasized due to their good reproducibility in the development of automobile technology, but as the development of higher-performance automobiles increases,
The need to create a low-temperature environment several tens of degrees below zero (for example, minus 30 degrees Celsius) in such large-scale wind tunnel tests has become a necessity.
自動車の風洞実験室に関しては例えば実開昭54
−183370号公報のような低風速を得る回流式風洞
などの提案があるが低温環境の試験が行なえるも
のではない。 Regarding the automobile wind tunnel laboratory, for example,
There are proposals for circulation type wind tunnels that can obtain low wind speeds, such as in Publication No. 183370, but they do not allow testing in low-temperature environments.
また、低温環境試験室としては、例えば特開昭
54−107147号公報に提案されているような室温を
自由に変える試験室が知られているが風洞実験室
ではなく、風洞試験は行えない。 In addition, as a low-temperature environment test chamber, for example,
A test chamber in which the room temperature can be freely changed, such as the one proposed in Publication No. 54-107147, is known, but it is not a wind tunnel laboratory and wind tunnel tests cannot be performed.
風速がゼロから例えば130Km/hrといつた風洞
試験において試験温度を例えばマイナス30℃に維
持するといつた条件を満たす実用車向きの大型風
洞実験室を構成する場合に、信頼性、経済性およ
び融通性が大きな課題となる。すなわち、所定風
速のもとでの所定の低温環境を精度よく安定して
維持できる再現性のよい環境を作りだすこと、低
温空気の大量風量を出来るだけ低廉な設備構成の
もとで無駄なく製造できるようにすること、そし
て場合によつては常温や高温での試験もでき、さ
らに場合によつては風速が低いか無いような条件
でも各種温度で試験できるような融通性のある風
洞試験室にすることも必要であるからである。
Reliability, economy, and flexibility are required when constructing a large wind tunnel laboratory for practical vehicles that satisfies conditions such as maintaining the test temperature at, for example, -30°C during wind tunnel tests where the wind speed ranges from zero to, for example, 130 Km/hr. Gender becomes a major issue. In other words, it is possible to create an environment with good reproducibility that can maintain a predetermined low-temperature environment accurately and stably at a predetermined wind speed, and to produce a large volume of low-temperature air with the lowest possible equipment configuration without waste. and in a wind tunnel test chamber with the flexibility to test at room temperature, high temperature, and even at various temperatures with low or no wind speed. This is because it is also necessary to do so.
本発明はこのような課題の解決を目的としてな
されたものであり、さらに、実際の稼働にあたつ
ての被観測物(例えば自動車)の出入における系
外からの影響を少なくし、且つ装置全体の防熱、
防湿、防露、防音、防振等を図つた低温環境風洞
実験装置の提供を目的としたものである。 The present invention was made with the aim of solving such problems, and furthermore, it reduces the influence from outside the system when objects to be observed (for example, cars) enter and exit the system during actual operation, and also reduces the influence of the entire system. heat protection,
The purpose is to provide a low-temperature environment wind tunnel experiment device that is moisture-proof, dew-proof, soundproof, vibration-proof, etc.
前記の目的を達成せんとする本発明の要旨とす
るところは、環境試験室と、この試験室下流域の
空気を吸込んでこれを吐出するための送風機と、
この吐出空気を冷却するための空気冷却器と、こ
の空気冷却器を経た空気を前記試験室に吹出すた
めの吹出口とからなる空気の主循環系に対し、試
験室下流域の空気を空気調和機を介して試験室上
流域に循環する空気の補助循環系を連結した低温
環境風洞実験装置(特許請求の範囲第1項記載の
発明、以下第一発明と言う)にある。
The gist of the present invention, which aims to achieve the above-mentioned object, is an environmental test chamber, a blower for sucking air in the downstream region of the test chamber and discharging it;
For the main air circulation system, which consists of an air cooler for cooling this discharged air and an outlet for blowing out the air that has passed through this air cooler into the test chamber, air in the downstream area of the test chamber is The present invention relates to a low-temperature environment wind tunnel experiment apparatus (the invention set forth in claim 1, hereinafter referred to as the first invention), which is connected to an auxiliary circulation system for air circulating to the upstream region of the test chamber via a conditioner.
すなわち、空気を零度℃以下にまで冷却できる
空気冷却器を送風機の吐出側であつて試験室への
吹出口の上流側に配置した空気の主循環系を構成
したうえで、この主循環系に対して、空気調和機
を介装した空気調和用の補助循環係を所定の関係
をもつて、つまり試験室下流域の空気を試験室上
流域に循環する関係をもつて、連結したことを特
徴とする。したがつて、主循環系においては、風
洞試験に必要な風速や風量を得るための機能を具
備させ且つその風量で低温空気が製造できるよう
に構成したうえで、実験中における循環空気の汚
染防止、低速または無風速の低温試験環境の形
成、常温や高温の試験環境の形成といつた機能は
補助循環系によつて達成するようにし、且つ冷却
機能の1部を補助循環系で補うようにした点に本
発明の大きな特徴がある。 In other words, an air cooler capable of cooling the air to below zero degrees Celsius is configured to form a main air circulation system that is placed on the discharge side of the blower and upstream of the air outlet to the test chamber. In contrast, an auxiliary circulation section for air conditioning equipped with an air conditioner is connected in a predetermined relationship, that is, in a relationship that circulates air from the downstream area of the test room to the upstream area of the test room. shall be. Therefore, the main circulation system is equipped with functions to obtain the wind speed and air volume necessary for wind tunnel tests, and is configured so that low-temperature air can be produced with that air volume. The functions of creating a low-temperature test environment with low speed or no wind speed, and creating a test environment with room temperature or high temperature are achieved by the auxiliary circulation system, and a part of the cooling function is supplemented by the auxiliary circulation system. This is a major feature of the present invention.
ここで補助循環系の空気調和機は、エアフイル
タ、空気冷却器、空気加熱器などを備えた通常の
空気調和機能をもつ機器を使用する。そして、こ
の補助循環系にも送風機を介装させ、この送風機
によつて試験室下流側の空気をこの空気調和器を
通過させたあと試験室上流側に供給される。一方
主循環系ではエアフイルタや空気加熱器などは設
置を省略する。 Here, the air conditioner for the auxiliary circulation system uses a device with a normal air conditioning function that is equipped with an air filter, an air cooler, an air heater, and the like. A blower is also installed in this auxiliary circulation system, and the blower supplies air from the downstream side of the test chamber to the upstream side of the test chamber after passing through the air conditioner. On the other hand, in the main circulation system, installation of air filters, air heaters, etc. is omitted.
稼働の態様としては、例えば風速130Km/hrで
一30℃程度の高風速の低温環境の実験等において
は主循環系の送風機と主循環系の空気冷却器をこ
の条件を満たすように稼働し且つ必要に応じて循
環する空気の1部を補助循環系にも循環させる。
この補助循環系への1部循環によつて、補助循環
系のエアフイルタによつて循環空気中の塵埃が除
去される。また、補助循環系の空気冷却器の併用
によつて、主循環系に設置する空気冷却器の容量
を小さくしておいても設計負荷をまかなうことが
可能となる。一方、低風速または無風速下での環
境実験の場合には、主循環系の送風機は停止し、
補助循環系への空気の循環だけで試験を実施する
ことができる。この場合には、空気調和器の空気
冷却器によつて低温の空気を得ることのほか、空
気加熱器によつて高温の空気を得ることもでき
る。 For example, in an experiment in a low-temperature environment with a high wind speed of about -30°C at a wind speed of 130 km/hr, the main circulation system blower and the main circulation system air cooler should be operated to meet these conditions. If necessary, a portion of the circulating air is also circulated to the auxiliary circulation system.
Due to this partial circulation to the auxiliary circulation system, dust in the circulating air is removed by the air filter of the auxiliary circulation system. Furthermore, by using the air cooler in the auxiliary circulation system, it is possible to cover the design load even if the capacity of the air cooler installed in the main circulation system is reduced. On the other hand, in the case of environmental experiments under low or no wind speed, the main circulation system blower is stopped and
The test can be performed simply by circulating air to the auxiliary circulation system. In this case, in addition to obtaining low-temperature air using the air cooler of the air conditioner, high-temperature air can also be obtained using the air heater.
本発明はまた、このような第一発明の装置構成
に加え、該主循環系と補助循環系の両者に外気を
導入する経路を設け、この外気導入経路にクーラ
ーおよび除湿機を介装したことを特徴とする低温
環境風洞実験装置(特許請求の範囲第2項記載の
発明、以下第二発明と言う)を提供するものであ
る。 In addition to the device configuration of the first invention, the present invention also provides a path for introducing outside air into both the main circulation system and the auxiliary circulation system, and a cooler and a dehumidifier are interposed in this outside air introduction path. The present invention provides a low-temperature environment wind tunnel experiment device (invention as set forth in claim 2, hereinafter referred to as the second invention) characterized by the following.
本発明は、空気の循環によつて(つまり装置内
の空気を再使用することによつて)試験を実施す
ることを原則とするが、被試験物による空気状態
の変化、例えば自動車排気や塵埃による空気温度
や空気汚染を伴う場合には、系外への排気を必要
とすることが多い。この場合には排気量に見合う
空気を系内に取り入れることが必要となるが、こ
の空気の取入れにさいして、取入外気の除湿と冷
却を行なつてから、主循環系と補助循環系に供給
する構成としたものである。特に零度以下の空気
循環系に対して外気を導入する場合には、結露の
発生によつて思わぬトラブルの原因となり試験の
再現性にも悪影響を与えるし、温度条件の異なる
空気を循環気流に導入することは試験室の温度分
布を乱す原因ともなる。このため主循環系と補助
循環系のいずれにも外気を取り入れる経路を設け
たうえ、この経路にクーラーおよび除湿機を介装
して必要な温度に冷却し且つ除湿を行なう構成と
する。 The present invention is based on the principle of testing by air circulation (that is, by reusing the air inside the device), but changes in the air condition due to the test object, such as automobile exhaust or dust, are important. In cases where air temperature or air contamination is caused by air pollution, it is often necessary to exhaust the air to the outside of the system. In this case, it is necessary to take in air into the system that corresponds to the amount of exhaust air, but when taking in this air, the outside air is dehumidified and cooled, and then the air is sent to the main circulation system and auxiliary circulation system. The configuration is such that the power supply is supplied. In particular, when outside air is introduced into an air circulation system at temperatures below zero, condensation can cause unexpected problems and have a negative impact on test reproducibility. Introducing it also causes disturbances in the temperature distribution in the test room. For this reason, both the main circulation system and the auxiliary circulation system are provided with a path for taking in outside air, and a cooler and a dehumidifier are interposed in this path to cool the air to the required temperature and dehumidify it.
さらに、本発明においては、前記の第一発明装
置の構成に加え、試験室から主循環系送風機の吸
込側にいたる方向偏向部の突き当たり壁に被測定
物の出入口を設けると共にこの方向偏向部に試験
室から主循環系送風機に気流を偏向させる偏向ベ
ーンを設け、この偏向ベーンを被測定物の出入の
さいに該送風機に通ずる通路を遮る位置にその全
体を方向変換可能に設置すると共に該通路を遮る
位置にあるときに該通路に出入口からの外気が侵
入するのを遮断するシヤツターとして機能するよ
うに該偏向ベーンの各翼をパンタグラフ機構で支
持してなる低温環境風洞実験装置(特許請求の範
囲第3項記載の発明、以下第三発明と言う)を提
供する。 Furthermore, in the present invention, in addition to the configuration of the apparatus of the first invention, an entrance/exit for the object to be measured is provided on the abutment wall of the direction deflection section extending from the test chamber to the suction side of the main circulation system blower, and an entrance/exit of the object to be measured is provided in the direction deflection section. A deflection vane is provided to deflect the airflow from the test chamber to the main circulation system blower, and this deflection vane is installed at a position where it can block the passage leading to the blower when the object to be measured enters and exits, and the entire direction of the deflection vane can be changed. A low-temperature environment wind tunnel experiment device (as claimed in the patent claim) in which each blade of the deflection vane is supported by a pantograph mechanism so as to function as a shutter to block outside air from entering the passage from the entrance/exit when the deflection vane is in a position to block the passage. The present invention provides the invention described in Scope No. 3 (hereinafter referred to as the third invention).
本発明においては、試験室に吹き出した空気の
大部分は再び試験室に循環させるので主循環系に
はコーナー部が幾つか形成される。試験室から主
循環系送風機にいたる部分にもコーナー部(方向
偏向部)が形成されるが、この方向偏向部におい
て気流の方向転換による圧力損失を防止するため
に偏向ベーンを設置する。一方、この方向偏向部
の突き当たり壁(該偏向ベーンの下流側に位置す
る突き当り壁)に被測定物の出入口を設ける。こ
の場合、被測定物の出入口を開口して試験室に被
測定物を出入させる場合には該偏向ベーンがその
位置にあればこれが被測定物の出入の邪魔になる
ので、出入口と試験室との間で被測定物の移動通
路が形成されるように偏向ベーン全体を送風機に
通ずる通路を遮る位置に方向変換可能に設置する
構成とし、且つこの送風機に通ずる通路を遮る位
置に方向変換したときに偏向ベーンの各翼が気流
の通過を妨げるシヤツターとして機能するように
各翼をパンタグラフ機構で支持する構成とする。
この構成によつて、偏向ベーンをシヤツター状態
で送風機に通ずる通路に片づけた状態で該出入口
を通じて試験室に被測定物を自由に出入させるこ
とができ、同時にこの出入のさいに系外から系内
に侵入する空気が該シヤツター機能によつて送風
機側に流れるのを防止する作用を果たす。 In the present invention, most of the air blown into the test chamber is circulated back into the test chamber, so several corners are formed in the main circulation system. A corner section (direction deflection section) is also formed in the section leading from the test chamber to the main circulation system blower, and deflection vanes are installed in this direction deflection section to prevent pressure loss due to change in direction of airflow. On the other hand, an entrance/exit for the object to be measured is provided in the abutment wall of the direction deflection section (the abutment wall located downstream of the deflection vane). In this case, if the entrance/exit of the object to be measured is opened to allow the object to enter/exit the test chamber, if the deflection vane is in that position, it will obstruct the entrance/exit of the object. The entire deflection vane is configured to be able to change its direction in a position that blocks the path leading to the blower so that a movement path for the object to be measured is formed between the Each wing of the deflection vane is supported by a pantograph mechanism so that it functions as a shutter that blocks the passage of airflow.
With this configuration, the object to be measured can be freely entered and exited from the test chamber through the entrance/exit with the deflection vane set in the passage leading to the blower in a shutter state, and at the same time, the object to be measured can be moved from outside the system to inside the system. The shutter function prevents air entering the fan from flowing toward the blower.
第一発明の効果
風速が零ないし極低速下での低温試験を主循環
系の空気冷却器で行おうとしても空気冷却器を通
過する風量が小さいか殆んど無い場合には、この
空気冷却器では所要の温度にまで空気を冷却する
ことは実質上できない。したがつて、例えば試験
室内で発生する発熱(自動車の排気や照明器具等
の発熱)すら主循環系の空気冷却器では賄い切れ
ない場合も生ずる。第一発明の装置構成によると
風速が零ないし低速の領域での試験の場合には、
試験室の空気を補助循環系に送り、ここで所定の
温度にして試験室に供給することができ、補助循
環系の空気調和器だけで風速0ないし低速の領域
でも安定且つ継続的な試験を行なうことができる
ことになる。例えば無風または低風速下での低温
試験環境でも(この場合には、主循環系および補
助循環系を含む系内が低温環境に維持されている
のが通常である)補助循環系での冷却機能だけで
試験室内での発熱負荷は十分にまかなうことがで
きる。
Effects of the first invention Even if you try to conduct a low-temperature test at zero or very low wind speed using the air cooler in the main circulation system, if the amount of air passing through the air cooler is small or almost non-existent, the air cooling It is virtually impossible to cool the air to the required temperature using a container. Therefore, for example, even the heat generated in the test room (heat generated by automobile exhaust, lighting equipment, etc.) may not be completely covered by the air cooler in the main circulation system. According to the device configuration of the first invention, when testing in a region where the wind speed is zero or low,
The air in the test room can be sent to the auxiliary circulation system, where it is heated to a predetermined temperature and then supplied to the test room, making it possible to perform stable and continuous tests even in the range of 0 to low wind speeds using only the air conditioner of the auxiliary circulation system. You will be able to do it. For example, the cooling function of the auxiliary circulation system even in a low-temperature test environment with no wind or low wind speed (in this case, the system including the main circulation system and the auxiliary circulation system is usually maintained at a low temperature environment). This alone is sufficient to cover the heat generation load in the test room.
さらに、エアフイルタおよび空気加熱用の熱交
換器を主循環系から切り離しこれを補助循環系に
付加すると共に、主循環系の空気冷却器の冷却機
能の1部を補助循環系の空気冷却器で賄うように
したので、大風量が循環する主循環系の圧力損失
が低下し、この圧力損失の減少によつて主送風機
の動力を大幅に低下させることができる。そして
主循環系に設置する大型の空気冷却器の容量を小
型化することができることから冷凍設備の容量が
低減し、省エネルギー且つ低コストの設備とする
ことができる。 Furthermore, the air filter and air heating heat exchanger are separated from the main circulation system and added to the auxiliary circulation system, and part of the cooling function of the air cooler in the main circulation system is provided by the air cooler in the auxiliary circulation system. This reduces pressure loss in the main circulation system in which a large amount of air circulates, and this reduction in pressure loss allows the power of the main blower to be significantly reduced. Since the capacity of the large air cooler installed in the main circulation system can be reduced, the capacity of the refrigeration equipment can be reduced, resulting in energy-saving and low-cost equipment.
第二発明の効果
前記第一発明の効果に加え、第二発明では低温
環境試験を長時間にわたつて行なう場合に問題と
なる空気冷却器の着霜が防止できる。すなわち、
系内に取り入れる空気を予め除湿しておくことに
よつて、空気冷却器の着霜を減少させることがで
きるので、着霜による空気冷却器の冷却能力の低
下および通風圧力損失の増大を抑制することがで
きる。そして、ドレン処理の問題から開放される
と共に空気冷却器の容量を不必要に大きくするこ
とからも開放されるから低コストが達成される。 Effects of the Second Invention In addition to the effects of the first invention, the second invention can prevent frost formation on the air cooler, which is a problem when conducting low-temperature environment tests over a long period of time. That is,
By dehumidifying the air taken into the system in advance, it is possible to reduce frost formation on the air cooler, thereby suppressing a decrease in the cooling capacity of the air cooler and an increase in ventilation pressure loss due to frost formation. be able to. In addition, low costs are achieved since the problem of drain treatment is avoided and the capacity of the air cooler is not increased unnecessarily.
第三発明の効果
前記第一発明の効果に加え、第三発明では被測
定物(自動車)の入れ替え時において、偏向ベー
ンをシヤツター状態にして送風機に通ずる通路を
遮断しておけば、試験室後方の出入口から自動車
の出入と同時に温かく湿つた軽い空気が侵入した
ときに、これが試験室後方の循環系(試験室より
上流側)に急速に流れ出すのを防止することがで
きる。外気の侵入はそれに高濃度で含まれる水蒸
気の侵入を意味し、この水蒸気が系内の低温部に
結露し、結局は試験中に再蒸発して空気冷却器に
着霜する原因となるが、第三発明の構成によると
これが抑制され、長時間の安定な試験の遂行を可
能ならしめる。 Effects of the Third Invention In addition to the effects of the first invention, in the third invention, when replacing the object to be measured (automobile), if the deflection vane is put into the shutter state and the passage leading to the blower is blocked, the rear part of the test room can be removed. When warm, moist, light air enters through the entrance and exit of the test room at the same time as a car enters and leaves the test room, this can be prevented from rapidly flowing out into the circulation system at the rear of the test room (upstream of the test room). The intrusion of outside air means the intrusion of water vapor, which contains a high concentration of water vapor, which condenses on the low-temperature parts of the system and eventually re-evaporates during the test, causing frost to form on the air cooler. According to the configuration of the third invention, this is suppressed and it becomes possible to carry out a stable test for a long time.
以下に図面の実施例にしたがつて本発明装置を
詳述する。 The apparatus of the present invention will be explained in detail below according to the embodiments shown in the drawings.
第1図に示すように本発明装置の主構成は、環
境試験室1と、この試験室1の下流域の空気を吸
込んでこれを吐出するための送風機2と、この送
風機吐出空気を冷却するための空気冷却器3と、
この空気冷却器3を経た空気を試験室1に吹出す
ための吹出口4とによつて空気の主循環系を形成
し、この空気の主循環系に対してさらに試験室下
流域の空気を空気調和機5を介して試験室上流域
に循環する空気の補助循環系を連結してなる。ま
た、この両者の空気循環系に対する外気の導入経
路6を設け、この外気導入経路6にクーラー7お
よび除湿機8が介装される。さらにまた、主循環
系送風機2の吸込側にシヤツターとしても機能す
る偏流ベーン9が設けられる。
As shown in FIG. 1, the main components of the apparatus of the present invention include an environmental test chamber 1, a blower 2 for sucking air in the downstream area of the test chamber 1 and discharging it, and a blower 2 for cooling the air discharged from the blower. an air cooler 3 for
A main air circulation system is formed by the air outlet 4 for blowing out the air that has passed through the air cooler 3 into the test chamber 1, and air in the downstream area of the test room is further supplied to this main air circulation system. An auxiliary circulation system for circulating air to the upstream region of the test chamber is connected via an air conditioner 5. Further, an outside air introduction path 6 is provided for both air circulation systems, and a cooler 7 and a dehumidifier 8 are interposed in this outside air introduction path 6. Furthermore, a biased flow vane 9 is provided on the suction side of the main circulation system blower 2, which also functions as a shutter.
第1図の例では、主循環系は、下層階に環境試
験室1を水平に設置し、上層階に送風機2および
空気冷却器3を設置した風洞を設けて気流の1方
向性循環路を形成し、この循環路全体は建物内に
後述の防熱、防湿構造をもつてセツトされる。 In the example shown in Figure 1, the main circulation system has an environmental test chamber 1 installed horizontally on the lower floor, and a wind tunnel with a blower 2 and an air cooler 3 installed on the upper floor to create a unidirectional circulation path for airflow. The entire circulation path is set inside the building with a heat-proof and moisture-proof structure as described below.
環境試験室1は実質上等断面の風洞であり、床
部には自動車の駆動輪を載せてこれを周回自在と
するローラー10が取付けてあり、またこの自動
車排気を系外に導出するためのフレキシブルホー
ス11が備えてある。この試験室に車風速を与え
るための送風機2は、例えば翼の前と後に静翼を
取付けた前後置静翼付軸流送風機であり、風速の
調節は無段可変速電動機12により行なうように
なつている。風洞断面内での気流速度分布がこの
軸流送風機2の環状高速流によつて乱されないよ
うに、この送風機2は実験室1の下流域側に近づ
けて配置しかつ半径方向の風速分布の違いを緩和
できるに十分な長さをもつたデイフユーザー13
が送風機吐出側に設けてある。送風機の静翼並び
にデイフユーザー13によつて半径方向の気流の
不均一性が緩和され等速風が得られるに十分な距
離をもつた位置に空気冷却器3が配置される。す
なわち、流入風速の不均一によつて空気冷却度の
不等が生じるのを防止するために、送風機2によ
る環状不等速分布が実用上十分に減退した位置に
空気冷却器3を配置する。 The environmental test chamber 1 is a wind tunnel with a substantially equal cross-section, and a roller 10 is installed on the floor to allow the driving wheels of a car to be placed around it, and a roller 10 is installed on the floor to guide the car exhaust to the outside of the system. A flexible hose 11 is provided. The blower 2 for providing vehicle wind speed to this test chamber is, for example, an axial flow blower with front and rear stator vanes with stator blades attached at the front and rear of the blade, and the wind speed is adjusted by a continuously variable speed electric motor 12. It's summery. In order to prevent the air velocity distribution within the cross section of the wind tunnel from being disturbed by the annular high-speed flow of the axial blower 2, the blower 2 is placed close to the downstream side of the laboratory 1, and the air velocity distribution in the radial direction is different. Diff user 13 with sufficient length to alleviate
is provided on the blower discharge side. The air cooler 3 is placed at a position with a sufficient distance so that non-uniformity of the air flow in the radial direction is alleviated by the stationary blades of the blower and the differential user 13 to obtain uniform air velocity. That is, in order to prevent unevenness in the degree of cooling of the air due to unevenness in the inflow air speed, the air cooler 3 is arranged at a position where the annular nonuniform velocity distribution caused by the blower 2 is sufficiently reduced for practical purposes.
この空気冷却器3から吹出口4に至る経路にお
いては気流の180゜方向転換がなされる。この方向
転換により圧力損失を抑えるべく翼形等間隔ベー
ン14,15が設けてある。このベーン14,1
5は後述の如く消音機能をもつ特殊な構造を有し
ている。このベーン14,15で圧力損失を減ず
ることによつて送風動力を軽減することができる
と共に翼列の境界層後流の規則的不等速分布にお
ける不等速の程度を小さくする作用を供すること
になる。 In the path from the air cooler 3 to the outlet 4, the direction of the airflow is changed by 180°. Airfoil-shaped equally spaced vanes 14 and 15 are provided to suppress pressure loss due to this direction change. This vane 14,1
No. 5 has a special structure with a noise-muffling function, as will be described later. The vanes 14 and 15 can reduce the blowing power by reducing the pressure loss, and also serve to reduce the degree of inconsistency in the regular inconsistency distribution of the boundary layer wake of the blade row. become.
吹出口4の手前には整流洞16を設け、偏向ベ
ーン14,15によつて不可避的に生じた不等速
分布を緩和させる。このため、この整流洞16に
は例えば4枚の網からなる整流スクリーン17が
垂直に張り渡してある。またこの整流スクリーン
17の後流側には縮流洞18を設け、この絞り比
を適正にすることによつて整流スクリーン17に
よつてもなお残るじよう乱を減衰させる。また、
気流の左右方向の均一性については、風洞を左右
方向に非対称のないように構成し、送風機の翼の
後ろに設ける後置静翼によつて旋回流を防止する
ことによつて達成する。 A rectifying cavity 16 is provided in front of the air outlet 4 to alleviate the non-uniform velocity distribution inevitably caused by the deflection vanes 14 and 15. For this purpose, a rectifying screen 17 consisting of, for example, four meshes is vertically stretched over the rectifying cavity 16. Further, a contraction cavity 18 is provided on the downstream side of the rectifying screen 17, and by optimizing the aperture ratio, the turbulence that remains even with the rectifying screen 17 is attenuated. Also,
The lateral uniformity of the airflow is achieved by configuring the wind tunnel so that there is no asymmetry in the lateral direction, and by preventing swirling flow using rear stator vanes installed behind the blower blades.
次に本発明装置の1つの特徴である補助循環系
統であるが、これは、風速0での実験に対する熱
負荷に対処可能とし、空気清浄機能、空気加熱機
能を補助系に移すことによつて大風量の主循環系
の圧損を減らし、かつ空気冷却器3の容量の1部
を補助循環系に移すことによつて、ここでの圧損
も低下させ、総合的には省エネルギーを図りなが
ら精度と安定性を向上させるために設けられる。 Next is the auxiliary circulation system, which is one of the features of the device of the present invention.This system can cope with the heat load for experiments at zero wind speed, and by transferring the air cleaning function and air heating function to the auxiliary system. By reducing the pressure drop in the main circulation system, which has a large air volume, and by transferring part of the capacity of the air cooler 3 to the auxiliary circulation system, the pressure drop here is also reduced, and overall accuracy is improved while saving energy. Provided to improve stability.
この補助循環系の実験室1への吹出口20は、
主循環系の吹出口4の上方における室幅ほぼ1ぱ
いに設けられ、ハニカム構造の整流器21が取付
られている。他方、この補助循環系の吸込口22
も左右対称とすると共に主循環系の気流に乱れを
生じないように試験室1の下流域における主循環
系送風機吸込部の側方に設けられている。この補
助循環系に介装される空気調和機5は、送風機2
3、ヒーター24、冷却コイル25、フイルター
26を内装している。 The outlet 20 of this auxiliary circulation system to the laboratory 1 is
A rectifier 21 having a honeycomb structure is installed over approximately the full width of the chamber above the air outlet 4 of the main circulation system. On the other hand, the suction port 22 of this auxiliary circulation system
It is also provided laterally to the side of the main circulation system blower suction section in the downstream region of the test chamber 1 so as to be symmetrical and not to cause turbulence in the airflow of the main circulation system. The air conditioner 5 installed in this auxiliary circulation system includes a blower 2
3. A heater 24, a cooling coil 25, and a filter 26 are installed inside.
次に本装置の空気調和設備について説明する。
車風速130Kg/hrで−30℃程度の低温環境を作成
するための空気冷却用冷熱は冷凍機30によつて
製造する。この冷凍機30は例えばスクリユー圧
縮機による2段圧縮1段膨脹の冷凍機である。こ
の2段圧縮方式では、中低温の冷凍負荷実験の場
合は高圧段単独運転のみで稼動可能とすることが
できる。この冷凍機301組によつて、主循環系
と補助循環系の両者の冷却を同時に行なう構成と
することができる。すなわち、この冷凍機30の
冷媒液を主循環の空気冷却器3および補助循環系
の空気調和機の冷却コイル25に強制循環させ、
直膨方式により各冷却コイルで沸騰させることで
空気を冷却することができる。冷凍機30の冷却
水は冷却塔31に送つて冷却する。これにより系
内空気を所定値まで冷却しかつ任意値に安定性よ
く保持することができる。一方、系内空気の浄化
は、補助循環系の空気調和機5のエアフイルター
26によつて行ない、主循環系ではエアフイルタ
ーを省略することができる。この主循環系でのエ
アフイルターの省略は、省略しなかつた場合の圧
損増加に基づく全体設備容量の増大を防ぐことを
可能とする意味でその効果が大である。この補助
循環系のみのフイルター26によつても、空気浄
化は極めて短時間に達成される。例えば、系内空
気(試験室1内空気)の平均含塵濃度は、比色法
による測定にかかるような目に見えない塵埃につ
いては約3〜3.5分ごとに半減し、重量法による
測定にかかるような粗い塵埃については約1.1分
ごとに半減するような速度での浄化が達成され
る。したがつて、例えば車両に付着していた塵埃
の飛散が車風速によつて生じても試験室内の空気
は極めて単時間に浄化され、試験環境を高めるこ
とができる。 Next, the air conditioning equipment of this device will be explained.
A refrigerator 30 produces cold energy for air cooling to create a low temperature environment of about -30° C. at a vehicle wind speed of 130 kg/hr. The refrigerator 30 is, for example, a two-stage compression and one-stage expansion refrigerator using a screw compressor. With this two-stage compression system, in the case of medium-low temperature refrigeration load experiments, it is possible to operate only by operating the high-pressure stage alone. This set of 301 refrigerators allows a configuration in which both the main circulation system and the auxiliary circulation system are cooled at the same time. That is, the refrigerant liquid of the refrigerator 30 is forcedly circulated to the air cooler 3 of the main circulation system and the cooling coil 25 of the air conditioner of the auxiliary circulation system,
The direct expansion method allows air to be cooled by boiling it in each cooling coil. The cooling water of the refrigerator 30 is sent to a cooling tower 31 for cooling. Thereby, the air within the system can be cooled to a predetermined value and stably maintained at an arbitrary value. On the other hand, the air within the system is purified by the air filter 26 of the air conditioner 5 in the auxiliary circulation system, and the air filter can be omitted in the main circulation system. Omitting the air filter in the main circulation system has a great effect in that it makes it possible to prevent an increase in the overall installed capacity due to an increase in pressure loss that would otherwise occur. Even with the filter 26 of this auxiliary circulation system, air purification can be achieved in an extremely short time. For example, the average dust concentration in the system air (air inside test room 1) is halved every 3 to 3.5 minutes for invisible dust that requires colorimetric measurements, and for gravimetric measurements. Purification of such coarse dust particles is achieved at a rate of halving approximately every 1.1 minutes. Therefore, even if, for example, dust adhering to a vehicle is blown away by the wind speed of the vehicle, the air in the test chamber can be purified in a very short time, making it possible to improve the test environment.
系内の新鮮空気の導入は、主循環系の送風機吸
込側に位置する取入口35および補助循環系の空
気調和機5の吸込側管路36に連結する外気導入
経路6によつて行なう。この外気導入経路6には
外気取入口37から順にプレクーラー7、除湿機
8、アフタークーラー38が介装されており、プ
レクーラー7はエアフイルター39および送風機
40と共に外調機としてひとつのユニツトに構成
され、除湿機8は例えば活性アルミナ等を吸着剤
とする2系統の吸着塔を交互に切換え使用する構
造のものであり、この除湿機8で露点を例えば−
50℃以下とする。除湿空気を導入する目的は系内
の湿度を下げて冷却コイルでの着霜を防ぐためで
ある。この除湿機8にはバイパス経路41を設
け、実験条件によつては空気の相対湿度を所定値
に調節することが必要な場合に、このバイパス経
路41から含湿空気を取入れるようになつてい
る。たとえば、車両のウインドシールド表面の除
霜実験を行なうような場合に、気流の相対湿度が
低すぎると、ウインドシールド表面氷膜の昇華速
度が大きくなり、その実験結果に対する影響が無
視できなくなる。このような場合にバイパス経路
41を経る空気の調節によつて相対湿度を高める
ような調整が可能となる。 Fresh air is introduced into the system through an intake port 35 located on the blower suction side of the main circulation system and an outside air introduction path 6 connected to the suction side pipe line 36 of the air conditioner 5 of the auxiliary circulation system. A pre-cooler 7, a dehumidifier 8, and an after-cooler 38 are installed in this outside air introduction path 6 in this order from the outside air intake port 37. The dehumidifier 8 has a structure in which two systems of adsorption towers using, for example, activated alumina as an adsorbent are alternately used.
The temperature shall be below 50℃. The purpose of introducing dehumidified air is to lower the humidity in the system and prevent frost formation on the cooling coils. This dehumidifier 8 is provided with a bypass path 41, and when it is necessary to adjust the relative humidity of the air to a predetermined value depending on experimental conditions, humid air is taken in from this bypass path 41. There is. For example, when conducting a defrosting experiment on the surface of a vehicle windshield, if the relative humidity of the airflow is too low, the sublimation rate of the ice film on the windshield surface increases, and its influence on the experimental results cannot be ignored. In such a case, by adjusting the air passing through the bypass path 41, it is possible to increase the relative humidity.
系内への外気の侵入は車両入換時に不可避的に
発生する。車両の入換は試験室後方扉45の開閉
によつて行なう。この入換時において外気が送風
機側に侵入すると各種機器や壁面に結露、結霜を
生じ、系内湿分の増加による冷却コイルの着霜な
どの不都合を生じる。本装置においては、これを
防止するために、試験室1の下流側の偏向ベーン
9にシヤツター機能をも兼備するように工夫して
ある。すなわち、この偏向ベーン9は、試験室1
の下流側天井部を支点として回転可能に支持し、
図示のように偏向ベーンとして機能させる状態か
ら、第9図においてその詳細は後述するが、これ
を天井部に向けて回転させると、各翼は互いに間
隔を狭めつつ約90゜回転して相互にフラツトに接
触し合うようになり、送風機2に向う通路を完全
に遮断するシヤツターとしてしまい込まれるよう
になつている。このため、各翼を支持する支杆は
パンダグラフ機構を備えたものとしてある。この
気流制御手段9の上下の動作はチエーンによる巻
上げ機構によつて行ない、減速機および自動停止
装置を組込んで安全動作ができるようにすること
ができる。 Intrusion of outside air into the system inevitably occurs when vehicles are replaced. Vehicles are changed by opening and closing the test room rear door 45. If outside air enters the blower during this replacement, dew and frost will form on various devices and walls, causing inconveniences such as frost formation on the cooling coil due to increased moisture in the system. In order to prevent this, this device is designed so that the deflection vane 9 on the downstream side of the test chamber 1 also has a shutter function. That is, this deflection vane 9
It is rotatably supported using the downstream ceiling of the
As shown in the figure, when the vane is rotated toward the ceiling (details will be described later in Figure 9), each vane rotates about 90 degrees while narrowing the distance from each other. They come into contact with each other on the flat and are stowed away as a shutter that completely blocks the passage toward the blower 2. For this reason, the support rods that support each wing are equipped with a pandagraph mechanism. The up and down movement of the airflow control means 9 is performed by a hoisting mechanism using a chain, and a reduction gear and an automatic stop device can be incorporated to ensure safe operation.
実験の条件によつては、系内の昇温もしくは系
内の乾燥が必要な場合もある。このための系内空
気の加熱には送風機2の高速運転による動力吸収
によつてこれを実現することが可能である。また
昇温速度を高めたい場合に備えて、補助循環系の
空気調和機5にはヒーター24が取付けてあり、
このヒーターの稼動により系内の昇温を適宜コン
トロールすることができる。 Depending on the experimental conditions, it may be necessary to raise the temperature within the system or dry the system. This heating of the air within the system can be achieved by absorbing power by operating the blower 2 at high speed. In addition, in case it is desired to increase the temperature rise rate, a heater 24 is attached to the air conditioner 5 of the auxiliary circulation system.
By operating this heater, the temperature increase in the system can be appropriately controlled.
本低温環境実験装置はその実験の状態によつて
は系内外の温度差が50〜60℃にも達する状況が長
時間維持される。このために、防熱、防湿および
防露に特別の対策が必要とされる。このたに、本
装置においては以下に述べるような諸手段が構じ
られている。 Depending on the conditions of the experiment, this low-temperature environment experimental device can maintain a temperature difference of 50 to 60 degrees Celsius between the inside and outside of the system for a long period of time. For this reason, special measures are required for heat protection, moisture protection and dew protection. In addition, the present device includes various means as described below.
試験室1の壁および天井の構造は、第2図に示
すように、建物躯体コンクリート50から順に防
湿層51、断熱材層52、防湿層53、空気層5
4、スチームウール層55、パンチングメタル層
56からなり、鉄骨枠組(例えば梁や柱)を断熱
層51,52,53よりも内側つまり室内側に構
築する構造とし、鉄骨等の金属部材が室内外の熱
の懸け橋となるヒートブリツジを排除するように
してある。 As shown in FIG. 2, the structure of the walls and ceiling of the test chamber 1 includes, in order from the concrete building frame 50, a moisture-proof layer 51, a heat-insulating material layer 52, a moisture-proof layer 53, and an air layer 5.
4. Consisting of a steam wool layer 55 and a punched metal layer 56, the steel framework (for example, beams and columns) is built inside the insulation layers 51, 52, and 53, that is, on the indoor side, and the metal members such as the steel frame are installed indoors and outdoors. It is designed to eliminate heat bridges that act as bridges for heat.
実験室1の床構造は、第3図に示すように、建
物躯体コンクリート50′の上に、防湿層(アル
ミ箔入りプラスチツクシート)51′、繊維補強
コンクリート(FRC)板を最上面に貼付けたフ
オームポリスチレン断熱層58、防湿層(合成ゴ
ムシート)59、緩衝層60、押えモルタル層6
1、鋼板62,62′でアルミニウムハニカムコ
ア63を挟んだサンドイツチパネル層64を積層
して構成される。なお、第3図において、65は
熱伸縮を吸収するためのシリコン充填層を示して
いる。この床構造によつて、熱容量を非常に小さ
くすることができるので、装置の冷却時間短縮に
大きく貢献することができる。 As shown in Figure 3, the floor structure of laboratory 1 consists of a concrete building frame 50', a moisture barrier layer (plastic sheet containing aluminum foil) 51', and a fiber-reinforced concrete (FRC) board attached to the top surface. Foam polystyrene heat insulation layer 58, moisture proof layer (synthetic rubber sheet) 59, buffer layer 60, pressing mortar layer 6
1. It is constructed by laminating sandwich panel layers 64 with an aluminum honeycomb core 63 sandwiched between steel plates 62 and 62'. In addition, in FIG. 3, 65 indicates a silicon filling layer for absorbing thermal expansion and contraction. With this floor structure, the heat capacity can be made very small, which can greatly contribute to shortening the cooling time of the device.
系内の低温環境と外部とを継ぐ配線貫通部に対
しては、系外の湿気が系内に侵入せず、かつ導体
を通じての系外配線の冷却によつて外部での結露
が生じないことが必要とされる。このために、本
発明装置の配線貫通部は、第4図に示すように、
系内70と系外71(計測室)を仕切る構造壁7
2を貫通する枠体73(例えば木枠)を嵌め込
み、この枠体73の中に被覆電線74を断熱防湿
構造をもつて通すと共にこの枠体73の外面には
電線74の冷熱が漸次系外温度に向けて温度勾配
をもつように工夫が施されている。すなわち、電
線74を樹脂管75(例えば硬質塩ビ管)内に通
すと共にこの電線74と樹脂管75の空隙を充填
材例えばシリコンシーラント76で充填し、この
樹脂管75と枠体73との間隙を断熱材例えば発
泡ウレタン77で充填し、この発泡ウレタン77
と枠体73との境界には塗膜型防湿層78を施し
て断熱防湿構造を形成する。そして、この断熱防
湿構造の外面の樹脂管75に対しては、外部に向
けて漸次縮径するコーン(例えばシリコンコー
ン)79が形成してある。すなわち、導体断面積
と樹脂管75の外径に応じた適当な長さだけ枠体
73から外部へ樹脂管75を突出させ、この突出
した樹脂管75の外側に根元では厚く端部では薄
くなるような熱伝導性材料のコーン79を形成
し、コーン79の表面温度がほぼ均一となりかつ
導体断面積にほぼ比例する伝熱量に対応して、外
部空気との温度差が通常の条件では結露を起さな
い程度に小さくなるような表面積をもつように仕
上げ、これによつて、このコーン79内の導体が
外部空気でほぼ一様に加熱されて温度勾配をもつ
ようにし、この部分での結露を防止するようにし
てある。 For wiring penetrations that connect the low-temperature environment inside the system with the outside, moisture from outside the system must not enter the system, and condensation must not occur outside due to cooling of the wiring outside the system through the conductor. is required. For this reason, the wiring penetration part of the device of the present invention is as shown in FIG.
Structural wall 7 that partitions the inside of the system 70 and the outside of the system 71 (measurement room)
A frame body 73 (for example, a wooden frame) is fitted through the frame body 73, and the covered electric wire 74 is passed through the frame body 73 with a heat-insulating and moisture-proof structure, and the cold and heat of the electric wire 74 is gradually removed from the system on the outer surface of the frame body 73. Efforts have been made to create a temperature gradient towards the temperature. That is, the electric wire 74 is passed through a resin tube 75 (for example, a hard PVC tube), and the gap between the electric wire 74 and the resin tube 75 is filled with a filler material such as a silicone sealant 76, and the gap between the resin tube 75 and the frame 73 is closed. The foamed urethane 77 is filled with a heat insulating material such as urethane foam 77.
A paint film-type moisture-proof layer 78 is applied to the boundary between the frame body 73 and the frame body 73 to form a heat-insulating and moisture-proof structure. A cone (for example, a silicone cone) 79 whose diameter gradually decreases toward the outside is formed on the resin pipe 75 on the outer surface of this heat-insulating and moisture-proof structure. That is, the resin tube 75 is made to protrude from the frame 73 to the outside by an appropriate length depending on the cross-sectional area of the conductor and the outer diameter of the resin tube 75, and the resin tube 75 is thickened at the base and thinned at the end on the outside of the protruded resin tube 75. The cone 79 is made of a thermally conductive material such that the surface temperature of the cone 79 is almost uniform, and the temperature difference with the outside air is such that dew condensation does not occur under normal conditions, corresponding to the amount of heat transfer that is approximately proportional to the cross-sectional area of the conductor. As a result, the conductor inside this cone 79 is heated almost uniformly by the outside air and has a temperature gradient, thereby preventing dew condensation in this area. It is designed to prevent this.
系内の試験室1から系外の制御室に熱電対その
他の測温または制御配線のために設けるターミナ
ルボツクスについても、これを試験室1の壁面に
設けることが必要となり、この導線による外側で
の結露が問題となる。本発明装置のターミナルボ
ツクスは、例えば第5図に示すような構造とす
る。すなわち、低温室(試験室)80と常温室
(制御室)81とを区切る壁面82を貫通して枠
体83を取付け、この枠体83の低温室側に熱伝
導率の小さなパネル84を、この枠体83の常温
室側に熱伝導率の大きなパネル85を、それぞれ
貼り付けてボツクスを形成し、このボツクス内の
常温室側パネル85の方に片寄らせて断熱材86
を充填し、両パネルに接続端子87,88を設け
て相互に導通接続する。または枠体83の内面に
は防湿層89を設け、パネル84の外側にはケー
シング90を取付ける。熱伝導率の小さなパネル
84は例えばベークライトやエボナイト等の樹
脂、熱伝導率の大きなパネル85は例えば大理石
や花崗岩などの材質で構成し、断熱材は例えば発
泡ウレタンである。またボツクス内の導線91の
常温室側パネル85への接続端は、この導線91
とパネル85が熱的に伝導性がよくなるように接
続してある。これによつて、導線91によつて伝
達される冷熱がパネル85によつて拡散され、常
温室側での導線の冷却が緩和されて結露を効果的
に防止することができる。 Regarding the terminal box installed for thermocouples and other temperature measurement or control wiring from the test room 1 inside the system to the control room outside the system, it is necessary to install this on the wall of the test room 1. condensation becomes a problem. The terminal box of the apparatus of the present invention has a structure as shown in FIG. 5, for example. That is, a frame 83 is installed through a wall surface 82 that separates a cold room (test room) 80 and a room temperature room (control room) 81, and a panel 84 with low thermal conductivity is attached to the cold room side of this frame 83. Panels 85 with high thermal conductivity are pasted on the room temperature side of this frame 83 to form a box, and a heat insulating material 85 is placed toward the panel 85 on the room temperature side within this box.
are filled, and connection terminals 87 and 88 are provided on both panels to make a mutually conductive connection. Alternatively, a moisture-proof layer 89 is provided on the inner surface of the frame 83, and a casing 90 is attached to the outer side of the panel 84. The panel 84 with low thermal conductivity is made of a resin such as bakelite or ebonite, the panel 85 with high thermal conductivity is made of a material such as marble or granite, and the heat insulating material is made of urethane foam, for example. Also, the connection end of the conductor 91 inside the box to the room temperature side panel 85 is connected to the conductor 91 inside the box.
and panel 85 are connected to each other so as to have good thermal conductivity. As a result, the cold heat transmitted by the conducting wire 91 is diffused by the panel 85, the cooling of the conducting wire in the room temperature side is eased, and dew condensation can be effectively prevented.
主循環系に設置される送風機2も冷風に接触し
て冷却され、これの回転軸および軸受を経て系外
の外気温と接触する部材に結露を発生させる。こ
のため本装置においては、第1図および第6図に
示すように、系外に設置される電動機12から系
内の送風機2への動力伝達部において、少なくと
も系内の被冷却部材に直接接続された動力伝達部
がケーシング95で囲われており、このケーシン
グ95の系外端を開口させ、このケーシング95
の系内端近傍に除湿空気を導入する構成としてあ
る。この除湿空気は除湿機8を経た空気の1部を
利用し、これをフアン96によつてこのケーシン
グ95内に導入するようにすることができる。こ
れにより、送風機回転軸、軸受および全浮動の中
間軸をそれらの最低温度以下の露点の除湿空気で
包むことができ、結露が効果的に防止される。 The blower 2 installed in the main circulation system is also cooled by contact with the cold air, causing dew condensation to occur on members that come into contact with the outside temperature of the system via its rotating shaft and bearings. Therefore, in this device, as shown in FIGS. 1 and 6, the power transmission section from the electric motor 12 installed outside the system to the blower 2 inside the system is directly connected to at least the cooled member inside the system. The power transmission section is surrounded by a casing 95, and the system outer end of this casing 95 is opened, and this casing 95
The structure is such that dehumidified air is introduced near the inner end of the system. This dehumidified air can be made by using a part of the air that has passed through the dehumidifier 8 and introduced into the casing 95 by a fan 96. As a result, the blower rotating shaft, bearing, and all-floating intermediate shaft can be surrounded by dehumidified air having a dew point below their lowest temperature, and dew condensation can be effectively prevented.
装置全体または空気調和機5を支持する基礎構
造においても防熱、防湿処理が必要とされる。本
発明装置においては、この基礎の構築において、
第6図に示すような構造の基礎を作成する。第6
図には数ある基礎の1つが見えるが、第6図に示
した基礎98と同様の基礎が装置全体の各所に存
在する。この基礎98は、駆体コンクリート99
に予め適当な大きさの壺または溝100を構築し
ておき、この壺または溝100の内面に防熱防湿
層101を施工し、その上に保護モルタルを敷
き、このモルタルが硬化してから内部に鉄筋を組
み、コンクリートを流し込んで基礎台102を作
成する。断熱材としては例えばポリスチレンフオ
ーム板、防湿材としては例えばアルミ箔入りプラ
スチツクシートを使用することができる。 Heat-proofing and moisture-proofing treatments are also required for the entire device or the basic structure that supports the air conditioner 5. In the device of the present invention, in building this foundation,
Create the foundation of the structure as shown in Figure 6. 6th
Although one of the many foundations is visible in the figure, foundations similar to foundation 98 shown in FIG. 6 are present throughout the apparatus. This foundation 98 is made of concrete 99
A pot or groove 100 of an appropriate size is constructed in advance, a heat-proof and moisture-proof layer 101 is applied to the inner surface of the pot or groove 100, a protective mortar is laid on top of it, and after this mortar has hardened, the interior is A foundation 102 is created by assembling reinforcing bars and pouring concrete. As the heat insulating material, for example, a polystyrene foam plate can be used, and as the moisture barrier material, for example, a plastic sheet containing aluminum foil can be used.
本発明装置はクローズドシステムであり、主循
環系送風機の発生騒音を低減させることが必要で
ある。このため、この気流偏向部で次の2つの防
音処理が本発明装置に採用されている。その1つ
は翼形等間隔ベーン14,15がそれ自体消音機
能を有するように工夫した点である。すなわち、
このベーン14,15は孔穴き鋼板内にロツクウ
ールを充填した構造とし、これを等間隔に配列す
ることによつて消音効果を発揮させる。その2
は、試験室1の下流域から送風機2に至る通路に
特殊な消音器105(第1図および第6図)を配
置したことである。この消音器105は、孔穴き
アルミニウム板によつて2重筒を作り、この内外
筒の間隙にロツクウールを充填し、このように形
成した円筒の開口端が気流断面に基盤目状となる
ように多数配列したものである。さらに、試験室
1の壁面および天井面は既述の断熱機能のほかに
空気層やパンチングプレートの存在によつてこれ
が吸音機能も発揮する。このようにして装置内騒
音は大巾に低下させることができる。 The device of the present invention is a closed system, and it is necessary to reduce the noise generated by the main circulation system blower. For this reason, the following two soundproof treatments are adopted in the device of the present invention in this airflow deflection section. One of them is that the airfoil-shaped equally spaced vanes 14 and 15 are devised so that they themselves have a silencing function. That is,
The vanes 14 and 15 have a structure in which rock wool is filled in a perforated steel plate, and by arranging them at equal intervals, a sound-dampening effect is exhibited. Part 2
A special muffler 105 (FIGS. 1 and 6) is placed in the passageway from the downstream area of the test chamber 1 to the blower 2. This muffler 105 has a double cylinder made of perforated aluminum plates, and the gap between the inner and outer cylinders is filled with rock wool, so that the open end of the cylinder formed in this way forms a grid pattern in the cross section of the airflow. This is a large number of arrays. Furthermore, the walls and ceiling of the test chamber 1 not only have the heat insulation function described above, but also have a sound absorption function due to the presence of air layers and punched plates. In this way, the noise inside the device can be significantly reduced.
送風機2の駆動による電動機12の防振に対し
ては、第7図に示すような電動機12の支持台1
06を構築することによつて効果的に対処するこ
とができる。この防振支持台106は、電動機基
礎台107を頂点とする逆V字型対称体であり、
内部に鉄骨ステー108を装入したコンクリート
構造体である。この逆V字型対称体の鉄骨ステー
108によつて、上下、左右方向に剛性が高くな
り、この結果、防振効果が非常に良好となる。 For vibration isolation of the electric motor 12 due to the drive of the blower 2, a support stand 1 for the electric motor 12 as shown in FIG.
This can be effectively dealt with by constructing 06. This anti-vibration support stand 106 is an inverted V-shaped symmetrical body with the motor base stand 107 at its apex.
It is a concrete structure with steel stays 108 inserted inside. This inverted V-shaped symmetrical steel frame stay 108 increases the rigidity in the vertical and horizontal directions, resulting in a very good vibration isolation effect.
本発明の低温環境実験装置は、試験室1内の空
気を適宜サンプリングしてその空気状態を監視す
ることが必要であるが、このサンプリング空気は
低温空気であるので、これを例えば露点計などの
検出器に導くまでに加熱することが必要となる。
この加熱にさいしては、第1図に示すように、送
風機動力伝達部への送風管路110に熱交換器1
11を配置し、この熱交換器111にサンプリン
グ空気を導いて熱交換することによつてこれを加
熱してから空気計測器112に送り込む構成とす
ることができる。 The low-temperature environment experiment apparatus of the present invention requires sampling the air in the test chamber 1 as appropriate and monitoring the air condition. Since this sampling air is low-temperature air, it is necessary to use a dew point meter, etc. It is necessary to heat it before guiding it to the detector.
For this heating, as shown in FIG.
11 is disposed, sampling air is guided to this heat exchanger 111 and heat exchanged to heat it, and then sent to the air measuring device 112.
第8図は、環境試験室1内の圧力制御と自動車
排気管からの排気の制御を行なう制御系統図であ
る。この図に従つて、まず試験室1内の圧力(導
入空気量)制御例について説明すると、新鮮空気
導入系6において、除湿機8およびアフタークー
ラー38を出たところで風量検出器120によつ
てこの導入空気の風量検出を行ない、指示調節計
121によつて、外調器の送風機40を駆動する
ための無段可変速電動機の回転速度を制御して、
導入空気量を実質上一定に保つ。そのさい、補助
循環系の空気調和器5が送風機23が運転されて
いるときは制御弁122を開成、制御弁123を
閉成として、この新鮮空気が補助循環系統から試
験室1内に導入される。一方、送風機23が運転
されていないときは、逆に制御便122を閉成、
制御弁123を開成して、新鮮空気は主循環系の
入口35から試験室1内に導入される。また、外
調器の送風機40が運転されていないときは制御
弁122と123はいづれも閉成し、新鮮空気導
入系と試験室とは遮断される。この制御弁122
と123の制御は、制御論理装置124によつて
行なわれる。 FIG. 8 is a control system diagram for controlling the pressure inside the environmental test chamber 1 and controlling the exhaust from the automobile exhaust pipe. According to this figure, an example of controlling the pressure (introduced air amount) in the test chamber 1 will be explained first. Detecting the flow rate of the introduced air and controlling the rotational speed of a continuously variable speed electric motor for driving the blower 40 of the external air conditioner using the indicating controller 121.
The amount of air introduced is kept essentially constant. At that time, when the air conditioner 5 of the auxiliary circulation system is operating the blower 23, the control valve 122 is opened and the control valve 123 is closed, and this fresh air is introduced into the test chamber 1 from the auxiliary circulation system. Ru. On the other hand, when the blower 23 is not operating, the control valve 122 is closed,
With the control valve 123 open, fresh air is introduced into the test chamber 1 through the inlet 35 of the main circulation system. Further, when the blower 40 of the external air conditioner is not in operation, both the control valves 122 and 123 are closed, and the fresh air introduction system and the test room are cut off. This control valve 122
and 123 are controlled by control logic 124.
次に、排気制御について説明すると、試験室1
の排気を直接行なう排気フアン125は無段可変
速電動機で駆動されるものを使用し、自動車の排
気管126に接続する排気接続管127は、排気
管126とは隙間をあけて接続され、自動車排気
と共に試験室内の空気も吸込めるようなものを使
用する。130は差圧計であり、試験室1内圧力
と大気圧との圧力差をこの差圧計130が検出
し、この差圧が水柱で数mmないし数10mmの間の適
当な値に一定に維持されるように、指示調節計1
31によつて排気フアン125の回転速度を制御
し、排気量の調節を行なう。これにより、自動車
のエンジン負荷の比較的緩慢な変動に対応した試
験室の圧力制御が行なわれる。そのさい、差圧は
試験室内圧力の方が大気圧より僅かに高くなるよ
うに維持され、外気侵入を防止して外気中の湿分
による結露結霜を防ぐようにする。 Next, to explain exhaust control, test room 1
The exhaust fan 125 that directly exhausts the air is driven by a continuously variable speed electric motor, and the exhaust connection pipe 127 that connects to the exhaust pipe 126 of the vehicle is connected with a gap between the exhaust pipe 126 and the exhaust fan 125 that is driven by a continuously variable speed electric motor. Use a device that can suck in the air inside the test room as well as exhaust the air. 130 is a differential pressure gauge, and this differential pressure gauge 130 detects the pressure difference between the pressure inside the test chamber 1 and the atmospheric pressure, and this differential pressure is maintained constant at an appropriate value between several mm and several tens of mm in the water column. Adjust the indicating controller 1 so that
31 controls the rotational speed of the exhaust fan 125 and adjusts the exhaust amount. As a result, the pressure in the test chamber can be controlled in response to relatively slow fluctuations in the engine load of the automobile. At this time, the differential pressure is maintained so that the pressure in the test chamber is slightly higher than the atmospheric pressure to prevent outside air from entering and to prevent condensation and frost due to moisture in the outside air.
132は排気管128内の圧力と試験室1内の
圧力との圧力差を検出するための差圧計であり、
この差圧計132で検出される差圧が、ある比較
的小さな設定値よりも下まわろうとするときは、
指示調節計133によつて、それの設定値を保つ
べく、これの発信信号を優先して排気フアンの回
転速度を上昇させるようにする。なお134は制
御論理装置である。すなわち、自動車エンジン負
荷の比較的急激な変動のさいに、この自動車排気
が試験室内に放出されるのを防止する。より具体
的に述べると、定常状態では排気フアン125の
吸引力により排気管128内の圧力は試験室内の
圧力よりも低くなつているが、エンジン負荷の急
激な上昇に伴つて排気量が急に増大した場合、試
験室系内の空気容積が大きいのでこの排気量の急
増でも試験室内の圧力上昇は緩慢となり、差圧計
130による検出値では排気フアン125の回転
速度上昇も緩慢となり、吸入量が自動車排気量に
追いつかず、自動車排気が試験室内に放出されて
室内空気を汚染する恐れがある。このような事態
が発生するのを防止するために、差圧計132で
検出される差圧が設定値より下まわろうとすると
きに指示調節計133によつてそれを設定値に保
つべく、排気フアン125の回転速度を優先的に
上昇させるようにするのである。 132 is a differential pressure gauge for detecting the pressure difference between the pressure inside the exhaust pipe 128 and the pressure inside the test chamber 1;
When the differential pressure detected by this differential pressure gauge 132 is about to fall below a certain relatively small set value,
The indicating controller 133 increases the rotational speed of the exhaust fan by giving priority to the signal transmitted by the controller 133 in order to maintain the set value. Note that 134 is a control logic device. That is, this vehicle exhaust is prevented from being released into the test chamber during relatively rapid changes in vehicle engine load. To be more specific, in a steady state, the pressure in the exhaust pipe 128 is lower than the pressure in the test chamber due to the suction force of the exhaust fan 125, but as the engine load suddenly increases, the displacement suddenly decreases. When the air volume increases, the air volume within the test chamber system is large, so even with this rapid increase in displacement, the pressure within the test chamber will rise slowly, and according to the value detected by the differential pressure gauge 130, the rotational speed of the exhaust fan 125 will also increase slowly, and the suction amount will increase slowly. There is a risk that the exhaust volume will not be able to keep up with the volume of automobiles, and that automobile exhaust will be emitted into the test room and pollute the indoor air. In order to prevent such a situation from occurring, when the differential pressure detected by the differential pressure gauge 132 is about to fall below the set value, the exhaust fan is set so that the indicating controller 133 keeps it at the set value. The rotational speed of 125 is increased preferentially.
第9図は、先述のシヤツターとしても機能する
偏向ベーンを補足説明するための図である。この
偏向ベーンは第6図にも部分的に示されているよ
うに、偏向ベーンとして機能する位置(第6図の
実線で示す9)とシヤツターとして機能する位置
(第6図の破線で示す9)に収まるように構成さ
れる。この構造としては、第9図に図解的に示す
ようにパンタグラフを利用する。すなわち、各翼
140をパンタグラフ機構141のリンクのうち
互いに平行な一方のリンク(図で一点鎖線で示す
もの)のそれぞれに固定して等間隔で支持させ、
パンタグラフを一杯に伸長したときに各翼140
の方向が互いに平行となつて偏向ベーンとして機
能するようにし、パンタグラフを収縮したときに
各翼140の方向が一つの面内に整合して一枚の
シヤツター面として機能するようにする。そのさ
い、パンタグラフ機構141の一端142をコー
ナ部の天井部に回転可能に支持し、偏向ベーンと
して機能する位置143とシヤツターとして機能
する位置144との間を、パンタグラフ機構14
1の他端145に取りつけた巻上げチエーン14
6によつて移動できるようにする。シヤツターと
して機能する位置は、本実施例では第6図に見ら
れるように、試験室から送風機に通ずる天井部開
口を塞ぐ位置である。このように偏向ベーンを天
井部開口にシヤツターとして収納することによつ
て出入口45から被測定物を試験室内に自由に出
入りさせることができるとともに、その出入のさ
いに系内に侵入する空気が送風機側に流れるのを
防止することができる。 FIG. 9 is a diagram for supplementary explanation of the aforementioned deflection vane which also functions as a shutter. As partially shown in FIG. 6, this deflection vane is located at a position where it functions as a deflection vane (9 indicated by a solid line in FIG. 6) and at a position where it functions as a shutter (9 indicated by a broken line in FIG. 6). ). As this structure, a pantograph is used as schematically shown in FIG. That is, each wing 140 is fixed to one of the links of the pantograph mechanism 141 that is parallel to each other (indicated by a dashed line in the figure) and supported at equal intervals,
Each wing 140 when the pantograph is fully extended
The directions of the blades 140 are parallel to each other so that they function as deflection vanes, and when the pantograph is retracted, the directions of each blade 140 are aligned in one plane and function as a single shutter surface. At that time, one end 142 of the pantograph mechanism 141 is rotatably supported on the ceiling of the corner, and the pantograph mechanism 14
The hoisting chain 14 attached to the other end 145 of 1
6 allows for movement. In this embodiment, the position that functions as a shutter is a position that closes off the ceiling opening leading from the test chamber to the blower, as shown in FIG. By storing the deflection vane in the ceiling opening as a shutter, the object to be measured can be freely entered and exited from the entrance/exit 45 into the test chamber, and at the same time, the air entering and exiting the system can be This can prevent it from flowing to the side.
このようにして本発明は、例えば零下30℃、風
速130Km/hrの如き過酷かつ大風量の低温環境条
件を、省エネルギー的に精度よく安定して実現す
ることができる完成された低温風洞実験装置を提
供するものであり、且つ低風速、無風速、常温、
高温などの試験などの多目的使命も十分に遂行す
ることができる経済的且つ融通性のある装置を提
供するものである。 In this way, the present invention provides a complete low-temperature wind tunnel experimental device that can stably and accurately realize severe and large-airflow low-temperature environmental conditions, such as -30°C and wind speed of 130 km/hr, in an energy-saving manner. In addition, low wind speed, no wind speed, room temperature,
The objective is to provide an economical and flexible device that can satisfactorily perform multi-purpose missions such as high temperature testing.
第1図は本発明装置の実施例を示す機器配置系
統図、第2図は試験室壁または天井部構造を示す
断面図、第3図は試験室床構造を示す断面図、第
4図は試験室と外部とを連結する配線の壁面貫通
部の防露構造を示す断面図、第5図は試験室と制
御室とを導通配線するためのターミナルボツクス
の断面図、第6図は主循環系の送風機部分および
装置基礎部分を示す第1図の拡大断面図、第7図
は送風機電動機の防振支持台の正面図、第8図は
本発明装置の試験室内圧力制御を行なうための制
御系統図、第9図は本発明に従うシヤツターとし
ても機能する偏向ベーンを説明するための略断面
図である。
1……試験室、2……送風機、3……空気冷却
器、4……吹出口、5……空気調和機、6……外
気導入経路、7……クーラー、8……除湿機、9
……シヤツターとしても機能する偏向ベーン、1
4,15……偏向ベーン、20……補助循環系の
吹出口、24……ヒーター、26……フイルタ
ー、30……冷凍機、105……消音器、111
……熱交換器。
Fig. 1 is an equipment layout system diagram showing an embodiment of the device of the present invention, Fig. 2 is a sectional view showing the test chamber wall or ceiling structure, Fig. 3 is a sectional view showing the test room floor structure, and Fig. 4 is a sectional view showing the test chamber floor structure. A cross-sectional view showing the dew-proof structure of the wall penetration part of the wiring connecting the test room and the outside, Figure 5 is a cross-sectional view of the terminal box for connecting the test room and the control room, and Figure 6 is the main circulation. FIG. 1 is an enlarged sectional view showing the blower part of the system and the base of the device, FIG. 7 is a front view of the vibration-proof support for the blower motor, and FIG. 8 is a control for controlling the pressure in the test chamber of the device of the present invention. The system diagram, FIG. 9, is a schematic sectional view for explaining a deflection vane that also functions as a shutter according to the present invention. 1... Test room, 2... Blower, 3... Air cooler, 4... Outlet, 5... Air conditioner, 6... Outside air introduction route, 7... Cooler, 8... Dehumidifier, 9
...Deflection vane that also functions as a shutter, 1
4, 15... Deflection vane, 20... Auxiliary circulation system outlet, 24... Heater, 26... Filter, 30... Refrigerator, 105... Silencer, 111
……Heat exchanger.
Claims (1)
込んでこれを吐出するための送風機と、この吐出
空気を冷却するための空気冷却器と、この空気冷
却器を経た空気を前記試験室に吹出すための吹出
口とからなる空気の主循環系に対し、試験室下流
域の空気を空気調和機を介して試験室上流域に循
環する空気の補助循環系を連結した低温環境風洞
実験装置。 2 環境試験室と、この試験室下流域の空気を吸
込んでこれを吐出するための送風機と、この吐出
空気を冷却するための空気冷却器と、この空気冷
却器を経た空気を前記試験室に吹出すための吹出
口とからなる空気の主循環系に対し、試験室下流
域の空気を空気調和機を介して試験室上流域に循
環する空気の補助循環系を連結し、この両者の空
気循環系に外気を導入する経路を設け、この外気
導入経路にクーラーおよび除湿機を介装した低温
環境風洞実験装置。 3 環境試験室と、この試験室下流域の空気を吸
込んでこれを吐出するための送風機と、この吐出
空気を冷却するための空気冷却器と、この空気冷
却器を経た空気を前記試験室に吹出すための吹出
口とからなる空気の主循環系に対し、試験室下流
域の空気を空気調和機を介して試験室上流域に循
環する空気の補助循環系を連結し、試験室から主
循環系送風機の吸込側にいたる方向偏向部の突き
当たり壁に被測定物の出入口を設けると共にこの
方向偏向部に試験室から主循環系送風機に気流を
偏向させる偏向ベーンを設け、この偏向ベーンを
被測定物の出入のさいに該送風機に通ずる通路を
遮る位置にその全体を方向変換可能に設置すると
共に該通路を遮る位置にあるときに該通路に出入
口からの外気が侵入するのを遮断するシヤツター
として機能するように該偏向ベーンの各翼をパン
タグラフ機構で支持してなる低温環境風洞実験装
置。[Scope of Claims] 1. An environmental test chamber, a blower for sucking in air in the downstream region of the test chamber and discharging it, an air cooler for cooling the discharged air, and an air cooler that passes through the air cooler. An auxiliary air circulation system is connected to the main air circulation system consisting of an air outlet for blowing air out into the test chamber, and an auxiliary air circulation system that circulates air from the downstream area of the test room to the upstream area of the test room via an air conditioner. A low-temperature environment wind tunnel experimental device. 2. An environmental test chamber, a blower for sucking in air from the downstream area of this test chamber and discharging it, an air cooler for cooling this discharged air, and an air cooler that supplies the air that has passed through this air cooler to the test chamber. An auxiliary air circulation system is connected to the main air circulation system, which consists of an air outlet for blowing out air, and an auxiliary air circulation system that circulates air from the downstream area of the test room to the upstream area of the test room via an air conditioner. A low-temperature environment wind tunnel experiment device that has a path for introducing outside air into the circulation system, and a cooler and dehumidifier installed in this outside air introduction path. 3. An environmental test chamber, a blower for sucking in air from the downstream area of this test chamber and discharging it, an air cooler for cooling this discharged air, and an air cooler that supplies the air that has passed through this air cooler to the test chamber. An auxiliary air circulation system is connected to the main air circulation system, which consists of an air outlet for blowing air, and an auxiliary air circulation system that circulates air from the downstream area of the testing room to the upstream area of the testing room via an air conditioner. An entrance/exit for the object to be measured is provided on the end wall of the direction deflection section leading to the suction side of the circulation system blower, and a deflection vane is provided in this direction deflection section to deflect the airflow from the test chamber to the main circulation system blower. A shutter that is installed so that its entire direction can be changed in a position that blocks the passage leading to the blower when the object to be measured is taken in and out, and that blocks outside air from entering the passage from the entrance/exit when it is in a position that blocks the passage. A low-temperature environment wind tunnel experiment device in which each blade of the deflection vane is supported by a pantograph mechanism so as to function as a pantograph mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5174880A JPS56148038A (en) | 1980-04-21 | 1980-04-21 | Low-temperature environmental laboratory equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5174880A JPS56148038A (en) | 1980-04-21 | 1980-04-21 | Low-temperature environmental laboratory equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56148038A JPS56148038A (en) | 1981-11-17 |
JPS6315540B2 true JPS6315540B2 (en) | 1988-04-05 |
Family
ID=12895542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5174880A Granted JPS56148038A (en) | 1980-04-21 | 1980-04-21 | Low-temperature environmental laboratory equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56148038A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006064571A (en) * | 2004-08-27 | 2006-03-09 | Kawasaki Heavy Ind Ltd | Wind speed adjusting device of closed-circuit wind tunnel equipment |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS631948A (en) * | 1986-06-20 | 1988-01-06 | Toyo Eng Works Ltd | Low pressure environment testing chamber |
JP2712828B2 (en) * | 1990-11-28 | 1998-02-16 | 日立テクノエンジニアリング株式会社 | Environmental test equipment |
JP2007232290A (en) * | 2006-03-01 | 2007-09-13 | Sanki Eng Co Ltd | Air conditioning system in case of large fluctuation width of latent heat load |
JP4523014B2 (en) * | 2007-04-20 | 2010-08-11 | 株式会社東洋製作所 | Defrost system for large low temperature wind tunnel air cooler |
JP5127758B2 (en) * | 2009-03-27 | 2013-01-23 | エスペック株式会社 | Environmental control method and constant temperature and humidity device |
JP5183720B2 (en) * | 2010-11-15 | 2013-04-17 | 株式会社東洋製作所 | Environmental test equipment |
JP5143884B2 (en) * | 2010-11-15 | 2013-02-13 | 株式会社東洋製作所 | Environmental test equipment |
JP5330471B2 (en) * | 2011-09-01 | 2013-10-30 | 八洋エンジニアリング株式会社 | Air conditioner |
JP6094569B2 (en) * | 2014-12-15 | 2017-03-15 | 三菱重工冷熱株式会社 | Environmental test equipment |
JP6222340B2 (en) * | 2016-12-22 | 2017-11-01 | 三菱重工冷熱株式会社 | Control method for environmental test equipment |
CN108332312B (en) * | 2018-02-08 | 2020-03-27 | 中国汽车工程研究院股份有限公司 | Environmental wind tunnel humidity adjusting system and adjusting method |
CN108344554B (en) * | 2018-02-08 | 2019-11-01 | 中国汽车工程研究院股份有限公司 | The quick regulating system of environmental wind tunnel humidity and adjusting method |
CN109725175B (en) * | 2019-01-23 | 2021-02-05 | 北京星际荣耀空间科技有限公司 | Low-temperature rotating speed measurement test device |
JP7154712B2 (en) * | 2019-03-12 | 2022-10-18 | 三機工業株式会社 | Laboratory pressure controller |
JP7294944B2 (en) * | 2019-08-20 | 2023-06-20 | エスペック株式会社 | Environmental test equipment |
CN112556968B (en) * | 2021-02-23 | 2021-05-07 | 中国空气动力研究与发展中心低速空气动力研究所 | Three-quarter opening test section for acoustic wind tunnel test |
JP7290840B2 (en) * | 2021-05-13 | 2023-06-14 | 三菱重工冷熱株式会社 | Wind tube environmental test equipment |
JP7290839B2 (en) * | 2021-05-13 | 2023-06-14 | 三菱重工冷熱株式会社 | Wind tube environmental test equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5362594A (en) * | 1976-11-16 | 1978-06-05 | Fujitsu Ltd | Environmental testing method of apparatus |
-
1980
- 1980-04-21 JP JP5174880A patent/JPS56148038A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5362594A (en) * | 1976-11-16 | 1978-06-05 | Fujitsu Ltd | Environmental testing method of apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006064571A (en) * | 2004-08-27 | 2006-03-09 | Kawasaki Heavy Ind Ltd | Wind speed adjusting device of closed-circuit wind tunnel equipment |
Also Published As
Publication number | Publication date |
---|---|
JPS56148038A (en) | 1981-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6315540B2 (en) | ||
JP6251311B2 (en) | Low temperature regeneration desiccant dehumidification system for low dew point drying room | |
US6209622B1 (en) | Ventilation system | |
JP4294784B2 (en) | Air conditioning equipment and air conditioning method | |
CN107943162B (en) | Modular environmental control room | |
JP5107379B2 (en) | Control method and dehumidification system of dew point temperature in low dew point chamber | |
EP3613617B1 (en) | Vehicle air-conditioning equipment | |
JPH02310114A (en) | Air conditioner for vehicle | |
JP2010223487A (en) | Air conditioning system in building where many heat generating apparatuses are installed | |
KR102475078B1 (en) | Low-temperature regenerative desiccant dehumidification system for low dew point drying chamber | |
US11828673B2 (en) | Environmental testing chamber and air-conditioning system | |
CN104124626A (en) | Clean and dry air exchange system of high-pressure cabinet | |
CN204012330U (en) | The clean dry air switching system of high-voltage board | |
CN107864582B (en) | Dampproofing constant temperature formula fills electric pile of electric automobile | |
KR101995121B1 (en) | Data center air conditioning system control method | |
JP6222340B2 (en) | Control method for environmental test equipment | |
JPH11132496A (en) | Air conditioner | |
JPH037821A (en) | Air conditioner | |
JP6059302B1 (en) | Dehumidifier | |
CN211577033U (en) | Building door and window thermal insulation performance detection equipment | |
CN211592177U (en) | Top-mounted external cold air introducing apparatus for small refrigerator | |
JP7199655B2 (en) | Environmental test chamber and rectifying member used therefor | |
CN219995462U (en) | Cooling dehumidification equipment | |
JPH05157299A (en) | Heat exchanging ventilator | |
KR20180035291A (en) | Air conditioning system |