JPS63153286A - Insulating surface-treated steel sheet having excellent heat resistance and its production - Google Patents

Insulating surface-treated steel sheet having excellent heat resistance and its production

Info

Publication number
JPS63153286A
JPS63153286A JP30063186A JP30063186A JPS63153286A JP S63153286 A JPS63153286 A JP S63153286A JP 30063186 A JP30063186 A JP 30063186A JP 30063186 A JP30063186 A JP 30063186A JP S63153286 A JPS63153286 A JP S63153286A
Authority
JP
Japan
Prior art keywords
steel sheet
film
heat resistance
aluminum
excellent heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30063186A
Other languages
Japanese (ja)
Inventor
Keiji Izumi
圭二 和泉
Takenori Deguchi
出口 武典
Megumi Murakami
めぐみ 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP30063186A priority Critical patent/JPS63153286A/en
Publication of JPS63153286A publication Critical patent/JPS63153286A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain the title insulating steel sheet having excellent heat resistance by forming the films of the oxides of Zr and Ti on the surface of an aluminized steel sheet, etc., and then coating a soln. of the alkoxides of Al and Si thereon. CONSTITUTION:An alcoholic soln. contg. >=0.005wt% >=1 kind among the alkoxide of Zr or Ti or the metal acetylacetonate is coated on the surface of a steel sheet plated with Al or an Al-Zn alloy. The plated sheet is heated at 200-600 deg.C, and the material is dehydrated and condensed to form the film of a metal oxide. An alcoholic soln. contg. >=0.01% >=1 kind among the alkoxide of Al or Si and a metal acetylacetonate is coated on the above-mentioned film to form a film. By this method, a surface-treated steel sheet having excellent heat resistance and insulating property and good appearance is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミニウム系やアルミニウム−亜鉛合金系め
っき鋼板のごとき耐熱めつき鋼板表面に金属酸化物皮膜
を形成して、耐熱性、電気絶縁性を付与した表面処理鋼
板およびその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention forms a metal oxide film on the surface of a heat-resistant plated steel plate, such as an aluminum plated steel plate or an aluminum-zinc alloy plated steel plate, thereby improving heat resistance and electrical insulation properties. The present invention relates to a surface-treated steel sheet provided with and a method for manufacturing the same.

(従来技術) アルミニウム系やアルミニウム−亜鉛合′に系のめっき
鋼板は耐熱性に優れているので、従来上り種々の耐熱用
途に使用されている。しかし近年その用途は単なる耐熱
的用途だけではなく、加熱されたり、発熱したりする電
気的用途にも及び、耐熱絶縁性のものが要求されるよう
になってきた。
(Prior Art) Aluminum-based or aluminum-zinc alloy-based plated steel sheets have excellent heat resistance, and have thus far been used for various heat-resistant applications. However, in recent years, their uses have expanded beyond mere heat-resistant uses to include electrical uses where they are heated or generate heat, and heat-resistant and insulating properties have come to be required.

従来これらのめっき鋼板に耐熱絶縁性を付与する方法と
しては、シリコーンポリマー、シリコーンフェス、フッ
素樹脂塗料あるいはポリイミド樹脂塗料を塗布する方法
やホーロー皮膜を形成する方法が適用され、一部使用さ
れている。
Conventionally, the methods of imparting heat-resistant insulation to these plated steel sheets include applying silicone polymer, silicone face, fluororesin paint, or polyimide resin paint, and forming an enamel film, which have been used in some cases. .

しかしいずれの方法も皮膜厚を加工性の良好な範囲にす
ると、ピンホールが発生し、絶縁性が不十分になり、逆
にピンホールをなくすために皮膜を厚くすると密着力が
低下し、鋼板表面の美粧性や熱反射性などの特性が損な
われるという問題があった。
However, in either method, if the film thickness is set within a range that allows good workability, pinholes will occur and the insulation will be insufficient.On the other hand, if the film is thickened to eliminate pinholes, the adhesion will decrease and the steel plate There was a problem in that the cosmetic properties and heat reflection properties of the surface were impaired.

このようなことから、鋼板表面に無機酸化物皮膜を形成
して、耐熱性と絶縁性とを付与する方法が検討され、そ
の−環として、^IやSiのアルコキシドのアルコール
溶液に水、酸触媒を添加して、加水分解、脱水縮合を起
こさせることによりゾル化させて、そのゾルを鋼板に塗
布、焼成しで、固有抵抗値の大きいアルミナやシリカの
皮膜を形成する、いわゆるゾル−デル法を利用する方法
が考えられている。
For this reason, a method of imparting heat resistance and insulation by forming an inorganic oxide film on the surface of the steel sheet has been studied. A so-called sol-del process involves adding a catalyst to cause hydrolysis and dehydration condensation to form a sol, and applying the sol to a steel plate and firing it to form a film of alumina or silica with a high specific resistance value. A method using the law is being considered.

(発明が解決しようとする問題点) しかし、この方法はアルコキシドの加水分解や脱水縮合
反応を起こさせるのに、溶液中に塩酸や硝酸などの熊磯
酸あるいは有機酸などの酸触媒添加が不可欠なため、ア
ルミニウムめっきやアルミニウム−亜鉛合金めっきのよ
うにめっき層が酸に弱いものの場合、塗布すると水素が
発生し、皮膜にピンホールを生じさせる。このためかか
る方法でも絶縁性を良好にすることは困難であった。
(Problem to be solved by the invention) However, this method requires the addition of an acid catalyst such as Kumaiso acid such as hydrochloric acid or nitric acid or an organic acid to the solution in order to cause the hydrolysis and dehydration condensation reaction of the alkoxide. Therefore, if the plating layer is sensitive to acid, such as aluminum plating or aluminum-zinc alloy plating, hydrogen will be generated when applied, causing pinholes in the film. For this reason, it has been difficult to improve the insulation properties even with this method.

まためっき層が酸に腐食されると外観が損なわれ、光沢
による熱反射性や美粧性が低下するという問題もあった
Furthermore, when the plating layer is corroded by acid, the appearance is impaired, and there is also the problem that the heat reflection and cosmetic properties due to gloss are reduced.

(問題点を解決するための手段) 本発明はこのピンホールと外観変質の問題を解決するた
めに、鋼板表面に^1やSiのアルコキシド溶液を塗布
する前にZrまたはTiの酸化物皮膜を形成して、^l
 + S iのアルコキシド溶液の酸触媒がめつさ層と
反応しないようにした。
(Means for Solving the Problems) In order to solve the problem of pinholes and deterioration of appearance, the present invention applies a Zr or Ti oxide film to the steel sheet surface before applying an alkoxide solution of ^1 or Si. Form it ^l
+ The acid catalyst of the Si alkoxide solution was prevented from reacting with the Metsusa layer.

すなわち、本発明はアルミニウム系またはアルミニウム
−亜鉛合金系めっき鋼板の表面にZrまたはTiあるい
はこれらの両者の酸化物皮膜を形成し、さらにこの酸化
物皮膜の上に^IまたはSiあるいは両者の酸化物皮膜
を形成して、ピンホールおよび外観変質を少なくし、か
つZrやTiの酸化物皮膜形成をZrまたはTiのアル
コキシドまたはアセチルアセトネート金属塩の1種また
は2種以上を0.005重量%以上含有するアルコール
溶液を塗布して、200〜600℃で加熱することによ
り、また^1やSiの酸化物皮膜形成をAlまたはSi
のアルコキシドまたは7セチル7セトネート金属塩の1
種または2種以上を0.01重量%以上含有するアルコ
ール溶液を塗布することにより行うようにした。
That is, the present invention forms an oxide film of Zr or Ti or both on the surface of an aluminum-based or aluminum-zinc alloy plated steel sheet, and further coats ^I, Si, or both oxides on this oxide film. 0.005% by weight or more of one or more Zr or Ti alkoxides or acetylacetonate metal salts to form a film to reduce pinholes and appearance deterioration, and to prevent the formation of Zr or Ti oxide films. By applying the alcohol solution containing the alcohol and heating it at 200 to 600°C, the formation of an oxide film of ^1 and Si can be prevented.
alkoxide or 1 of 7cetyl 7cetonate metal salt
This was carried out by applying an alcohol solution containing 0.01% by weight or more of the species or two or more species.

本発明で下層にZrまたは石あるいは両者の酸化物皮膜
を形成するようにしたのは、これらの酸化物皮膜は酸に
強く、耐熱性、絶縁性にも優れて−るからである。この
酸化物皮膜は皮膜厚が0.01μ−以上、好ましくは0
.01〜0.1μ鰺、一般には約0.05μ−になるよ
うにする、 0.01μ−未満であるとピンホールが発
生する。皮膜が均一に形成できるなら、0.1μ−より
厚くしてもよいが、このように厚くすると皮膜は可撓性
が低下し、クラックや剥離が生じやす(なる。
The reason why an oxide film of Zr, stone, or both is formed as the lower layer in the present invention is that these oxide films are resistant to acids and have excellent heat resistance and insulation properties. This oxide film has a film thickness of 0.01μ or more, preferably 0.
.. 01 to 0.1μ, generally about 0.05μ.If it is less than 0.01μ, pinholes will occur. If the coating can be formed uniformly, it may be made thicker than 0.1 .mu.m, but if the coating is made this thick, the coating will be less flexible and will be prone to cracking and peeling.

上層のAlまたはSiあるいは両者の酸化物皮膜厚は0
.05μ−以上、好ましくは0.05〜0.5μ論、一
般には約0.1μ論になるようにする。 0.05μ−
未満であると耐熱性や絶縁性に対する効果が低下し、0
.5μ論より厚くすると下層のような問題が生じる。
The thickness of the upper Al or Si oxide film or both is 0.
.. 0.05 μm or more, preferably 0.05 to 0.5 μm, generally about 0.1 μm. 0.05μ-
If it is less than 0, the effect on heat resistance and insulation will be reduced.
.. If the thickness is made thicker than the 5μ theory, problems like those in the lower layer will occur.

下層の酸化物皮膜の形成はZrまたはTiのアルコキシ
ドまたはアセチル7セトネート金属塩のアルコール溶液
を鋼板に塗布して、加熱脱水縮合させることにより行う
The lower oxide film is formed by applying an alcoholic solution of Zr or Ti alkoxide or acetyl 7cetonate metal salt to the steel plate and subjecting it to heating and dehydration condensation.

これらの化合物は他の金属のアルコキシドまたはアセチ
ル7セトネート金属塩に比べて、加水分解、脱水縮合反
応が非常に速いため、通常酸触媒を必要とせず、そのア
ルコール溶液を鋼板に塗布すると、空気中の水分により
容易に加水分解、脱水縮合反応を起こし、皮膜となる。
These compounds undergo hydrolysis and dehydration condensation reactions very quickly compared to other metal alkoxides or acetyl 7cetonate metal salts, so they usually do not require an acid catalyst, and when the alcohol solution is applied to a steel plate, it will be released in the air. The moisture easily causes hydrolysis and dehydration condensation reactions, forming a film.

従って鋼板に塗布してもめっき層を腐食せず、皮膜にピ
ンホールを発生させたり、外観を変質させたりしない。
Therefore, even when applied to a steel plate, it does not corrode the plating layer, cause pinholes in the coating, or change the appearance.

アルコール溶液濃度は皮膜厚を前記のように薄くするた
め、0.005重量%以上の希薄濃度にする。
The alcohol solution concentration is set to a dilute concentration of 0.005% by weight or more in order to reduce the film thickness as described above.

加熱脱水縮合は200〜600℃で行う、200℃未満
であると脱水縮合が完全に進行しないため、完全な酸化
物皮膜にならず、600℃を越えると溶媒のアルコール
が急激に蒸発し、ピンホールが発生する。
Thermal dehydration condensation is carried out at 200 to 600°C. If the temperature is lower than 200°C, the dehydration condensation will not proceed completely and a complete oxide film will not be formed. If the temperature exceeds 600°C, the alcohol in the solvent will rapidly evaporate, causing pinpoint damage. A hole occurs.

下層に塗布するZr、 Tiのアルコキシドの好ましい
ものを挙げれば、ノルコニウムイソプロポキシド、ジル
コニウムメトキシド、ゾルコニウムイソブトキシド、オ
クチル酸ジルコニウム、チタンエトキシド、チタンプロ
ポキシド、チタンブトキシドなどが、またアセチル7セ
トネート金属塩としては、ジルコニウムアセチルアセト
ネート、チタンアセチルアセトネートなどがある。
Preferred Zr and Ti alkoxides to be applied to the lower layer include norconium isopropoxide, zirconium methoxide, zorconium isobutoxide, zirconium octylate, titanium ethoxide, titanium propoxide, and titanium butoxide. Examples of acetyl 7cetonate metal salts include zirconium acetylacetonate and titanium acetylacetonate.

これらの化合物の塗布はアルコールに上記化合物の1種
または2種以上をo、oos重量%以上溶解させて行う
が、使用するアルコールは上記化合物を均一に分散でき
るものであれば特に制限はなく、例えばメタ/−ル、エ
タノール、イソプロピルアルコール、ブタ/−ルなどで
十分である。なおアルコール以外にもトルエンやキシレ
ンのような低沸点溶媒を使用することもできる。
Coating of these compounds is carried out by dissolving one or more of the above compounds in alcohol at o, oos weight percent or more, but the alcohol used is not particularly limited as long as it can uniformly disperse the above compounds. For example, methanol, ethanol, isopropyl alcohol, butyl alcohol, etc. are sufficient. In addition to alcohol, a low boiling point solvent such as toluene or xylene can also be used.

溶液の鋼板への塗布は浸漬引き上げ法、スプレー法、ス
ピン法など均一に塗布できる方法によればよい。
The solution may be applied to the steel plate by a method capable of uniformly applying the solution, such as a dipping method, a spray method, or a spin method.

上層の酸化物皮膜の形成は下層を形成しても従来のゾル
−デル法の要領で行えばよい、アルコキシドとしてはア
ルミニウムエトキシド、アルミニウムイソプロポキシド
、アルミニウムイソブトキシド、アルミニツム9ee−
ブトキシド、メチルシリケート、エチルシリケートなど
を使用すればよい。
The formation of the upper layer oxide film can be carried out using the conventional Sol-Del method even when forming the lower layer.As the alkoxide, aluminum ethoxide, aluminum isopropoxide, aluminum isobutoxide, aluminum 9ee-
Butoxide, methyl silicate, ethyl silicate, etc. may be used.

皮膜を0.05〜0.5μ−にするにはフルフール溶液
中の八1またはSiあるいは両者のアルコキシド濃度を
0.01重量%以上にすればよい、溶液には加水分解、
脱水縮合反応を起こさせるため、通常水と酸触媒を添加
するが、その添加量は水の場合0.01重量%以上、酸
の場合0.001重量%以上である。酸としては塩酸や
リン酸のような無機酸や酢酸のような有機酸を使用すれ
ばよい。
In order to form a film of 0.05 to 0.5 μ-, the alkoxide concentration of 81 or Si or both in the furfur solution should be 0.01% by weight or more.
In order to cause a dehydration condensation reaction, water and an acid catalyst are usually added, and the amount added is 0.01% by weight or more in the case of water and 0.001% by weight or more in the case of acid. As the acid, an inorganic acid such as hydrochloric acid or phosphoric acid or an organic acid such as acetic acid may be used.

なおこの上層の形成は^IやSiのアセチルアセトネー
ト金属塩のアルコール溶液によっても形成することがで
きる。この金属塩により皮膜を前記厚さにする場合の塩
濃度、水や酸触媒濃度および酸の種類はアルコキシドの
場合と同様でよく、また塗布も溶液を、必要なら加熱し
て、加水分解、脱水縮合反応を十分行わせて、下層と同
様の方法で塗布すればよい、アルコキシドの場合鋼板に
塗布した後の加熱は前記のように通常200〜600℃
で行うが、このアセチル7セトネート塩の場合も同様で
よい。
Note that this upper layer can also be formed using an alcohol solution of an acetylacetonate metal salt of ^I or Si. When forming a film with the above thickness using this metal salt, the salt concentration, water and acid catalyst concentration, and type of acid may be the same as those for alkoxides. After the condensation reaction is sufficiently carried out, the coating can be applied in the same manner as the lower layer. In the case of alkoxides, the heating after coating on the steel plate is usually 200 to 600°C as described above.
The same procedure may be applied to this acetyl 7cetonate salt.

本発明によれば溶融もしくは蒸着アルミニウムめっき鋼
板のようなアルミニウム系めっき鋼板やく4〜55%)
^1−71のようなアルミニウム−亜鉛合金系めっき鋼
板に耐熱絶縁性を付与することができる。
According to the present invention, an aluminum-based plated steel sheet such as a hot-dip or vapor-deposited aluminized steel sheet (4 to 55%)
Heat-resistant insulation can be imparted to aluminum-zinc alloy plated steel sheets such as ^1-71.

(実施例) 実施例1 板厚0.4mmの溶融アルミニウムめっき鋼板を7七ト
ン中で15分1llNi音波親席後ジルコニウムアセチ
ル7セトネートの0.2sol/gイソプロピルアルコ
ール溶液に浸漬し、5 mva/秒の一定速度で引上げ
、溶液を均一に塗布した。これを400℃の電気炉中に
10分間入れ、下層のノルコニ7皮膜(膜厚的0.05
μ曽)を形・成した。
(Example) Example 1 A hot-dip aluminized steel plate with a thickness of 0.4 mm was immersed in a 0.2 sol/g isopropyl alcohol solution of zirconium acetyl 7cetonate for 15 minutes in a 1 liter Ni sonic bath in a 77-ton tank, and was immersed in a 0.2 sol/g isopropyl alcohol solution of 5 mva/g. It was pulled up at a constant speed of seconds to uniformly apply the solution. This was placed in an electric furnace at 400°C for 10 minutes, and the lower Norconi 7 film (thickness: 0.05
μ So) was formed.

一方別に用意したIR板をチタン7セチル7セトネート
の0.1mol/eエタ/−ル溶液1こ浸漬し、1−働
/秒の一定速度で引上げ、均一に塗布した。これを40
0℃の電気炉中に5分間加熱して、下層のチタニア皮膜
(膜厚的0.04μ論)を形成した。
On the other hand, a separately prepared IR plate was immersed in a 0.1 mol/e ethanol solution of titanium 7-cetyl 7-cetonate, pulled up at a constant speed of 1 working/second, and coated uniformly. This is 40
It was heated in an electric furnace at 0° C. for 5 minutes to form a lower titania film (film thickness: 0.04 μm).

以上のようにしてノルコニ7皮膜またはチタニア皮膜の
下層を形成した鋼板と皮膜未形成の鋼板とを下記のよう
に調整したエチルシリケート溶液またはアルミニウムイ
ソプロポキシド溶液に浸漬して、一定速度で引上げ、溶
液を均一に塗布した。
The steel plate on which the lower layer of the Norconi 7 coating or titania coating was formed as described above and the steel plate without the coating were immersed in an ethyl silicate solution or an aluminum isopropoxide solution prepared as below, and pulled up at a constant speed. The solution was applied evenly.

(1)エチルシリケート溶液 エチルシリケート509、エタ/−ル1909、水45
9および塩fi0.99を混合して、攪拌によりエチル
シリケートを十分加水分解、縮合反応させ、ゾル化させ
たもの。
(1) Ethyl silicate solution Ethyl silicate 509, ethanol 1909, water 45
9 and salt fi0.99 were mixed, and the ethyl silicate was sufficiently hydrolyzed and condensed by stirring to form a sol.

(2)アルミニウムイソプロポキシド溶液アルミニウム
イソプロポキシドの10091水溶液を80℃に加熱し
で、30分以上攪拌することにより十分加水分解、縮合
反応させ、ゾル化させたもの。
(2) Aluminum isopropoxide solution A 10091 aqueous solution of aluminum isopropoxide was heated to 80°C and stirred for 30 minutes or more to cause sufficient hydrolysis and condensation reaction to form a sol.

そして塗布後は500℃の電気炉中に5分間入れ、上層
のアルミナ皮膜またはシリカ皮膜(It!厚約0.1μ
輪)を形成した。
After coating, the film is placed in an electric furnace at 500°C for 5 minutes to form an upper layer of alumina film or silica film (It! thickness approx. 0.1 μm).
formed a ring).

これらの表面処理鋼板の絶縁性、ピンホール数、耐熱性
は表1に示す通りであった。なお耐熱性は600℃加熱
後冷却するサイクルを10サイクル行った後の酸化増量
を測定する方法で評価した(以下実施例2.3において
も同様に評価した)。
The insulation properties, number of pinholes, and heat resistance of these surface-treated steel sheets were as shown in Table 1. The heat resistance was evaluated by measuring the oxidation weight gain after performing 10 cycles of heating and cooling at 600°C (the same evaluation was performed in Example 2.3 below).

また外観を観察したところ本発明の鋼板は光沢が保持さ
れ、処理前の銀白色外観を呈していた。
Further, when the appearance was observed, the steel plate of the present invention retained its luster and had a silvery white appearance before treatment.

表 1 実施例2 板厚0.3m+輪の蒸着アルミニウムめっき鋼板を実施
例1と同様の方法で20分間脱脂した後、ジルコニウム
イソプロポキシドの0.1論of/g n−ブタノール
溶液に浸漬して、1曽働/秒の一定速度で引上げ、均一
に塗布した。これを350℃の電気炉中に10分間入れ
、下層のノルコニ7皮II(膜厚的0゜04μ曽)を形
成した。
Table 1 Example 2 A vapor-deposited aluminum-plated steel plate with a thickness of 0.3 m + ring was degreased for 20 minutes in the same manner as in Example 1, and then immersed in a 0.1 theory of/g n-butanol solution of zirconium isopropoxide. The coating was then pulled up at a constant speed of 1 stroke/second to uniformly coat the coating. This was placed in an electric furnace at 350° C. for 10 minutes to form a lower layer of Norconi 7 skin II (film thickness: 0°04 μm).

次にこのノルフニ7皮膜形成鋼板と皮膜未形成鋼板とを
メチルシリケート259、アルミニウムセチルアセトネ
ート259.n−ブタノール2009、水509、硝酸
1.29からなる溶液で□、加水分解、脱水縮合させた
ものの中に浸漬して、一定速度で引上げ、溶液を均一に
塗布した6塗布後500℃の電気炉中に7分間入れ、シ
リカとアルミナとの混合酸化皮膜(膜厚0.1〜0.5
μ請)を形成し、上層とした。
Next, the Norfuni 7 film-formed steel sheet and the non-film-formed steel sheet were treated with methyl silicate 259 and aluminum cetyl acetonate 259. □ was immersed in a solution consisting of 2009% n-butanol, 509% water, and 1.29% nitric acid, which was subjected to hydrolysis and dehydration condensation, and was pulled up at a constant speed to uniformly apply the solution. Place in the furnace for 7 minutes to form a mixed oxide film of silica and alumina (thickness 0.1 to 0.5
A layer was formed and used as the upper layer.

これらの表面処理鋼板の絶縁性と耐熱性とは表2に示す
通りであった。また本発明の表面処理鋼板の外観は実施
例1のように良好であった。
The insulation properties and heat resistance of these surface-treated steel sheets were as shown in Table 2. Further, the appearance of the surface-treated steel sheet of the present invention was as good as in Example 1.

表2 実施例3 板厚0.4mmの^1−Zn合金めっき鋼板を実施例1
と同要領で25分間脱脂した後、チタンインプロポキシ
ドの0.1mof/g n−ブタノール溶液に浸漬し、
2 am1秒の一定速度で引上げ、溶液を均一に塗布し
た。これを450℃の電気炉中に3分間入れ、下層のチ
タニア皮M(膜厚的O,O6μ騰)を形成した。
Table 2 Example 3 A ^1-Zn alloy plated steel plate with a thickness of 0.4 mm was prepared in Example 1.
After degreasing for 25 minutes in the same manner as above, immersed in a 0.1 mof/g n-butanol solution of titanium impropoxide,
The solution was uniformly applied by pulling up at a constant speed of 2 am and 1 second. This was placed in an electric furnace at 450° C. for 3 minutes to form a lower titania skin M (film thickness O, O 6 μm higher).

次にこの鋼板と下層未形成鋼板とを、アルミニウムn−
ブトキシドを水に1009/e分散させて、85℃に加
熱した状態でIIcf間攪拌し、その後1.49の濃硝
酸を添加して3時間攪拌した水溶液に浸漬し、一定速度
で引上げ、上層のアルミナ皮膜(膜厚的0.2μ僑)を
形成した。
Next, this steel plate and the lower layer unformed steel plate were bonded to aluminum n-
Butoxide was dispersed in water with 1009/e, heated to 85°C and stirred for IIcf, then 1.49 concentrated nitric acid was added and stirred for 3 hours. An alumina film (0.2μ thick) was formed.

これらの表面処理鋼板の絶縁性と耐熱性とは表3に示す
通りであった。また本発明の表面処理鋼板の外観は処理
前の状態であった。
The insulation properties and heat resistance of these surface-treated steel sheets were as shown in Table 3. Moreover, the appearance of the surface-treated steel sheet of the present invention was the state before treatment.

表3 (効果) 以上のごと(本発明の表面処理鋼板は耐熱性でピンホー
ルの少ないアルミナおよび/またはチタニア皮膜を下層
に形成しであるので、耐熱絶縁性に優れている。また上
記皮膜は耐酸性であるので、製造の際酸触媒を添加した
溶液を塗布してもめつき層が腐食されず、めっきしたま
まの外観が保たれる、
Table 3 (Effects) As mentioned above (the surface-treated steel sheet of the present invention has a heat-resistant alumina and/or titania film with few pinholes formed on the lower layer, so it has excellent heat-resistant insulation properties. Since it is acid resistant, the plating layer will not be corroded even if a solution containing an acid catalyst is applied during manufacturing, and the appearance of the plating will be maintained.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム系またはアルミニウム−亜鉛合金系
めっき鋼板の表面にZrまたはTiあるいはこれらの両
者の酸化物皮膜を形成し、さらにこの酸化物皮膜の上に
AlまたはSiあるいは両者の酸化物皮膜を形成したこ
とを特徴とする耐熱性に優れた絶縁性表面処理鋼板。
(1) Forming an oxide film of Zr or Ti or both on the surface of an aluminum-based or aluminum-zinc alloy plated steel sheet, and further forming an oxide film of Al or Si or both on this oxide film. An insulating surface-treated steel sheet with excellent heat resistance.
(2)アルミニウム系またはアルミニウム−亜鉛合金系
めっき鋼板の表面にZrまたはTiのアルコキシドまた
はアセチルアセトネート金属塩の1種または2種以上を
0.005重量%以上含有するアルコール溶液を塗布し
て、200〜600℃で加熱することにより前記金属の
酸化物皮膜を形成した後、その皮膜の上にAlまたはS
iのアルコキシドまたはアセチルアセトネート金属塩の
1種または2種以上を0.01重量%以上含有するアル
コール溶液を塗布することを特徴とする耐熱性に優れた
絶縁性表面処理鋼板の製造方法。
(2) Applying an alcohol solution containing 0.005% by weight or more of one or more Zr or Ti alkoxides or acetylacetonate metal salts to the surface of an aluminum-based or aluminum-zinc alloy-based plated steel sheet, After forming an oxide film of the metal by heating at 200 to 600°C, Al or S is applied on the film.
A method for producing an insulating surface-treated steel sheet with excellent heat resistance, comprising applying an alcohol solution containing 0.01% by weight or more of one or more of the alkoxides or acetylacetonate metal salts of (i).
JP30063186A 1986-12-17 1986-12-17 Insulating surface-treated steel sheet having excellent heat resistance and its production Pending JPS63153286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30063186A JPS63153286A (en) 1986-12-17 1986-12-17 Insulating surface-treated steel sheet having excellent heat resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30063186A JPS63153286A (en) 1986-12-17 1986-12-17 Insulating surface-treated steel sheet having excellent heat resistance and its production

Publications (1)

Publication Number Publication Date
JPS63153286A true JPS63153286A (en) 1988-06-25

Family

ID=17887186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30063186A Pending JPS63153286A (en) 1986-12-17 1986-12-17 Insulating surface-treated steel sheet having excellent heat resistance and its production

Country Status (1)

Country Link
JP (1) JPS63153286A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234790A (en) * 1988-07-21 1990-02-05 Nisshin Steel Co Ltd Production of surface-treated steel sheet having superior durability and adhesion to organic resin
JPH0254771A (en) * 1988-08-16 1990-02-23 Nisshin Steel Co Ltd Manufacture of aluminized steel sheet excellent in corrosion resistance and heat resistance
JPH02254178A (en) * 1989-03-28 1990-10-12 Nippon Steel Corp Superimposed plated steel sheet having high corrosion resistance
JP2006161157A (en) * 2004-11-10 2006-06-22 Dainippon Printing Co Ltd Process for forming metal oxide film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234790A (en) * 1988-07-21 1990-02-05 Nisshin Steel Co Ltd Production of surface-treated steel sheet having superior durability and adhesion to organic resin
JPH0254771A (en) * 1988-08-16 1990-02-23 Nisshin Steel Co Ltd Manufacture of aluminized steel sheet excellent in corrosion resistance and heat resistance
JPH02254178A (en) * 1989-03-28 1990-10-12 Nippon Steel Corp Superimposed plated steel sheet having high corrosion resistance
JP2006161157A (en) * 2004-11-10 2006-06-22 Dainippon Printing Co Ltd Process for forming metal oxide film

Similar Documents

Publication Publication Date Title
KR101020526B1 (en) Corrosion protection on metals
CN110318253A (en) A kind of preparation method of carbon fiber surface modification anti-oxidation composite coating
JP2004307897A (en) Surface-treated metal having silica-zirconia film, and method of manufacturing the same
JPS63153286A (en) Insulating surface-treated steel sheet having excellent heat resistance and its production
US20080063859A1 (en) Coating Method
JP2512402B2 (en) Method for manufacturing zirconia film
JPH0445129A (en) Paint composition for coating
Izumi et al. Sol-gel-derived coatings on steel sheets
JPS63199875A (en) Production of insulating surface-treated steel sheet having superior heat resistance
JP6347531B1 (en) Film formation method
JPS6376881A (en) Production of zirconia film
JPS63190174A (en) Production of aluminized steel sheet having superior oxidation resistance at high temperature and superior corrosion resistance
JPH02125878A (en) Production of surface treated steel sheet coated with monophenylsilica film
JPH02132163A (en) Coating compound composition and insulated wire
JPH03285082A (en) Stainless steel sheet having metal-oxide polymer film excellent in high-temperature corrosion resistance and its production
KR101689559B1 (en) Oraganic-Inorganic Coating Agent
JPH04136181A (en) Ceramic coated nonferrous metallic material having superior water repellency and durability and its production
JPH09268383A (en) Steel sheet coated with inorganic/organic fused matter and its production
JPS63171883A (en) Insulating stainless steel sheet having excellent heat resistance and its production
JPS63116783A (en) Stainless steel sheet excellent in fingerprinting resistance and its production
KR101534571B1 (en) Coating solution for steel sheet, and manufacturing method thereof
JPH04346674A (en) Surface treatment of heat resistant material
JPH01149966A (en) Manufacture of colored stainless steel sheet excellent in resistance to wear, heat, and fingerprint
JPH0641718A (en) Surface treatment of heat resistant material
JPS63290731A (en) Ceramic coated steel plate of superior processability and manufacture thereof