JP2006064571A - Wind speed adjusting device of closed-circuit wind tunnel equipment - Google Patents

Wind speed adjusting device of closed-circuit wind tunnel equipment Download PDF

Info

Publication number
JP2006064571A
JP2006064571A JP2004248595A JP2004248595A JP2006064571A JP 2006064571 A JP2006064571 A JP 2006064571A JP 2004248595 A JP2004248595 A JP 2004248595A JP 2004248595 A JP2004248595 A JP 2004248595A JP 2006064571 A JP2006064571 A JP 2006064571A
Authority
JP
Japan
Prior art keywords
air
flow rate
wind speed
passage
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004248595A
Other languages
Japanese (ja)
Other versions
JP4111938B2 (en
Inventor
Tetsuo Nogami
哲男 野上
Masaki Nagahisa
正樹 長久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2004248595A priority Critical patent/JP4111938B2/en
Publication of JP2006064571A publication Critical patent/JP2006064571A/en
Application granted granted Critical
Publication of JP4111938B2 publication Critical patent/JP4111938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform realizable controlled wind speed fluctuation at a blowout hole of wind tunnel equipment so as to simulate a natural wind for a test of an aerodynamic noise of an automobile or the like caused by a fluctuating wind. <P>SOLUTION: The air is forcibly circulated by a fan 2 through an approximately circularly-continuous air blowing passage 3 and blown out to a measuring part 5 through the blowout hole 4. This device is equipped with a high-pressure air storage tank 11A for blowing forcibly the air into the flow of the main stream air in the air blowing passage 3 and increasing the flow rate of the air blown out to the measuring part 5 through the blowout hole 4 to thereby heighten the wind speed, and a vacuum tank 11B for sucking forcibly the air from the air in the air blowing passage 3 and decreasing the flow rate of the air blown out to the measuring part 5 through the blowout hole 4 to thereby lower the wind speed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、変動風による、自動車等の空力騒音の試験用として自然風を模擬する空力実験等に使用される回流式風洞設備の風速調整装置に関するものである。   The present invention relates to a wind speed adjusting device for a circulating wind tunnel facility used for aerodynamic experiments or the like for simulating natural wind for testing aerodynamic noise caused by fluctuating wind.

従来、回流式風洞設備は、例えば図9に示すように、吸込口1(コレクタ)にて収集された空気をファン2(送風機)にて風速調整して、ほぼ環状に連続する送風路3を通じて強制的に循環回流させ、吹出口4(ノズル)を通じて測定部5に対し空気を吹き出すものである。そして、その測定部5から吸込口1を通じて空気を収集し、送風路3を通じて再び空気を循環回流させるようになっている。そのような回流式風洞設備では、吹出口4での風速はファン2の回転数により、送風路3を流れる定常流量としての空気主流の流量が決定される。   Conventionally, as shown in FIG. 9, for example, as shown in FIG. 9, the recirculating wind tunnel equipment adjusts the air speed of the air collected at the suction port 1 (collector) with a fan 2 (blower), and passes through an air passage 3 that is substantially annularly continuous. The circulation circuit is forcibly circulated, and the air is blown out to the measurement unit 5 through the outlet 4 (nozzle). Then, air is collected from the measuring unit 5 through the suction port 1, and the air is circulated again through the air blowing path 3. In such a recirculation type wind tunnel facility, the flow rate of the main air flow as a steady flow rate flowing through the air passage 3 is determined by the rotational speed of the fan 2 as the wind speed at the outlet 4.

送風路3の途中である各コーナー部には、空気の流れの方向を変えるコーナーベーン6が設けられている。そのうちファン2の下流側のコーナーベーン6の上流側には空気冷却装置(熱交換器)が設けられている。そして、吹出口4に最も近いコーナーベーン6の下流側には3つの整流金網7a,7b,7cと整流格子8とが設けられ、測定部5への空気を整流化する構成とされる。なお、吸込口1および吹出口4を囲んで、内部が測定部5である測定室31が配置されている。また、吸込口1の下流側には、風量の変動を緩和してファン2の吸込側の風量を整えるために複数の脈動防止口32が設けられている。   Corner vanes 6 that change the direction of air flow are provided at each corner portion in the middle of the air passage 3. Among them, an air cooling device (heat exchanger) is provided on the upstream side of the corner vane 6 on the downstream side of the fan 2. Then, three rectifying wire nets 7 a, 7 b, 7 c and a rectifying grid 8 are provided on the downstream side of the corner vane 6 closest to the outlet 4, and the air to the measuring unit 5 is rectified. In addition, a measurement chamber 31 having an internal measurement unit 5 is disposed so as to surround the suction port 1 and the air outlet 4. In addition, a plurality of pulsation prevention ports 32 are provided on the downstream side of the suction port 1 in order to relieve fluctuations in the air volume and adjust the air volume on the suction side of the fan 2.

このような回流式風洞設備における風速の変更を行う場合には、従来、(i)ファンの回転速度を変更したり、(ii)インレットガイドベーンによるファン吸込み流量を制限したり、(iii)ダンパによるファン吐出流量を制限したり、(iv)ファンの可変ピッチによる流量を制御したりしている。   When changing the wind speed in such a recirculating wind tunnel facility, conventionally, (i) changing the rotational speed of the fan, (ii) limiting the fan suction flow rate by the inlet guide vane, or (iii) the damper The fan discharge flow rate is limited by (4) or (iv) the flow rate is controlled by the variable pitch of the fan.

しかしながら、そのような従来の方法では、(1)応答速度が遅く、早い風速変動を行うことができず、(2)目的とする微小な風速変動を精度良く行うことができず、(3)風洞設備における主流空気の風速制御から、微小な変動領域の風速制御までをひとつの装置で行うため、高機能、高精度、高分解能でヒステリシスのない、高価な装置が必要になる、という問題がある。   However, in such a conventional method, (1) the response speed is slow and fast wind speed fluctuation cannot be performed, (2) the target minute wind speed fluctuation cannot be accurately performed, and (3) A single device is used to control the wind speed of the mainstream air in the wind tunnel facility and control the wind speed in a minute fluctuation region, so there is a problem that an expensive device with high functionality, high accuracy, high resolution and no hysteresis is required. is there.

つまり、実車サイズの試験を行うような風洞設備において、設備全体が大型であり、風洞設備内の風を変動させようとしても、空気の流れが大きな慣性を有するため、所望の周波数で変動風を再現することは困難である。また、送風機は測定部より離れた位置に設けられているため、送風機で変動風を発生させても、測定部ではその変動が鈍ってしまい、高周期な変動風を作り出すには不向きであるという問題がある。   In other words, in a wind tunnel facility that performs a test of the actual vehicle size, the entire facility is large, and even if you try to fluctuate the wind in the wind tunnel facility, the air flow has a large inertia, so you can fluctuate the wind at the desired frequency. It is difficult to reproduce. In addition, since the blower is provided at a position away from the measurement unit, even if fluctuating wind is generated by the blower, the fluctuation is dull in the measurement unit, and it is not suitable for creating high-cycle fluctuating wind. There's a problem.

そこで、吹出しノズルの前段に、開閉手段を備え口径の異なる音速ノズルを複数配置し、圧力制御手段にて圧力調節された圧縮空気を音速ノズルに供給するようにし、開放される音速ノズルの組み合わせと、圧力制御手段における供給圧力の調節とを併用することで、吹出ノズルにおける吹き出し速度を変動させるようにしたものが知られている(例えば、特許文献1参照)。
特開平10−19721号公報(段落0017〜0022,0025〜0028及び図1〜図3)
Accordingly, a plurality of sonic nozzles having opening / closing means and different diameters are arranged in front of the blowing nozzle, and compressed air pressure-adjusted by the pressure control means is supplied to the sonic nozzle, In addition, there is known a technique in which the blowing speed at the blowing nozzle is changed by using the adjustment of the supply pressure in the pressure control means together (for example, see Patent Document 1).
JP-A-10-19721 (paragraphs 0017 to 0022, 0025 to 0028 and FIGS. 1 to 3)

しかしながら、前記音速ノズルを利用した特許文献1記載の技術においては、音速ノズルそれぞれに対してノズルを開閉する開閉手段を設けているので、ノズル手段の構成が複雑なものとなる。そして、音速ノズルの数が多くなるほど、コストアップになる。   However, in the technique described in Patent Document 1 using the sonic nozzle, since the opening / closing means for opening and closing the nozzle is provided for each sonic nozzle, the configuration of the nozzle means becomes complicated. The cost increases as the number of sonic nozzles increases.

しかも、ノズル手段及び圧力制御手段を、コンプレッサで圧縮した主流空気が流れる送風路の途中に設けているので、ノズルの開閉や圧力制御により主流空気の流量を調整しなければならず、吹出速度の調整に大きな駆動力が必要になる。よって、実車サイズについて試験を行うような、流量が多い風洞設備に適用するのは困難である。つまり、特許文献1記載の技術は、被測定物の局所にのみ変動風を当てるようにした、部分的なスポット風を発生させる装置に過ぎないものである。   Moreover, since the nozzle means and the pressure control means are provided in the middle of the air flow path through which the mainstream air compressed by the compressor flows, the flow rate of the mainstream air must be adjusted by opening and closing the nozzle and controlling the pressure. A large driving force is required for adjustment. Therefore, it is difficult to apply to a wind tunnel facility with a large flow rate, such as a test for an actual vehicle size. In other words, the technique described in Patent Document 1 is merely an apparatus that generates a partial spot wind that applies a fluctuating wind only to the local area of the object to be measured.

そこで、発明者は、風洞設備において、ファンによる主流空気(定常流量)に対して強制的に空気を吹き込み、または前記主流空気から強制的に空気を吸い込むことで系全体の流量を変動させ、吹出口での風速を変動させるようにすれば、吹出口での風速を比較的容易に調整できることに着想し、本発明をなすに至ったものである。   In view of this, the inventor changed the flow rate of the entire system by forcibly blowing air to the mainstream air (steady flow rate) by the fan or forcibly sucking air from the mainstream air in the wind tunnel facility. It was conceived that the wind speed at the outlet can be adjusted relatively easily by changing the wind speed at the outlet, and the present invention has been made.

本発明は、変動風による、自動車等の空力騒音の試験用として自然風を模擬するよう、風洞設備の吹出口で実現性のある管理された風速変動を行うことを目的とする。   It is an object of the present invention to perform a controlled wind speed variation that is feasible at the outlet of a wind tunnel facility so as to simulate natural wind for testing aerodynamic noise of automobiles or the like due to the fluctuating wind.

請求項1の発明は、ほぼ環状に連続する送風路を通じて、送風機にて、空気を強制的に循環回流させ、測定部に対し吹出口を通じて、前記空気を吹き出させる回流式風洞設備の風速調整装置において、前記送風路を通じて流される空気の流量を強制的に変動させる流量変動手段が設けられ、前記流量変動手段が、前記送風機によって前記送風路を通じて流される定常流量の主流空気に対して、外部から空気(補助空気)を吹き込み、あるいは前記主流空気から外部に(一部の)空気を吸い出すことで、前記送風路を通じて流される空気の流量を強制的に変動させるものであることを特徴とする。つまり、請求項1の発明は、定常運転する送風機によって流される定常流量であって大容量の主流空気の流量を中心にして増加方向又は減少方向に変動を与えるものである。   According to the first aspect of the present invention, there is provided a wind speed adjusting device for a recirculation type wind tunnel facility that forcibly circulates air in a blower through a substantially circular continuous air passage and blows out the air through a blowout port to a measurement unit. The flow rate variation means for forcibly varying the flow rate of the air flowing through the air passage is provided, and the flow rate variation means is external to the main flow air having a steady flow rate that is flowed through the air passage by the blower. It is characterized by forcibly changing the flow rate of air flowing through the air blowing path by blowing air (auxiliary air) or sucking (partial) air from the mainstream air to the outside. In other words, the invention of claim 1 is a steady flow rate that is flowed by a blower that operates in a steady state, and changes in an increasing direction or a decreasing direction around the flow rate of a large volume of mainstream air.

このようにすれば、送風路を通じて流される空気の流量が、流量変動手段にて強制的に変動せしめられ、その変動に応じて、風洞設備の吹出口での風速が変動することになる。送風機によって前記送風路を通じて流される主流空気の定常流量を中心として、その定常流量に比べてかなり少ない空気量を増減して、風速を変動させるので、吹出口での風速を瞬時に変動させたり、また管理された周期で変動させることを比較的に容易に実現できる。   In this way, the flow rate of the air flowing through the air passage is forcibly changed by the flow rate changing means, and the wind speed at the outlet of the wind tunnel facility changes according to the change. Centering on the steady flow rate of the mainstream air flowing through the air flow path by the blower, the amount of air is considerably smaller than the steady flow rate, and the wind speed is fluctuated, so the wind speed at the outlet is fluctuated instantaneously, Further, it is relatively easy to change the frequency with a controlled period.

請求項2に記載のように、前記流量変動手段は、前記送風路に吹き込む圧縮空気を蓄える高圧貯気槽と、この高圧貯気槽から前記送風路に吹き込む空気量を調整する流量調整手段とを有し、前記測定部に対し前記吹出口を通じて吹き出させる空気の流量を、前記主流空気の定常流量に対し増加させる構成とすることができる。   According to a second aspect of the present invention, the flow rate varying means includes a high-pressure air reservoir that stores compressed air that is blown into the air passage, and a flow rate adjusting means that adjusts the amount of air that is blown from the high-pressure air reservoir into the air passage. The flow rate of the air blown out through the air outlet to the measuring unit can be increased with respect to the steady flow rate of the mainstream air.

このようにすれば、風洞設備において、送風機によって決定される定常流量の主流空気に、所定量の空気を強制的に吹き込むことで、系全体の空気の流量を増加方向に変動させ、測定部に向けての、吹出口での風速を比較的容易に増加させることができる。   In this way, in the wind tunnel facility, a predetermined amount of air is forcibly blown into the main flow air at a steady flow rate determined by the blower, so that the air flow rate of the entire system is changed in the increasing direction. The wind speed at the air outlet can be increased relatively easily.

請求項3に記載のように、前記流量変動手段は、前記送風路から空気を吸い込む負圧状態の真空槽と、この真空槽に前記送風路から吸い込む空気量を調整する流量調整手段とを有し、前記測定部に対し前記吹出口を通じて吹き出させる空気の流量を、前記主流空気の定常流量に対し減少させる構成とすることも可能である。   According to a third aspect of the present invention, the flow rate varying means includes a vacuum tank in a negative pressure state for sucking air from the air passage, and a flow rate adjusting means for adjusting the amount of air sucked into the vacuum tank from the air passage. And it is also possible to make it the structure which reduces the flow volume of the air which blows off through the said blower outlet with respect to the said measurement part with respect to the steady flow volume of the said mainstream air.

このようにすれば、風洞設備において、送風機によって決定される定常流量の主流空気から、所定量の空気を強制的に吸い込むことで、系全体の空気の流量を減少方向に変動させ、測定部に向けての、吹出口での風速を比較的容易に減少させることができる。   In this way, in the wind tunnel facility, the air flow rate of the entire system is changed in the decreasing direction by forcibly sucking a predetermined amount of air from the main flow air of the steady flow rate determined by the blower, and the measurement unit The wind speed at the air outlet can be reduced relatively easily.

請求項4に記載のように、前記風量変動手段は、前記送風路に吹き込む圧縮空気を蓄える高圧貯気槽と、この高圧貯気槽から前記送風路に吹き込む空気量を調整する流量調整手段とを有する第1の流量変動手段と、前記流量変動手段は、前記送風路から空気を吸い込む負圧状態の真空槽と、この真空槽に前記送風路から吸い込む空気量を調整する流量調整手段とを有する第2の流量変動手段とを備え、前記測定部に対し前記吹出口を通じて吹き出させる空気の流量を、前記主流空気の定常流量に対し増減させる構成とすることも可能である。   According to a fourth aspect of the present invention, the air volume variation means includes a high-pressure air reservoir that stores compressed air that is blown into the air passage, and a flow rate adjusting means that adjusts the amount of air that is blown from the high-pressure air reservoir into the air passage. First flow rate variation means, and the flow rate variation means includes: a vacuum tank in a negative pressure state for sucking air from the air blowing path; and a flow rate adjusting means for adjusting the amount of air sucked into the vacuum tank from the air flow path. The second flow rate variation means may be provided, and the flow rate of the air blown out through the outlet to the measurement unit may be increased or decreased with respect to the steady flow rate of the mainstream air.

このようにすれば、風洞設備において、送風機による定常流量の主流空気に強制的に所定量の空気を吹き込んで、系全体の空気の流量を増加方向に変動させ、吹出口での風速を増加させたり、送風機による定常流量の主流空気から強制的に所定量の空気を吸い込むことで、系全体の流量を減少方向に変動させ、吹出口での風速を減少させたりできるので、吹出口での風速を比較的容易に増減させることができる。   In this way, in the wind tunnel equipment, a predetermined amount of air is forcibly blown into the mainstream air at a steady flow rate by the blower, the air flow rate of the entire system is changed in the increasing direction, and the wind speed at the outlet is increased. Or by forcibly sucking a predetermined amount of air from the main flow air at a steady flow rate by the blower, the flow rate of the entire system can be changed in a decreasing direction, and the wind speed at the outlet can be reduced. Can be increased or decreased relatively easily.

以上のように、本発明は、流量変動手段にて、送風路を通じて流される主流空気の定常流量を中心として、その定常流量に比べてかなり少ない空気量を増減して、送風路を流れる空気の流量を強制的に変動させるようにしているので、風洞設備の吹出口での風速を瞬時に、また管理された周期で変動させることができる。よって、自動車等の空力騒音の試験用として自然風を模擬するよう、風洞設備の吹出口で実現性のある管理された風速変動を行うことが可能となる。   As described above, according to the present invention, the flow rate variation means increases or decreases the amount of air that is considerably smaller than the steady flow rate around the steady flow rate of the mainstream air that flows through the blower passage, and the air flowing through the blower passage. Since the flow rate is forcibly changed, the wind speed at the outlet of the wind tunnel facility can be changed instantaneously and in a controlled cycle. Therefore, it is possible to perform a controlled wind speed variation that is feasible at the outlet of the wind tunnel facility so as to simulate natural wind for testing aerodynamic noise of automobiles and the like.

以下本発明の実施の形態を図面に沿って説明する。なお、基本的な構成は、図9に示すものと同様であるので、同一の構成要素には同一の符号を用い、その説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. Since the basic configuration is the same as that shown in FIG. 9, the same reference numerals are used for the same components, and the description thereof is omitted.

図1は本発明に係る第1の実施の形態である回流式風洞設備の風速調整装置の概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of a wind speed adjusting device for a circulating wind tunnel facility according to a first embodiment of the present invention.

図1に示すように、送風路3の途中であってファン2の下流に、高圧貯気槽11Aが、流量調整弁12Aを有する接続通路13Aを通じて接続されている。この接続位置は、整流金網7の上流側である。高圧貯気槽11Aには、コンプレッサ14Aによって高圧の圧縮空気が蓄えられる。つまり、送風路3の途中であってファン2の下流に、送風路3を通じて流される空気の流量を強制的に変動させる流量変動手段(測定部に対し前記吹出口を通じて吹き出させる空気の流量を増加させる流量変動手段)が設けられている。   As shown in FIG. 1, a high-pressure air reservoir 11 </ b> A is connected in the middle of the air passage 3 and downstream of the fan 2 through a connection passage 13 </ b> A having a flow rate adjusting valve 12 </ b> A. This connection position is on the upstream side of the rectifying wire net 7. High pressure compressed air is stored in the high pressure air storage tank 11A by the compressor 14A. That is, the flow rate fluctuation means for forcibly changing the flow rate of the air flowing through the blower passage 3 in the middle of the blower passage 3 and downstream of the fan 2 (increasing the flow rate of air blown out through the outlet to the measurement unit) Flow rate variation means) is provided.

これにより、ファン2による定常流量G1に対し、流量調整弁12Aにて調整された流量G2が接続通路13Aを通じて空気流となって吹き込まれ、高圧貯気槽11Aの下流側で送風路3を流れる流量がG1+G2に変動(増加)して、吹出口4(開口断面積A1)より、増速された風速vでもって空気が吹き出される。つまり、主空気源であるファン2による主流とは別に、補助空気源である高圧貯気槽11Aから吹き込む空気によって主流空気の定常流量に対し所定の空気流量を増加させ、吹出口4での風速を増加させる。   Accordingly, the flow rate G2 adjusted by the flow rate adjustment valve 12A is blown as an air flow through the connection passage 13A with respect to the steady flow rate G1 by the fan 2, and flows through the blower passage 3 on the downstream side of the high-pressure air storage tank 11A. The flow rate fluctuates (increases) to G1 + G2, and air is blown out from the outlet 4 (opening sectional area A1) with the increased wind speed v. That is, apart from the main flow by the fan 2 that is the main air source, a predetermined air flow rate is increased with respect to the steady flow rate of the main flow air by the air blown from the high-pressure air storage tank 11A that is the auxiliary air source, and the wind speed at the outlet 4 is increased. Increase.

この場合、流量調整弁12Aの開口断面積が調整され、圧力P2(>圧力P1:主流空気の部分での圧力)で圧縮空気が蓄えられる高圧貯気槽11Aから、吹き込む空気の流量が調整される。   In this case, the opening cross-sectional area of the flow rate adjusting valve 12A is adjusted, and the flow rate of the air blown from the high-pressure air storage tank 11A in which the compressed air is stored at the pressure P2 (> pressure P1: pressure in the mainstream air portion) is adjusted. The

このとき、吹出口4での風速vは以下のように求められる。   At this time, the wind speed v at the outlet 4 is obtained as follows.

Figure 2006064571
ここで、G2は、高圧貯気槽11Aでの速度0、圧力P2の静止状態から圧力P1状態の送風路へ速度v1で吹き込む流量であり、ベルヌーイの定理から、
Figure 2006064571
Here, G2 is a flow rate at which the velocity 0 in the high-pressure reservoir 11A is blown at a velocity v1 from a stationary state of the pressure P2 to the air passage of the pressure P1 state, and from Bernoulli's theorem,

Figure 2006064571
v1は単位時間あたり、断面積A2を流れる流量に相当するので、
Figure 2006064571
Since v1 corresponds to the flow rate flowing through the cross-sectional area A2 per unit time,

Figure 2006064571
と表すことができる。
Figure 2006064571
It can be expressed as.

すなわち、風速を10%変動させたい場合は、流量を10%変動させることで実現できる。   That is, when it is desired to change the wind speed by 10%, it can be realized by changing the flow rate by 10%.

ここで、圧力P2を固定して断面積A2を周期的に変動させると、流量も周期的に変動させることができる。また、変動の振幅は、圧力P2を変動させることで変更することができる。   Here, when the pressure P2 is fixed and the cross-sectional area A2 is periodically changed, the flow rate can also be periodically changed. In addition, the fluctuation amplitude can be changed by changing the pressure P2.

また、図2に示すように、高圧貯気槽11Aに代えて、真空ポンプ14Bが接続された負圧状態の真空槽11Bを設けることも可能である。つまり、送風路3の途中であってファン2の下流に、送風路3を通じて流される空気の流量を強制的に変動させる流量変動手段(測定部5に対し吹出口4を通じて吹き出させる空気の流量を減少させる流量変動手段)が設けることができる。   Moreover, as shown in FIG. 2, it is also possible to provide a vacuum tank 11B in a negative pressure state to which a vacuum pump 14B is connected, instead of the high-pressure gas storage tank 11A. That is, the flow rate fluctuation means for forcibly changing the flow rate of the air flowing through the blower passage 3 in the middle of the blower passage 3 and downstream of the fan 2 (the flow rate of the air blown out through the outlet 4 to the measuring unit 5). A flow rate variation means for reducing the flow rate can be provided.

この場合には、ファン2による流量G1から、調整された流量G3が吸い込まれ、流量がG1−G3に変動(減少)して、吹出口4(開口断面積A1)より風速vでもって空気が吹き出される。つまり、ファン2による主流空気の流量の一部を外部である真空槽11B内に吸い込むことによって、送風路3を通じて流れる空気の流量を減少させ、吹出口4での風速を減少させる。この場合も、流量調整弁12Bが設けられた接続通路13Bを通じて吸い込まれる。   In this case, the adjusted flow rate G3 is sucked from the flow rate G1 by the fan 2, and the flow rate fluctuates (decreases) to G1-G3, so that air flows from the blowout port 4 (open sectional area A1) with the wind speed v. Blown out. That is, by sucking a part of the flow rate of the mainstream air from the fan 2 into the vacuum chamber 11B, which is outside, the flow rate of the air flowing through the blower passage 3 is reduced and the wind speed at the outlet 4 is reduced. Also in this case, the air is sucked through the connection passage 13B provided with the flow rate adjusting valve 12B.

このときは、流量調整弁12Bの開口断面積が調整され、圧力P3(<主流部分の圧力P1)である真空槽11Bに、調整された所定量の流量が吸い込まれる。真空槽11Bの圧力は真空ポンプ14Bによって調整され、流量調整弁12Bの開口断面積A3を調整することで、吸い込み量が調整される。   At this time, the opening cross-sectional area of the flow rate adjusting valve 12B is adjusted, and the adjusted predetermined amount of flow rate is sucked into the vacuum chamber 11B having the pressure P3 (<pressure P1 in the main flow portion). The pressure in the vacuum chamber 11B is adjusted by the vacuum pump 14B, and the suction amount is adjusted by adjusting the opening cross-sectional area A3 of the flow rate adjusting valve 12B.

このとき、吹出口4での風速vは以下のように求められる。   At this time, the wind speed v at the outlet 4 is obtained as follows.

Figure 2006064571
G3は、前記図1の場合と同様にして、
Figure 2006064571
G3 is the same as in the case of FIG.

Figure 2006064571
と表すことができる。
Figure 2006064571
It can be expressed as.

この場合も、図1と同様に、流量調整弁12Bの開口断面積A3を周期的に変動させることで、流量、すなわち風速を周期的に変動させることができる。   In this case as well, similarly to FIG. 1, the flow rate, that is, the wind speed can be periodically changed by periodically changing the opening cross-sectional area A3 of the flow rate adjusting valve 12B.

図3も、本発明の一実施の形態であるが、高圧貯気槽11A及び真空槽11Bを併用した構成とすることで、流量、すなわち風速の変動範囲(調整範囲)を大きくできるものとしている。14Cは下流側に位置する高圧貯気槽11Aに対してはコンプレッサとして機能し、上流側に位置する真空槽11Bに対しては真空ポンプとして機能するアクチュエータである。   FIG. 3 is also an embodiment of the present invention, but it is assumed that the flow rate, that is, the fluctuation range (adjustment range) of the wind speed can be increased by using the high-pressure reservoir 11A and the vacuum chamber 11B together. . 14C is an actuator that functions as a compressor for the high-pressure gas storage tank 11A located on the downstream side and functions as a vacuum pump for the vacuum tank 11B located on the upstream side.

図3での吹出口4での風速の変動範囲については、図2及び図3で示した装置の組合せとなり、図1の装置での、送風路を流れる空気の流量の変動範囲を0〜10%、図2の装置での変動範囲を−10%〜0とすれば、図3の装置では−10%〜+10%の変動範囲で、風速を調整することができるようになる。   About the fluctuation range of the wind speed in the blower outlet 4 in FIG. 3, it becomes the combination of the apparatus shown in FIG.2 and FIG.3, and the fluctuation | variation range of the flow volume of the air which flows through a ventilation path in the apparatus of FIG. %, If the fluctuation range in the apparatus of FIG. 2 is −10% to 0, the wind speed can be adjusted in the fluctuation range of −10% to + 10% in the apparatus of FIG.

流量調整弁12A,12Bとしては、開口断面積を変動させることができる周知のものを用いることができるが、そのほか、例えば、(1)バタフライ弁などの回転駆動する弁を電動機で連続して(定速で)回転(開閉)させるもの、(2)弁の開閉速度、及び開度を任意に制御するものを用いることも可能である。ここで、(1)のように弁を電動機で連続して(定速で)操作すれば、弁開度を正弦波で変動させることができ、(2)のように弁の開閉速度、及び開度を任意に制御すれば、正弦波のみならず、任意の波形/周期での流量変動を行える。   As the flow rate adjusting valves 12A and 12B, well-known ones capable of changing the opening cross-sectional area can be used. However, for example, (1) a valve that is rotationally driven such as a butterfly valve is continuously operated by an electric motor ( It is also possible to use one that rotates (opens and closes) at a constant speed, and (2) one that arbitrarily controls the opening and closing speed and opening of the valve. Here, if the valve is operated continuously (at a constant speed) with an electric motor as in (1), the valve opening can be varied with a sine wave, and the opening and closing speed of the valve as in (2), and If the opening degree is controlled arbitrarily, flow rate fluctuations can be performed not only in sine waves but also in arbitrary waveforms / cycles.

上記に示すとおり、風速を変動させる際に変動させるべきパラメータは、圧力と、開口断面積及びその変動周期(速度)であり、流量変動手段のパラメータは、高圧貯気槽11Aあるいは真空槽11Bの圧力と、流量調整弁12A,12Bの開口断面積及びそれの変動周期(速度)となる。   As described above, the parameters to be changed when the wind speed is changed are the pressure, the opening cross-sectional area and the fluctuation cycle (speed), and the parameters of the flow rate fluctuation means are those of the high-pressure reservoir 11A or the vacuum tank 11B. The pressure, the opening cross-sectional area of the flow rate adjusting valves 12A and 12B, and the fluctuation period (speed) thereof.

なお、前述した実施の形態では、接続通路13A,13Bには流量調整弁12A,12Bのみが設けられているが、後述の図7に示す装置と同様に、その流量調整弁12A,12Bに加えて、圧力調整弁12A’,12B’を設けることも可能である。   In the above-described embodiment, only the flow rate adjusting valves 12A and 12B are provided in the connection passages 13A and 13B, but in addition to the flow rate adjusting valves 12A and 12B as in the device shown in FIG. Thus, it is also possible to provide pressure regulating valves 12A ′ and 12B ′.

風速変動制御の調整する目標値は、補助空気源の圧力目標値を一定値としてもよいし、例えば図4に示すように、風速変動目標値の最大値変動値にゲインを乗じることで補助空気源(高圧貯気槽11A、真空槽11B)の圧力の目標値を変更するようにしてもよい。   The target value to be adjusted by the wind speed fluctuation control may be a constant pressure target value of the auxiliary air source. For example, as shown in FIG. 4, the auxiliary air is obtained by multiplying the maximum fluctuation value of the wind speed fluctuation target value by a gain. You may make it change the target value of the pressure of a source (the high pressure air tank 11A, the vacuum tank 11B).

また、図5に示すように、風速変動目標値を、補助空気源圧力(高圧貯気槽圧力、真空槽圧力)の絶対値の平方根で割り、その値にゲインを乗じることで流量調整弁12A,12Bの開口断面積の目標値を設定することができる。また、補助空気源の圧力を一定に制御すれば、図6に示すように、風速変動目標値にゲインを乗じることで流量調整弁の開口断面積の目標値を設定することもできる。ゲインは一定値でもよいが、風速変動目標値をパラメータとした可変ゲインとすることで、より精度の高い変動制御を行うことができる。   In addition, as shown in FIG. 5, the flow rate adjustment valve 12A is obtained by dividing the wind speed fluctuation target value by the square root of the absolute value of the auxiliary air source pressure (high pressure reservoir pressure, vacuum chamber pressure) and multiplying that value by the gain. , 12B, the target value of the opening cross-sectional area can be set. Further, if the pressure of the auxiliary air source is controlled to be constant, as shown in FIG. 6, the target value of the opening cross-sectional area of the flow rate adjusting valve can be set by multiplying the target wind speed fluctuation value by a gain. Although the gain may be a constant value, more accurate fluctuation control can be performed by using a variable gain with the wind speed fluctuation target value as a parameter.

図7は、本発明の一実施の形態で、変動する目標値を自動的に制御演算させる場合の構成の一例である。   FIG. 7 is an example of a configuration in the case of automatically controlling and calculating a changing target value in one embodiment of the present invention.

この場合、高圧貯気槽11A及び真空槽11Bに圧力検出器21A,21Bが設けられている。(高圧貯気槽11A及び真空槽11Bを送風路3に接続する)接続通路13A,13Bに設けられる流量調整弁12A,12B及び、(高圧貯気槽11A及び真空槽11Bをアクチュエータ14Cに接続する)接続通路13C,13Dに設けられる圧力調整弁12A’,12B’には、それぞれ開度検出器22A,22B,22A’,22B’が設けられている。ファン2の下流側にはファン風速検出器23が、吹出口4には吹出口風速検出器24がそれぞれ設けられている。   In this case, pressure detectors 21A and 21B are provided in the high-pressure gas storage tank 11A and the vacuum tank 11B. Flow rate adjusting valves 12A and 12B provided in the connection passages 13A and 13B (connecting the high pressure reservoir 11A and the vacuum chamber 11B to the air passage 3) and (connecting the high pressure reservoir 11A and the vacuum chamber 11B to the actuator 14C) ) Opening detectors 22A, 22B, 22A 'and 22B' are provided in the pressure regulating valves 12A 'and 12B' provided in the connection passages 13C and 13D, respectively. A fan wind speed detector 23 is provided on the downstream side of the fan 2, and an outlet air speed detector 24 is provided on the outlet 4.

これらの検出器21A,21B,22A,22B,22A’,22B’,23,24よりの信号に基づいて、補助空気源(高圧貯気槽11A及び真空槽11B)の圧力目標値P2,P3あるいは流量調整弁12A,12Bの(開口)断面積目標値が設定される。図8はそのときの制御ブロック図である。ここで、制御演算は、吹出口4での風速vについて目標値と検出値(測定値)が同じになるように演算するもので、代表的なものとしてPID演算がある。   Based on the signals from these detectors 21A, 21B, 22A, 22B, 22A ′, 22B ′, 23, 24, the pressure target values P2, P3 of the auxiliary air source (the high pressure storage tank 11A and the vacuum tank 11B) or The (opening) cross-sectional area target value of the flow rate adjusting valves 12A, 12B is set. FIG. 8 is a control block diagram at that time. Here, the control calculation is performed so that the target value and the detected value (measured value) are the same with respect to the wind speed v at the outlet 4, and a typical example is a PID calculation.

つまり、風速変動目標値の極性から、高圧貯気槽11Aから空気を吹き込んで空気流量を増加させるか、真空槽11Bに空気を吸い込んで空気流量を減少させるかが決定される。吹出口4での風速について目標値と検出値が同じになるように、流量調整弁12A,12Bによる断面積目標値が演算され、その演算結果に基づき流量調整弁12A,12Bの開度が調整される。   That is, it is determined from the polarity of the wind speed fluctuation target value whether air is blown from the high-pressure reservoir 11A to increase the air flow rate, or air is sucked into the vacuum chamber 11B to decrease the air flow rate. The cross-sectional area target value by the flow rate adjusting valves 12A and 12B is calculated so that the target value and the detected value for the wind speed at the outlet 4 are the same, and the opening degree of the flow rate adjusting valves 12A and 12B is adjusted based on the calculation result. Is done.

上記のように構成すれば、以下の点でメリットがある。   If comprised as mentioned above, there exists a merit in the following points.

(1)構成機器が少なく、構造が簡単になる。   (1) There are few components and the structure is simple.

流量変動手段として、アクチュエータ14C(コンプレッサ14A、又は真空ポンプ14B)と、タンク(高圧貯気槽11A、真空槽11B)があればよい。   As the flow rate variation means, there may be an actuator 14C (compressor 14A or vacuum pump 14B) and a tank (high pressure air storage tank 11A, vacuum tank 11B).

風速の変動(調整)は、主として、流量調整弁12A,12Bの開度制御(開口断面積の制御)により行うため、制御を簡単なものとすることができる。つまり、風速の変動時に圧力調整弁12A’,12B’にて所定の圧力を保持するようにすればよいからである。   Since the fluctuation (adjustment) of the wind speed is mainly performed by opening control (control of the opening cross-sectional area) of the flow rate adjusting valves 12A and 12B, the control can be simplified. That is, when the wind speed fluctuates, the pressure regulating valves 12A 'and 12B' need only hold a predetermined pressure.

(2)風速の変動を調整する要素は、流量調整弁12A,12Bの開口面積、タンク(高圧貯気槽11A、真空槽11B)の圧力値であり、両方ともにパラメータとして使用することができるので、風速についての広い調整範囲が実現可能である。   (2) The factors that adjust the fluctuation of the wind speed are the opening area of the flow rate adjusting valves 12A and 12B and the pressure value of the tank (high pressure storage tank 11A, vacuum tank 11B), both of which can be used as parameters. A wide adjustment range for wind speed is feasible.

流量調整弁12A,12Bの開度(開口面積)により風速(空気流量)の調整が可能で、圧力調整機能と組合せて風速(空気流量)を決定できる。流量調整弁12A,12Bの開閉速度を制御することにより周期的な変動を容易に実現することができる。なお、前記タンクの圧力は任意の値に変更可能で、風速変動制御中は、圧力を一定にする制御をする。   The wind speed (air flow rate) can be adjusted by the opening degree (opening area) of the flow rate adjustment valves 12A and 12B, and the wind speed (air flow rate) can be determined in combination with the pressure adjustment function. Periodic fluctuations can be easily realized by controlling the opening and closing speeds of the flow rate adjusting valves 12A and 12B. The tank pressure can be changed to an arbitrary value, and the pressure is controlled to be constant during the wind speed fluctuation control.

なお、主風速目標値を、変動風速の片振幅分下げて、変動風速の全域を吹出系統だけで担うことで、制御対象を減らしつつ、吸込系統を含めた2系統での制御と同じ効果を簡易に実現することができる。同じように主風速目標値を変動風速の片振幅分上げて、変動風速の全域を吸い込み系統だけで担うことが可能である。   In addition, by reducing the main wind speed target value by one amplitude of the variable wind speed and taking over the entire area of the variable wind speed with only the blowout system, the same effect as the control in the two systems including the suction system is achieved while reducing the control target. It can be realized easily. Similarly, the main wind speed target value can be increased by one amplitude of the variable wind speed, and the entire area of the variable wind speed can be handled only by the suction system.

なお、主流空気の定常流量や風速は、ファン2の回転数を制御することで調整される。   The steady flow rate and the wind speed of the mainstream air are adjusted by controlling the rotation speed of the fan 2.

なおまた、本発明は、一般的な風洞として回流式風洞に適用したが、風量を回流しないエッフェル式の風洞にも適用することができる。   In addition, the present invention is applied to a circulating wind tunnel as a general wind tunnel, but can also be applied to an Eiffel wind tunnel that does not circulate the air volume.

本発明に係る第1の実施の形態である回流式風洞設備の風速調整装置の概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the wind speed adjusting device of the reflow type wind tunnel equipment which is 1st Embodiment based on this invention. 本発明に係る第2の実施の形態である回流式風洞設備の風速調整装置の概略構成を示す図である。It is a figure which shows schematic structure of the wind speed adjusting device of the reflow type wind tunnel equipment which is the 2nd Embodiment which concerns on this invention. 本発明に係る第3の実施の形態である回流式風洞設備の風速調整装置の概略構成を示す図である。It is a figure which shows schematic structure of the wind speed adjusting device of the reflow type wind tunnel equipment which is the 3rd Embodiment which concerns on this invention. 風速変動制御を調整する補助空気源(高圧貯気層、真空槽)の圧力目標値の設定方法の説明図である。It is explanatory drawing of the setting method of the pressure target value of the auxiliary air source (high pressure air reservoir, vacuum tank) which adjusts wind speed fluctuation | variation control. 風速変動制御を調整する流量調整弁の断面積目標値の設定方法の説明図である。It is explanatory drawing of the setting method of the cross-sectional area target value of the flow regulating valve which adjusts wind speed fluctuation | variation control. 風速変動制御を調整する流量調整弁の断面積目標値の設定方法の説明図である。It is explanatory drawing of the setting method of the cross-sectional area target value of the flow regulating valve which adjusts wind speed fluctuation | variation control. 変動する目標値を自動的に制御演算させる場合の回流式風洞設備の風速調整装置の一実施の形態の概略構成を示す図である。It is a figure which shows schematic structure of one Embodiment of the wind speed adjustment apparatus of a reflow type wind tunnel installation in the case of carrying out control calculation automatically of the fluctuating target value. 図7に示す装置の制御ブロック図である。It is a control block diagram of the apparatus shown in FIG. 従来の回流式風洞設備の概略構成を示す図である。It is a figure which shows schematic structure of the conventional recirculation type wind tunnel equipment.

符号の説明Explanation of symbols

1 吸込口
2 ファン
3 送風路
4 吹出口
5 測定部
6 コーナーベーン
7 整流金網
8 整流格子
9 空気冷却装置
11A 高圧貯気槽
11B 真空槽
12A,12B 流量調整弁
12A’,12B’ 圧力調整弁
13A,13B 接続通路
14A コンプレッサ
14B 真空ポンプ
21A,21B 圧力検出器
22A,22B 流量調整弁開度検出器
22A’,22B’ 圧力調整弁開度検出器
31 測定室
32 脈動防止口
DESCRIPTION OF SYMBOLS 1 Suction port 2 Fan 3 Air passage 4 Outlet 5 Measuring part 6 Corner vane 7 Commutation wire net 8 Rectification grid 9 Air cooling device 11A High pressure air tank 11B Vacuum tank 12A, 12B Flow rate adjustment valve 12A ', 12B' Pressure adjustment valve 13A , 13B Connection passage 14A Compressor 14B Vacuum pump 21A, 21B Pressure detector 22A, 22B Flow rate adjustment valve opening detector 22A ', 22B' Pressure adjustment valve opening detector 31 Measurement chamber 32 Pulsation prevention port

Claims (4)

ほぼ環状に連続する送風路を通じて、送風機にて、空気を強制的に循環回流させ、測定部に対し吹出口を通じて、前記空気を吹き出させる回流式風洞設備の風速調整装置において、
前記送風路を通じて流される空気の流量を強制的に変動させる流量変動手段が設けられ、
前記流量変動手段が、前記送風機によって前記送風路を通じて流される定常流量の主流空気に対して、外部から空気を吹き込み、あるいは前記主流空気から外部に一部の空気を吸い出すことで、前記送風路を通じて流される空気の流量を強制的に変動させるものであることを特徴とする回流式風洞設備の風速調整装置。
In a wind speed adjusting device for a recirculation type wind tunnel facility that forcibly circulates air in a blower through a substantially continuous air passage, and blows out the air through a blow outlet to a measurement unit,
A flow rate varying means for forcibly varying the flow rate of the air flowing through the air passage is provided;
The flow rate variation means blows air from the outside to the steady flow main flow air flowing through the blow passage by the blower, or sucks out a part of the air from the main flow air to the outside through the blow passage. A wind speed adjusting device for a recirculation type wind tunnel facility, characterized by forcibly changing the flow rate of flowing air.
前記流量変動手段は、前記送風路に吹き込む圧縮空気を蓄える高圧貯気槽と、この高圧貯気槽から前記送風路に吹き込む空気量を調整する流量調整手段とを有し、
前記測定部に対し前記吹出口を通じて吹き出させる空気の流量を、前記主流空気の定常流量に対し増加させるものであることを特徴とする請求項1の回流式風洞設備の風速調整装置。
The flow rate varying means has a high-pressure reservoir that stores compressed air that is blown into the air passage, and a flow rate adjusting means that adjusts the amount of air that is blown from the high-pressure reservoir into the air passage.
2. The wind speed adjusting device for a recirculation type wind tunnel facility according to claim 1, wherein a flow rate of air blown through the blowout port to the measuring unit is increased with respect to a steady flow rate of the mainstream air.
前記流量変動手段は、前記送風路から空気を吸い込む負圧状態の真空槽と、この真空槽に前記送風路から吸い込む空気量を調整する流量調整手段とを有し、
前記測定部に対し前記吹出口を通じて吹き出させる空気の流量を、前記主流空気の定常流量に対し減少させるものであることを特徴とする請求項1の回流式風洞設備の風速調整装置。
The flow rate varying means has a vacuum tank in a negative pressure state for sucking air from the air passage, and a flow rate adjusting means for adjusting the amount of air sucked from the air passage into the vacuum tank,
2. The wind speed adjusting device for a recirculation type wind tunnel facility according to claim 1, wherein a flow rate of air blown through the blowout port to the measurement unit is reduced with respect to a steady flow rate of the mainstream air.
前記風量変動手段は、
前記送風路に吹き込む圧縮空気を蓄える高圧貯気槽と、この高圧貯気槽から前記送風路に吹き込む空気量を調整する流量調整手段とを有する第1の流量変動手段と、
前記流量変動手段は、前記送風路から空気を吸い込む負圧状態の真空槽と、この真空槽に前記送風路から吸い込む空気量を調整する流量調整手段とを有する第2の流量変動手段とを備え、
前記測定部に対し前記吹出口を通じて吹き出させる空気の流量を、前記主流空気の定常流量に対し増減させるものであることを特徴とする請求項1の回流式風洞設備の風速調整装置。
The air volume variation means is
A first flow rate variation means having a high pressure reservoir for storing compressed air to be blown into the blower passage, and a flow rate adjusting means for adjusting the amount of air blown from the high pressure reservoir to the blower passage;
The flow rate varying means includes a second flow rate varying means having a vacuum chamber in a negative pressure state for sucking air from the air blowing path, and a flow rate adjusting means for adjusting the amount of air sucked into the vacuum tank from the air blowing path. ,
2. The wind speed adjusting device for a recirculation type wind tunnel facility according to claim 1, wherein the flow rate of air blown through the blowout port to the measuring unit is increased or decreased with respect to the steady flow rate of the mainstream air.
JP2004248595A 2004-08-27 2004-08-27 Wind speed adjustment device for recirculating wind tunnel equipment Active JP4111938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248595A JP4111938B2 (en) 2004-08-27 2004-08-27 Wind speed adjustment device for recirculating wind tunnel equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248595A JP4111938B2 (en) 2004-08-27 2004-08-27 Wind speed adjustment device for recirculating wind tunnel equipment

Publications (2)

Publication Number Publication Date
JP2006064571A true JP2006064571A (en) 2006-03-09
JP4111938B2 JP4111938B2 (en) 2008-07-02

Family

ID=36111181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248595A Active JP4111938B2 (en) 2004-08-27 2004-08-27 Wind speed adjustment device for recirculating wind tunnel equipment

Country Status (1)

Country Link
JP (1) JP4111938B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122152A (en) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd Method and device for forecasting fluctuating airflow rate in wind tunnel
CN102305700A (en) * 2011-08-24 2012-01-04 中国科学院力学研究所 Shock tunnel vacuum tank device with wave absorption structure
CN102393638A (en) * 2011-10-14 2012-03-28 西北工业大学 Synchronous data acquisition system used in wind tunnel based on stable dynamic pressure control
CN102609009A (en) * 2012-04-13 2012-07-25 欧进萍 Control method and device for air-sucking/blowing of structure around flow field
CN103884487A (en) * 2014-03-04 2014-06-25 同济大学 Photovoltaic passage ventilation quantity testing device
CN104657578A (en) * 2014-11-14 2015-05-27 西南交通大学 Method for obtaining intensity of natural wind inside extra-long inclined-shaft free tunnel through meteorological data
KR101526112B1 (en) * 2014-02-26 2015-06-04 울산대학교 산학협력단 The fluctuating wind reproducing apparatus
JP2017223553A (en) * 2016-06-15 2017-12-21 エスペック株式会社 Environmental test device and air conditioner
CN108458852A (en) * 2018-05-24 2018-08-28 中国航空工业集团公司沈阳空气动力研究所 A kind of high-temperature tunnel quick changeable temperature potential device and alternating temperature voltage-transforming method
CN109696288A (en) * 2018-12-03 2019-04-30 中国辐射防护研究院 A kind of simulation tests in environment wind tunnel device and its experiment detection method
CN110044572A (en) * 2019-05-23 2019-07-23 重庆大学 Tornado simulator horizontally moving device
CN110361157A (en) * 2019-08-26 2019-10-22 沈阳航空航天大学 A kind of low speed reflux wind tunnel speed stability control method
CN112649173A (en) * 2020-12-30 2021-04-13 哈尔滨工业大学 Return flow type wind tunnel device for simulating low-pressure low-density dust storm environment of mars

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102019151B (en) * 2009-09-18 2012-12-19 北京航空航天大学 Single-loop sand and dust material circulation and sand and dust concentration control system and method for sand and dust blowing environment simulation system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752642U (en) * 1980-09-10 1982-03-26
JPS61178634A (en) * 1985-02-01 1986-08-11 Ishikawajima Harima Heavy Ind Co Ltd High pressure and low temperature wind tunnel
JPS6315540B2 (en) * 1980-04-21 1988-04-05 Takasago Thermal Engineering
JPH072950U (en) * 1993-06-10 1995-01-17 三菱重工業株式会社 Suction type impact wind tunnel
JPH0719993A (en) * 1991-12-31 1995-01-20 Kawasaki Heavy Ind Ltd Operation control device for blowout type wind tunnel
JP2001208643A (en) * 2000-01-28 2001-08-03 Ishikawajima Harima Heavy Ind Co Ltd Modular wind tunnel device
JP2002296143A (en) * 2001-04-02 2002-10-09 Hiromori Miyagi Wind tunnel system with omnidirectional wind direction
JP2005351791A (en) * 2004-06-11 2005-12-22 Mitsubishi Heavy Ind Ltd Fluctuation wind addition device, and wind tunnel device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315540B2 (en) * 1980-04-21 1988-04-05 Takasago Thermal Engineering
JPS5752642U (en) * 1980-09-10 1982-03-26
JPS61178634A (en) * 1985-02-01 1986-08-11 Ishikawajima Harima Heavy Ind Co Ltd High pressure and low temperature wind tunnel
JPH0719993A (en) * 1991-12-31 1995-01-20 Kawasaki Heavy Ind Ltd Operation control device for blowout type wind tunnel
JPH072950U (en) * 1993-06-10 1995-01-17 三菱重工業株式会社 Suction type impact wind tunnel
JP2001208643A (en) * 2000-01-28 2001-08-03 Ishikawajima Harima Heavy Ind Co Ltd Modular wind tunnel device
JP2002296143A (en) * 2001-04-02 2002-10-09 Hiromori Miyagi Wind tunnel system with omnidirectional wind direction
JP2005351791A (en) * 2004-06-11 2005-12-22 Mitsubishi Heavy Ind Ltd Fluctuation wind addition device, and wind tunnel device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122152A (en) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd Method and device for forecasting fluctuating airflow rate in wind tunnel
CN102305700A (en) * 2011-08-24 2012-01-04 中国科学院力学研究所 Shock tunnel vacuum tank device with wave absorption structure
CN102393638A (en) * 2011-10-14 2012-03-28 西北工业大学 Synchronous data acquisition system used in wind tunnel based on stable dynamic pressure control
CN102609009A (en) * 2012-04-13 2012-07-25 欧进萍 Control method and device for air-sucking/blowing of structure around flow field
KR101526112B1 (en) * 2014-02-26 2015-06-04 울산대학교 산학협력단 The fluctuating wind reproducing apparatus
CN103884487A (en) * 2014-03-04 2014-06-25 同济大学 Photovoltaic passage ventilation quantity testing device
CN104657578A (en) * 2014-11-14 2015-05-27 西南交通大学 Method for obtaining intensity of natural wind inside extra-long inclined-shaft free tunnel through meteorological data
JP2017223553A (en) * 2016-06-15 2017-12-21 エスペック株式会社 Environmental test device and air conditioner
CN108458852A (en) * 2018-05-24 2018-08-28 中国航空工业集团公司沈阳空气动力研究所 A kind of high-temperature tunnel quick changeable temperature potential device and alternating temperature voltage-transforming method
CN108458852B (en) * 2018-05-24 2024-03-29 中国航空工业集团公司沈阳空气动力研究所 Rapid temperature and pressure changing device and temperature and pressure changing method for high-temperature wind tunnel
CN109696288A (en) * 2018-12-03 2019-04-30 中国辐射防护研究院 A kind of simulation tests in environment wind tunnel device and its experiment detection method
CN110044572A (en) * 2019-05-23 2019-07-23 重庆大学 Tornado simulator horizontally moving device
CN110044572B (en) * 2019-05-23 2023-11-17 重庆大学 Horizontal moving device of tornado simulator
CN110361157A (en) * 2019-08-26 2019-10-22 沈阳航空航天大学 A kind of low speed reflux wind tunnel speed stability control method
CN112649173A (en) * 2020-12-30 2021-04-13 哈尔滨工业大学 Return flow type wind tunnel device for simulating low-pressure low-density dust storm environment of mars
CN112649173B (en) * 2020-12-30 2023-08-11 哈尔滨工业大学 Reflux type wind tunnel device for simulating Mars low-pressure low-density dust storm environment

Also Published As

Publication number Publication date
JP4111938B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4111938B2 (en) Wind speed adjustment device for recirculating wind tunnel equipment
CN104848904B (en) Inlet duct flow system for measuring quantity
KR100381464B1 (en) Turbomachinery with variable angle fluid guiding devices
CN103809437B (en) A kind of constant air capacity control of motor
US20030056580A1 (en) Method and apparatus for reducing pressure fluctuations in supersonic wind tunnel circuit
WO2014076814A1 (en) Module-type data center and control method thereof
JP2011058494A (en) Surge margin regulation
CN109059217B (en) Total air volume control method of variable air volume air conditioning system based on operation curve
JP2009250214A (en) Fan device for wind-driven electric power generation device and wind-driven electric power generation device
KR20090041851A (en) Ventilating device
CN108139091B (en) Air conditioner
CN107869830A (en) Air-conditioner control method and device
JP2019011884A (en) Room Pressure Control System
JP2011112271A (en) Wind speed sensor, variable air quantity unit and air conditioning system
CN105841241A (en) Cabinet air conditioner
CN107489777A (en) Volume damper, vav terminal and air-conditioning system for air channel
EP3392484B1 (en) System and method for regulating flow in turbomachines
KR20170087681A (en) Wind tunnel
CN207213204U (en) Volume damper, vav terminal and air-conditioning system for air channel
JPH10252691A (en) Moving blade variable axial flow fan and operation method thereof
CN108799177A (en) A kind of intelligent blower method for controlling number of revolution
JP2008223613A (en) Control device for internal combustion engine with supercharger
CN209372360U (en) It is a kind of to blow formula gust wind tunnel with drainage section
CN112857703A (en) Active air inlet grille sealing performance test system
NO347320B1 (en) Plant and Method of Controlling an Industrial Plant having a Flue Gas Processing System

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R150 Certificate of patent or registration of utility model

Ref document number: 4111938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150418

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250