KR101689559B1 - Oraganic-Inorganic Coating Agent - Google Patents

Oraganic-Inorganic Coating Agent Download PDF

Info

Publication number
KR101689559B1
KR101689559B1 KR1020160105462A KR20160105462A KR101689559B1 KR 101689559 B1 KR101689559 B1 KR 101689559B1 KR 1020160105462 A KR1020160105462 A KR 1020160105462A KR 20160105462 A KR20160105462 A KR 20160105462A KR 101689559 B1 KR101689559 B1 KR 101689559B1
Authority
KR
South Korea
Prior art keywords
sol
magnesium
acid
isopropyl alcohol
coating
Prior art date
Application number
KR1020160105462A
Other languages
Korean (ko)
Inventor
김성협
장희진
Original Assignee
(주)필스톤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)필스톤 filed Critical (주)필스톤
Priority to KR1020160105462A priority Critical patent/KR101689559B1/en
Application granted granted Critical
Publication of KR101689559B1 publication Critical patent/KR101689559B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D7/1216
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/47Levelling agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은 Methyltrimethoxysilane(MTMS) 또는 MTES(Methyltriethoxysilane), ETMS(Ethyltrimethoxysilane), ETES(Ethyltriethoxysilane) 중 선택된 어느 하나의 성분 : 3-Glycidoxypropyltrimethoxysilane(GPTMS) : Deionized Water(DI water) : 이중결합 또는 삼중결합이 존재하고 카르복실기를 가지고 있는 모노카르복실산(Monomeric Carboxylic Acid) 또는 폴리카르복실산(Polymeric Carboxylic acid) 중 선택된 어느 하나의 성분 : 이소프로필알콜(Isopropyl alcohol) = 1 : 0.0625~0.25 : 3.5 ~ 5 : 0.0312~0.125 : 3~6의 몰비로 된 조성물 88~94.5wt%와, Zirconia sol 0.5~1.0wt%와, Titania sol 5~11wt%로 이루어지는 마그네슘 표면보호용 유-무기 복합 코팅제 조성물을 제공하기 위한 것으로, 본 발명의 효과로는 마그네슘의 표면에 유기-무기 복합체의 코팅제를 적용하여 내산성과 표면경도, 내마모성 등이 우수한 부동태막을 형성시킴으로써 마그네슘 부품의 표면처리를 완성시킬 수 있는 것이고, 또 Sol-gel 합성 공정에서 폴리산과 유기실란을 공중합시키고 촉매를 제어하여 코팅제를 최적화시킴으로써 마그네슘에 부착이 우수하고 내염수성이 뛰어난 코팅막을 제공할 수 있는 매우 유용한 발명인 것이다.The present invention relates to a process for producing a water-soluble polymer comprising the steps of: (1) selecting one of Methyltrimethoxysilane (MTMS), Methyltriethoxysilane (MTES), Ethyltrimethoxysilane (ETMS) and Ethyltriethoxysilane (ETES); 3-Glycidoxypropyltrimethoxysilane (Isopropyl alcohol) = 1: 0.0625 to 0.25: 3.5 to 5: 0.0312, wherein the isopropyl alcohol is a monocarboxylic acid having a carboxyl group and a polycarboxylic acid. Inorganic composite coating composition for magnesium surface protection comprising 88 to 94.5 wt% of a composition having a molar ratio of 0.125: 3 to 6, 0.5 to 1.0 wt% of zirconia sol, and 5 to 11 wt% of titania sol, As an effect of the present invention, by applying a coating agent of an organic-inorganic composite on the surface of magnesium, a passive film having excellent acid resistance, surface hardness and abrasion resistance is formed, And it is a very useful invention that can provide a coating film excellent in adhesion to magnesium and excellent in flame resistance by copolymerizing polyacid and organosilane in a Sol-gel synthesis process and controlling the catalyst to control the coating agent will be.

Description

마그네슘 표면보호용 유-무기 복합 코팅제 조성물{Oraganic-Inorganic Coating Agent}{Oraganic-Inorganic Coating Agent}

본 발명은 마그네슘 표면보호용 유-무기 복합 코팅제 조성물에 관한 것으로, 보다 상세하게는 마그네슘의 표면에 내산성과 표면경도, 내마모성 등이 우수한 부동태막을 형성시킬 수 있는 유기-무기 복합체의 코팅제에 관한 것이다.The present invention relates to an organic-inorganic composite coating composition for magnesium surface protection, and more particularly, to an organic-inorganic composite coating agent capable of forming a passive film having excellent acid resistance, surface hardness and abrasion resistance on the surface of magnesium.

일반적으로, 마그네슘은 주조성이 우수하여 알루미늄이나 그 밖의 금속들과는 달리 박판 성형성이 뛰어나고, 플라스틱에 비해 열전도가 우수하여 장시간 사용에 따른 시스템 내부의 열을 효과적으로 방출이 가능하며, EMI 특성(전자파 차폐)이 뛰어나다. In general, magnesium has excellent casting properties and is excellent in sheet formability, unlike aluminum and other metals, has excellent thermal conductivity compared to plastic, and can effectively dissipate heat in the system due to its long use. EMI characteristics ) Is excellent.

또한 최근 노트북, 모바일 폰, 프린터 등의 전자제품이나 자동차 부품의 경량화가 요구됨에 따라 가벼운 구조용 금속재료인 마그네슘 합금의 사용량이 증가하고 있다. 특히 우수한 비강도(동일 중량 철강의 약 1.5배)와 진동, 충격에 대한 흡진성, 전자파 차폐성이 크고, 그 비중이 낮아 전자제품 외장 재료나 자동차, 우주항공, 군수물품의 부품으로 그 필요성이 증대되고 있다.In recent years, as the weight of electronic parts and automobile parts such as notebooks, mobile phones, printers is required to be reduced, the amount of magnesium alloy, which is a light structural metal material, is increasing. Especially, it has a high non-strength (about 1.5 times of the same weight steel), absorbency against vibration, impact and electromagnetic wave shielding, and its proportion is low, so it is necessary to use it as a part of electronic exterior materials, automobile, aerospace, .

하지만, 마그네슘은 화학적으로 활성이 크므로 대기 중에서 빠르게 산화되는 특징이 있어 제품을 실용화하기 위해서는 표면처리가 우선시 되어야 한다. 특히 마그네슘 소재는 1차적 표면처리(화성처리)가 되어있고 발색을 위해 도금을 실시하였으나 표면의 흡습성이 크고 열안정성 및 내화학성, 내스크래치성 등이 부족해 제품 실장에 사용되기 어려워 코팅을 통한 2차적 표면처리가 필요하다.However, since magnesium is chemically active, it is rapidly oxidized in the atmosphere. Therefore, in order to put the product into practical use, the surface treatment should be given priority. In particular, the magnesium material has been subjected to primary surface treatment (chemical conversion treatment) and plated for color development. However, since it is highly hygroscopic on the surface and is insufficient in thermal stability, chemical resistance and scratch resistance, Surface treatment is required.

기존 마그네슘 합금 자체에 대한 표면처리 방법은 화성처리, 양극산화처리, 도금 등이 있으나, 마그네슘 표면처리를 위한 후처리(Secondary surface treatment)용 코팅제는 아직까지 개발된 바 없다.The existing surface treatment methods for the magnesium alloy itself include chemical treatment, anodic oxidation treatment and plating, but coatings for secondary surface treatment for magnesium surface treatment have not been developed yet.

종래 기술로는 마그네슘 파우더 및 실란 변형된 에폭시 이소시아네이트 혼성 폴리머 또는 프리폴리머를 포함하는 마그네슘 함유 코팅제 조성물이 국내특허공개 제10-2006-0135654호로 공개되어 있고, 마그네슘 합금의 아노다이징 및 특성연구(부경대, 한국생산기술연구원), 마그네슘 부식방지를 위한 다층 sol-gel 코팅연구(싱가포르), 마그네슘 합금의 부식방지를 위한 나노급 무기질 코팅연구(2008,독일) 등이 있다.In the prior art, a magnesium-containing coating composition comprising a magnesium powder and a silane-modified epoxy isocyanate hybrid polymer or prepolymer is disclosed in Korean Patent Laid-open Publication No. 10-2006-0135654, and anodizing and characterization studies of a magnesium alloy Research Institute of Technology), multi-layer sol-gel coating study for prevention of magnesium corrosion (Singapore), study of nano-grade inorganic coating for corrosion prevention of magnesium alloy (2008, Germany).

그러나 이와 같은 기술들은 마그네슘 또는 마그네슘 합금은 산성환경 또는 공기중 수분과 접촉시 표면이 산화되어 본래의 광택을 잃고 표면이 뿌옇게 변하거나 검게 변하게 되는 폐단을 효과적으로 해결하지 못한 단점을 갖는 것이어서 이의 해결이 시급한 실정이다.However, such techniques are disadvantageous in that the magnesium or magnesium alloy has a disadvantage in that it does not effectively solve the problem that the surface is oxidized by contact with moisture in the acidic environment or air, thereby losing the original gloss and changing the surface to black or black. It is true.

[선행기술문헌][Prior Art Literature]

1. 국내특허공개 제10-2006-0135654호 1. Korean Patent Publication No. 10-2006-0135654

상기한 바와 같은 문제점을 해결하기 위한 본 발명의 목적은, 마그네슘, 특히 마그네슘의 표면에 내산성과 표면경도, 내마모성 등이 우수한 부동태막을 형성시킬 수 있도록 함으로써 표면이 산화되어 광택을 잃고 심미감이 떨어지는 단점을 해결하기 위한 마그네슘 표면보호용 유-무기 복합 코팅제 조성물을 제공하는 데에 목적이 있다.Disclosure of the Invention In order to solve the above-mentioned problems, it is an object of the present invention to provide a process for producing a passive film excellent in acid resistance, surface hardness and abrasion resistance on the surface of magnesium, especially magnesium, Inorganic composite coating composition for protecting a magnesium surface for solving the above problems.

상기한 바와 같은 목적을 성취하기 위한 본 발명 마그네슘 표면보호용 유-무기 복합 코팅제 조성물은, Methyltrimethoxysilane(MTMS) 또는 MTES(Methyltriethoxysilane), ETMS(Ethyltrimethoxysilane), ETES(Ethyltriethoxysilane) 중 선택된 어느 하나의 성분 : 3-Glycidoxypropyltrimethoxysilane(GPTMS) : Deionized Water(DI water) : 이중결합 또는 삼중결합이 존재하고 카르복실기를 가지고 있는 모노카르복실산(Monomeric Carboxylic Acid) 또는 폴리카르복실산(Polymeric Carboxylic acid) 중 선택된 어느 하나의 성분 : 이소프로필알콜(Isopropyl alcohol) = 1 : 0.0625~0.25 : 3.5 ~ 5 : 0.0312~0.125 : 3~6의 몰비로 된 조성물 88~94.5wt%와, Zirconia sol 0.5~1.0wt%와, Titania sol 5~11wt%로 이루어짐을 특징으로 한다.In order to achieve the above object, the present invention provides an organic-inorganic composite coating composition for magnesium surface protection, which comprises at least one selected from the group consisting of Methyltrimethoxysilane (MTMS), MTES (Methyltriethoxysilane), ETMS (Ethyltrimethoxysilane) and ETES (Ethyltriethoxysilane) Glycidoxypropyltrimethoxysilane (GPTMS): Deionized water (DI water): Any one component selected from a monocarboxylic acid or a polycarboxylic acid having a double bond or a triple bond and having a carboxyl group: 88 to 94.5 wt% of a composition in a molar ratio of isopropyl alcohol = 1: 0.0625 to 0.25: 3.5 to 5: 0.0312 to 0.125: 3 to 6, 0.5 to 1.0 wt% of zirconia sol, 11 wt%.

본 발명의 실시예에 따르면, 상기 Zirconia sol은 Zirconium(IV) propoxide : Isopropyl alcohol : Acetyl Acetone(AcAc) : Deionized water(DI water) : Acetic acid = 1 : 40 : 1 : 5 : 0.01의 몰비로 상온에서 가수분해가 종료된 용액이고, Titania sol은 Titanium(IV) isopropoxide : Acetyl acetone : Isopropyl alcohol : DI water : Acetic acid = 1 : 1.5 : 60 : 5 : 0.01의 몰비로 상온에서 가수분해가 종료된 용액으로 이루어짐을 특징으로 한다.According to an embodiment of the present invention, the Zirconia sol is dissolved in a molar ratio of zirconium (IV) propoxide: Isopropyl alcohol: Acetyl Acetone (AcAc): Deionized water (DI water): Acetic acid = 1: 40: 1: Titania sol is a solution of hydrolyzed at room temperature in a molar ratio of Titanium (IV) isopropoxide: Acetyl acetone: Isopropyl alcohol: DI water: Acetic acid = 1: 1.5: .

상기와 같은 본 발명의 효과로는 마그네슘의 표면에 유기-무기 복합체의 코팅제를 적용하여 내산성과 표면경도, 내마모성 등이 우수한 부동태막을 형성시킴으로써 마그네슘 부품의 표면처리를 완성시킬 수 있는 것이고, 또 Sol-gel 합성 공정에서 폴리산과 유기실란을 공중합시키고 촉매를 제어하여 코팅제를 최적화시킴으로써 마그네슘에 부착이 우수하고 내염수성이 뛰어난 코팅막을 제공할 수 있는 매우 유용한 발명인 것이다.As a result of the above-described effects of the present invention, the surface treatment of a magnesium component can be completed by forming a passive film having excellent acid resistance, surface hardness and abrasion resistance by applying a coating agent of an organic-inorganic composite on the surface of magnesium, gel synthesis by copolymerizing polyacid and organosilane and optimizing the coating agent by controlling the catalyst, it is an extremely useful invention that can provide a coating film excellent in adhesion to magnesium and excellent in flame resistance.

도 1은 본 발명 MTMS-GPTMS-AA-(Ti,Zr)계 sol 코팅제의 제조 공정도.
도 2는 본 발명 코팅제의 코팅횟수에 따른 코팅막의 두께의 사진도.
도 3은 본 발명 코팅제의 Spin coating을 6회 실시한 코팅막 표면의 SEM사진도.
도 4는 본 발명 코팅제의 UV-VIS 투과율 분석 결과 그래프도.
도 5는 본 발명 코팅제의 마그네슘 기판의 염수저항성 실험 사진도.
도 6 내지 17은 본 발명 코팅제의 공인시험성적서의 사진도.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a manufacturing process diagram of the MTMS-GPTMS-AA- (Ti, Zr) sol coating agent of the present invention.
2 is a photograph showing the thickness of a coating film according to the number of coating times of the coating agent of the present invention.
3 is a SEM photograph of the surface of a coating film obtained by spin coating the coating agent of the present invention six times.
4 is a graph showing the UV-VIS transmittance analysis result of the coating agent of the present invention.
FIG. 5 is a photographic view showing the salt resistance of the magnesium substrate of the coating agent of the present invention. FIG.
Figs. 6 to 17 are photographs showing an official test report of the coating agent of the present invention. Fig.

이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 또 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다. 다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 공식적인 의미로 해석되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, which will be readily apparent to those skilled in the art to which the present invention pertains. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the invention. Also, the singular forms used herein include plural forms as long as the phrases do not expressly mean the opposite. Means that a particular feature, region, integer, step, operation, element and / or component is specified, and that other specific features, regions, integers, steps, operations, elements, components, and / And the like. Unless otherwise defined, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Commonly used predefined terms are further construed to have meanings consistent with the relevant technical literature and the present disclosure and are not to be construed as ideal or official unless defined otherwise.

본 발명 마그네슘 표면보호용 유-무기 복합 코팅제 조성물은, Methyltrimethoxysilane(MTMS) 또는 MTES(Methyltriethoxysilane), ETMS(Ethyltrimethoxysilane), ETES(Ethyltriethoxysilane) 중 선택된 어느 하나의 성분 : 3-Glycidoxypropyltrimethoxysilane(GPTMS) : Deionized Water(DI water) : 이중결합 또는 삼중결합이 존재하고 카르복실기를 가지고 있는 모노카르복실산(Monomeric Carboxylic Acid) 또는 폴리카르복실산(Polymeric Carboxylic acid) 중 선택된 어느 하나의 성분 : 이소프로필알콜(Isopropyl alcohol) = 1 : 0.0625~0.25 : 3.5 ~ 5 : 0.0312~0.125 : 3~6의 몰비로 된 조성물 88~94.5wt%와, Zirconia sol 0.5~1.0wt%와, Titania sol 5~11wt%로 이루어진다.The present invention provides an organic-inorganic hybrid coating composition for magnesium surface protection, which comprises at least one member selected from the group consisting of Methyltrimethoxysilane (MTMS), MTES (Methyltriethoxysilane), ETMS (Ethyltrimethoxysilane) and ETES (Ethyltriethoxysilane): 3-Glycidoxypropyltrimethoxysilane (GPTMS) water: any one component selected from a monocarboxylic acid or a polycarboxylic acid having a double bond or a triple bond and having a carboxyl group: isopropyl alcohol = 1 : 88 to 94.5 wt% of a composition having a molar ratio of 0.0625 to 0.25: 3.5 to 5: 0.0312 to 0.125: 3 to 6, 0.5 to 1.0 wt% of zirconia sol, and 5 to 11 wt% of titania sol.

상기 Methyltrimethoxysilane(MTMS) 또는 MTES(Methyltriethoxysilane), ETMS(Ethyltrimethoxysilane), ETES(Ethyltriethoxysilane)는 코팅제의 결합재기능을 한다.The Methyltrimethoxysilane (MTMS), MTES (Methyltriethoxysilane), ETMS (Ethyltrimethoxysilane) and ETES (Ethyltriethoxysilane) function as a binder of the coating agent.

상기 3-Glycidoxypropyltrimethoxysilane(GPTMS)는 결합재이면서 카르복실산과 교차결합하여 유기사슬을 더욱 길게 연장시키는 cross-linker기능을 한다. 이때 3-Glycidoxypropyltrimethoxysilane(GPTMS)의 첨가량은 몰비로 0.0625~0.25몰이 가장 바람직한데, 이는 0.0625몰 이하인 경우는 충분한 양이 되지않고, 0.25몰 이상에서는 sol의 점도가 상승하고 코팅막 형성시 퍼짐성을 떨어뜨리고 경화온도가 상승하여 바람직하지 않는 조건을 갖기 때문이다.3-Glycidoxypropyltrimethoxysilane (GPTMS) acts as a cross-linker to extend the organic chain longer by cross-linking with carboxylic acid. In this case, the amount of 3-Glycidoxypropyltrimethoxysilane (GPTMS) is most preferably 0.0625 to 0.25 mol in terms of the molar ratio. When the molar ratio is less than 0.0625 mol, the amount of 3-Glycidoxypropyltrimethoxysilane (GPTMS) This is because the temperature rises and has an undesirable condition.

상기 Deionized Water(DI water)은 가수분해에 필요한 것이며 폴리카르복실산 등 카르복실산은 3-Glycidoxypropyltrimethoxysilane(GPTMS)와 결합 전에 가수분해 촉매로 작용하는 기능을 한다. 이때 Deionized Water(DI water)의 첨가량은 몰비로 3.5 ~ 5몰이 가장 바람직한데, 이는 3.5몰 이하인 경우는 가수분해에 필요한 물의 양이 부족하여 오랜 시간동안 가수분해가 종료되지 않고, 5몰 이상에서는 가수분해 후 중합속도가 빨라져 겔링(geling)이 빨라지므로 저장안정성을 해치기 때문이다.The Deionized Water (DI water) is required for hydrolysis and the carboxylic acid such as polycarboxylic acid functions as a hydrolysis catalyst before bonding with 3-Glycidoxypropyltrimethoxysilane (GPTMS). In this case, the amount of the deionized water (DI water) is most preferably 3.5 to 5 mol, and if it is less than 3.5 mol, the amount of water required for the hydrolysis is insufficient and the hydrolysis is not terminated for a long time. This is because the polymerization speed after the decomposition accelerates and the geling speeds up, which deteriorates the storage stability.

상기 폴리카르복실산 등 카르복실산은 3-GPTMS와 결합전 가수분해 촉매로 작용하는 기능을 하는데, 종국에는 3-GPTMS의 글리시독시기와 결합하여 유기사슬로 남는다. 이러한 카르복실산이 3-GPTMS와 결합하지 못한채 용액속에 남으면 마그네슘 표면을 오히려 산성부식시킨다.The polycarboxylic acid and the like carboxylic acid function as a hydrolysis catalyst before coupling with 3-GPTMS, and ultimately remain in the organic chain in combination with the glycidoxy group of 3-GPTMS. If these carboxylic acids remain in solution without binding to 3-GPTMS, they will acidify the magnesium surface.

이때 상기 이중결합 또는 삼중결합이 존재하고 카르복실기를 가지고 있는 모노카르복실산(Monomeric Carboxylic Acid) 또는 폴리카르복실산(Polymeric Carboxylic acid) 중 선택된 어느 하나의 성분은 몰비로 0.0312~0.125몰 첨가하는 것이 바람직한데, 이는 0.0312이하에서는 GPTMS와 결합하여 유기사슬을 연결할 때 그 효과가 미미하여 접착강도에 효과적이지 못하고, 0.125몰 이상에서는 GPTMS와 결합하지 못한 카르복실기가 많아서 마그네슘 표면을 산성 부식(acidic corrosion)시켜 궁극적으로 투명한 코팅막을 얻을 수 없기 때문이다. 또한 sol 용액의 점도를 상승시켜 도막형성시 퍼짐성을 떨어뜨리고 표면경도를 향상시키지 못한다.At this time, any one selected from monocarboxylic acid or polycarboxylic acid having a double bond or triple bond and having a carboxyl group is preferably added in a molar ratio of 0.0312 to 0.125 mol However, when it is less than 0.0312, it is not effective in bonding strength when bonding organic chains with GPTMS, and when it is more than 0.125 moles, there are many carboxyl groups that can not bond with GPTMS to cause acidic corrosion of magnesium surface, A transparent coating film can not be obtained. In addition, the viscosity of the sol solution is increased, which deteriorates the spreadability upon formation of the coating film and does not improve the surface hardness.

상기 이소프로필알콜(Isopropyl alcohol)는 실란의 가수분해 속도를 조절하고 종국에는 sol의 안정화에 영향을 미치는 용매이며 코팅제가 Mg 표면에 잘 퍼지게 하는 wetting agent 역할도 함께한다.The isopropyl alcohol is a solvent that controls the rate of hydrolysis of the silane and eventually stabilizes the sol, and also acts as a wetting agent to spread the coating on the Mg surface.

이때 이소프로필알콜(Isopropyl alcohol)의 첨가량은 몰비로 3~6몰이 가장 바람직한데, 이는 3몰 이하인 경우는 실란을 희석하는 용매가 부족하여 도막형성시 퍼짐성 저해, sol 용액의 불균질화 현상을 초래하고 상대적으로 실란농도가 높아져 도막형성시 크랙(crack)을 유발할 가능성이 높고, 6몰 이상에서는 상대적으로 실란농도가 너무 작아 도막형성시 치밀한 막을 얻을 수 없고 가수분해 과정이 오래 걸려 경제적이지 못하기 때문이다.At this time, the amount of isopropyl alcohol is most preferably 3 to 6 mol in terms of the molar ratio. When the molar ratio is less than 3 mol, the solvent for diluting the silane is insufficient to inhibit the spreadability upon formation of the coating film, The higher the silane concentration is, the higher the possibility of cracking during the formation of the coating film, and the silane concentration is too small at a molar ratio of 6 mol or more, so that a dense film can not be obtained and the hydrolysis process takes a long time .

또한 Methyltrimethoxysilane(MTMS) 또는 MTES(Methyltriethoxysilane), ETMS(Ethyltrimethoxysilane), ETES(Ethyltriethoxysilane) 중 선택된 어느 하나의 성분 : 3-Glycidoxypropyltrimethoxysilane(GPTMS) : Deionized Water(DI water) : 이중결합 또는 삼중결합이 존재하고 카르복실기를 가지고 있는 모노카르복실산(Monomeric Carboxylic Acid) 또는 폴리카르복실산(Polymeric Carboxylic acid) 중 선택된 어느 하나의 성분 : 이소프로필알콜(Isopropyl alcohol)로 이루어진 조성물의 총 중량은 88~94.5wt%가 바람직한데, 이는 지르코니아 졸과 티타니아 졸을 혼합하기 위해 범위를 한정한 것으로, 88wt%이하에서는 상대적으로 지르코니아 및 티타니아 졸이 많아져 sol의 점도가 급격히 상승하고 gel화 속도가 빨라져 코팅제를 제조할 수 없게 되는 단점을 갖기 때문이다. 또한 94.5wt%이상에서는 지르코니아 및 티타니아 졸의 첨가량이 상대적으로 적어 표면경도 향상을 기대하기 어렵다.Also, any one component selected from Methyltrimethoxysilane (MTMS), MTES (Methyltriethoxysilane), ETMS (Ethyltrimethoxysilane) and ETES (Ethyltriethoxysilane): 3-Glycidoxypropyltrimethoxysilane (GPTMS): Deionized Water (DI water) The total weight of the composition consisting of isopropyl alcohol is preferably 88 to 94.5 wt%, and the total weight of the composition is preferably selected from monocarboxylic acid and polycarboxylic acid However, the range is limited for mixing zirconia sol and titania sol. When the content is less than 88 wt%, zirconia and titania sol are relatively increased, so that the viscosity of sol is rapidly increased and the rate of gelation is increased, Because it has disadvantages. On the other hand, at 94.5 wt% or more, the addition amount of zirconia and titania sol is relatively small and it is difficult to expect the improvement of surface hardness.

또 Zirconia sol의 첨가량은 0.5~1.0wt%이 바람직한데, 이는 0.5wt%이하에서는 표면경도 향상 효과가 거의 없고 1.0wt% 이상에서는 sol의 점도변화에 영향을 미쳐 코팅제 저장성에 문제를 야기하기 때문이다.The addition amount of zirconia sol is preferably in the range of 0.5 to 1.0 wt% because the effect of improving the surface hardness is not exhibited at less than 0.5 wt% and the viscosity of sol is affected at more than 1.0 wt% .

Titania sol의 첨가량은 5~11wt%이 바람직한데, 이는 5wt%이하는 표면경도 향상 효과가 거의 없고 11 wt%이상에서는 sol의 점도 변화(급격한 점도 상승)에 악영향을 미치기 때문이다.The addition amount of Titania sol is preferably from 5 to 11 wt% because the addition of less than 5 wt% hardly improves the surface hardness, while the addition of more than 11 wt% adversely affects the sol viscosity (rapid viscosity increase).

이때 상기 Zirconia sol은 Zirconium(IV) propoxide : Isopropyl alcohol : Acetyl Acetone(AcAc) : Deionized water(DI water) : Acetic acid = 1 : 40 : 1 : 5 : 0.01의 몰비로 상온에서 가수분해가 종료된 용액이고, Titania sol은 Titanium(IV) isopropoxide : Acetyl acetone : Isopropyl alcohol : DI water : Acetic acid = 1 : 1.5 : 60 : 5 : 0.01의 몰비로 상온에서 가수분해가 종료된 용액으로 이루어진다.At this time, the Zirconia sol is dissolved in a solution of zirconium (IV) propoxide: Isopropyl alcohol: Acetyl Acetone (AcAc): Deionized water (DI water): Acetic acid = 1: 40: 1: Titania sol is composed of a solution of hydrolysis at room temperature at a molar ratio of Titanium (IV) isopropoxide: Acetyl acetone: Isopropyl alcohol: DI water: Acetic acid = 1: 1.5: 60: 5: 0.01.

이와 같은 본 발명 마그네슘 표면보호용 유-무기 복합 코팅제 조성물의 제조 및 실험예를 아래에 설명하기로 한다.The preparation and experimental examples of the inventive magnesium / organic composite coating composition for surface protection will be described below.

먼저 유기-무기 복합체의 sol 코팅제를 다음과 같이 합성(R(Si-Ti-Zr)xOy)하였다.First, the sol coating of the organic-inorganic composite was synthesized as follows (R (Si-Ti-Zr) x O y ).

가. Titania sol의 제조end. Manufacture of Titania sol

Titanium(IV) isopropoxide(Ti[OCH(CH3)2]4, F.W 284.26, 98%)를 이용하여 Titania sol을 합성하였다. Ti-alkoxide는 가수분해 속도가 매우 빠르므로 Si-alkoxide와 공가수분해 시키지 않고 따로 반응시켜 첨가 중합 방향으로 실험하기 위해 Titania sol을 먼저 합성하였다. Titanium sol was synthesized using Titanium (IV) isopropoxide (Ti [OCH (CH 3 ) 2 ] 4 , FW 284.26, 98%). Since Ti-alkoxide has a very fast hydrolysis rate, titania sol was first synthesized to react with Si-alkoxide separately without cohydrolysis and to conduct addition polymerization.

이때 Ti-alkoxide : AcAc(Acetyl Acetone, 99%) : Isopropyl alcohol(순도99.5%) : water(DI) : HAc(Acetic acid, 순도 98%) = 1 : 1.5 : 60 : 5 : 0.01의 몰비로 하였으며 상온에서 2시간, 60℃에서 2시간 동안 교반하여 가수분해를 완료시키고 1㎛ 종이필터로 여과하여 투명한 titania sol(yellowish)을 완성하였다. 이 순반응된 sol 용액은 다양한 몰비로 수차례 실험하여 최적의 몰비를 도출한 것이며 특히 Acetyl acetone의 첨가량이 안정화(침전물이 없는 깨끗한 sol 상태)에 크게 영향을 미쳤으며 Acetyl acetone/Ti-alkoxide의 몰(mole) 비율이 1이하에서는 가수분해 진행 과정 중에 흰색의 침전이 자주 발생하였다.At this time, the molar ratio of Ti-alkoxide: AcAc (Acetyl Acetone, 99%): Isopropyl alcohol (purity: 99.5%): water (DI): HAc (Acetic acid, purity: 98%) was 1: 1.5: 60: 5: The mixture was stirred at room temperature for 2 hours and at 60 ° C for 2 hours to complete the hydrolysis and filtered through a 1 μm paper filter to complete a transparent titania sol (yellowish). The solubilized sol solution was tested several times at various molar ratios to obtain the optimum molar ratio. In particular, the addition amount of acetyl acetone greatly influenced the stabilization (clean sol state without precipitate) and the molar amount of acetyl acetone / Ti-alkoxide (mole) ratio was less than 1, white precipitation frequently occurred during hydrolysis process.

나. Zirconia sol의 제조I. Manufacture of zirconia sol

상기 Titania sol과 마찬가지로 전이금속계 알콕시드는 가수분해 반응이 매우 빠르므로 AcAc와 같은 킬레이팅제가 필요하다. Zr-Alkoxide 전구체로서 Zirconium(IV) propoxide solution (C12H28O4Zr, 70%)을 사용하였다. sol 용액 합성에 필요한 물, 촉매, 알콜, 킬레이팅제 등의 몰비를 변화시키면서 다양한 조성의 Zirconia sol을 합성하였다. 70℃ oven에서 10일 이상 안정한 조성을 최적 sol로 선정하였으며 이때의 조성비는 Zr-alkoxide : IPA : AcAc : water(DI) : HAc = 1 : 40 : 1 : 5 : 0.01 이다. Titania sol에서와 같이 물의 양은 알콕시드 대비 5몰로 고정하였다. 이는 반응할 수 있는 알콕시기가 4몰의 물분자를 필요로 하기 때문이며, 충분한 가수분해를 위해 5몰을 사용하였다. 위 최적 몰비에서 물의 양이 더욱 증가하면 가수분해 속도는 빠르게 진행되지만 저장성이 현저히 떨어지는 단점이 있다.Like the titania sol, transition metal alkoxides require a chelating agent such as AcAc because the hydrolysis reaction is very fast. Zirconium (IV) propoxide solution (C 12 H 28 O 4 Zr, 70%) was used as a Zr-Alkoxide precursor. Zirconia sol of various compositions was synthesized by varying the molar ratio of water, catalyst, alcohol, chelating agent, etc. The composition ratio of Zr-alkoxide: IPA: AcAc: water (DI): HAc was 1: 40: 1: 5: 0.01. As in Titania sol, the amount of water was fixed to 5 moles of alkoxide. This is because the alkoxy groups that can be reacted require 4 moles of water molecules, and 5 moles is used for sufficient hydrolysis. When the amount of water is further increased at the above optimal molar ratio, the hydrolysis rate rapidly proceeds, but the storage stability is remarkably deteriorated.

다. MTMS-GPTMS-AA-(Ti-Zr)계 sol 코팅제 제조All. Manufacture of MTMS-GPTMS-AA- (Ti-Zr) sol coating

앞서 제조한 Titania, Zirconia sol에 실란(silane)반응을 유도하여 유기-무기 복합체의 sol 코팅제를 제조하였다. Methyltrimethoxysilane(MTMS, 97%)와 Glycidoxypropyltrimethoxysilane(GPTMS, 98.5%)는 3개의 methoxy기가 가수분해된 후 TiO2와 ZrO2 표면에 흡착하게 되고, 반응식 (1)에서와 같이 Glycidoxy기는 Acid 환경에서 열경화 반응시 에폭시링이 열리고(개환반응) 폴리산인 Acrylic acid(AA, 99%)와 결합하여 더욱 긴 사슬의 유기작용기를 형성하게 된다. The sol-coating of the organic-inorganic composite was prepared by inducing a silane reaction on the previously prepared titania and zirconia sol. After 3 methoxy groups were hydrolyzed, adsorbed on the surfaces of TiO 2 and ZrO 2 by Methyltrimethoxysilane (MTMS, 97%) and Glycidoxypropyltrimethoxysilane (GPTMS, 98.5%). The epoxy ring is opened (ring opening reaction) to form a longer chain organic functional group by bonding with acrylic acid (AA, 99%) which is a polyacid.

이때 MTMS-GPTMS-AA의 sol에 Titania sol와 Zirconia sol의 함량을 변화시켜 가면서 실험하였다.At this time, the contents of Titania sol and Zirconia sol were varied in the sol of MTMS-GPTMS-AA.

Figure 112016080703076-pat00001
Figure 112016080703076-pat00001

실란과 폴리산으로 구성된 sol을 합성하여 경향성을 분석하고 최적의 몰비를 갖는 조성을 선택하였다. 이때 사용된 물의 양은 실란 대비 4몰로 고정하여 실험하였다. 가수분해에 필요한 별도의 촉매를 사용하지 않았고, 이온이동도를 높이기 위해 용매로서 IPA(Isopropyl alcohol, 99.5%)를 실란 대비 4.5몰로 고정하여 6시간동안 상온에서 sol-gel 반응을 진행시키고 반응 종료 후 Viscometer를 이용하여 점도를 측정하였다. The sol composed of silane and polyacid was synthesized and analyzed for the tendency and the composition with the optimum molar ratio was selected. At this time, the amount of water used was fixed to 4 moles of silane. A separate catalyst for hydrolysis was not used. To increase the ion mobility, IPA (isopropyl alcohol, 99.5%) was fixed at 4.5 moles relative to silane and the sol-gel reaction was carried out at room temperature for 6 hours. The viscosity was measured using a viscometer.

조성 설계 시 유기작용기를 갖는 GPTMS와 폴리산인 AA의 몰비는 GPTMS/AA=2로 고정하였다(아크릴산과 글리시독시기가 화학식 (1)과 같이 1 : 1로 반응하므로 부착력향상을 위해 아크릴산과 반응하지 않는 glycidoxy기가 더 많이 필요함). In the composition design, the molar ratio of GPTMS having an organic functional group and AA as a polyacid was fixed to GPTMS / AA = 2 (acrylic acid and glycidoxypeptide reacted with 1: 1 as in the formula (1) More glycidoxy groups are required).

Mg기판에 부착된 본 발명 코팅제의 부착력과 표면경도를 알아보기 위해 스핀코터(Spin coater)로 약 5㎛ 내외의 두께의 도막을 형성시키고, 170℃에서 10분간 열처리하고 상온까지 건조기 내에서 서냉시켰다. 칼날로 1mm간격의 격자를 10×10이 되게 만들고, 3M tape를 5회 반복하여 붙였다 떼어내었다. 모두 붙어 있으면 100%로, 격자 중 1칸이 떨어져 나가면 99%로 표현하였고, 연필경도는 미쓰비치 연필을 사용하고 1kg의 하중을 가하여 실험하였다.In order to investigate the adhesion and surface hardness of the coating agent of the present invention attached to the Mg substrate, a coating film having a thickness of about 5 탆 was formed by a spin coater, heat treatment was performed at 170 캜 for 10 minutes, . A grid of 1 mm spacing was made to be 10 x 10 with a blade, and 3M tape was repeated 5 times and peeled off. 100% when all attached, and 99% when one of the lattices fell off. Pencil hardness was measured by using a pencil pencil and applying a load of 1 kg.

상기 Mg기판 표면에서 GPTMS와의 반응은 다음과 같다.The reaction with GPTMS on the Mg substrate surface is as follows.

Figure 112016080703076-pat00002
Figure 112016080703076-pat00002

MTMS-GPTMS-AA계 sol의 조성 및 특성Composition and properties of MTMS-GPTMS-AA system sol SpecimenSpecimen Mole RatioMole Ratio Viscosity
*(cP)
Viscosity
* (cP)
Adhesion
on Mg(AZ31)
Adhesion
on Mg (AZ31)
Pencil hardnessPencil hardness
MTMSMTMS GPTMSGPTMS AAAA A-1A-1 1One 00 00 5.25.2 40%40% 1H1H A-2A-2 1One 0.01560.0156 0.00780.0078 6.06.0 60%60% 2H2H A-3A-3 1One 0.03120.0312 0.01560.0156 6.66.6 90%90% 2H2H A-4A-4 1One 0.06250.0625 0.03120.0312 6.96.9 100%100% 3H3H A-5A-5 1One 0.12500.1250 0.06250.0625 7.57.5 100%100% 3H3H A-6A-6 1One 0.25000.2500 0.12500.1250 9.09.0 100%100% 3H3H

* 측정조건 (100rpm/Spindle S62)* Measurement conditions (100 rpm / Spindle S62)

상기 표 1에서와 같이 MTMS 단독으로는 부착력과 표면경도가 매우 약한 상태를 보인다. A-2부터 A-4까지의 조성은 점도의 차이가 크지 않고 부착력과 연필경도가 양호해 보인다. As shown in Table 1, MTMS alone exhibits very weak adhesion and surface hardness. The composition from A-2 to A-4 does not show a large difference in viscosity and shows good adhesion and pencil hardness.

MTMS-GPTMS-AA계 sol의 조성에서는 A-4, A-5, A-6의 조성이 마그네슘 기판에 부착성과 표면경도가 우수하였다. 따라서, MTMS : GPTMS : AA = 1 : 0.0625 : 0.0312로 고정하고 제조한 titania sol과 zirconia sol을 추가하면서 표면경도를 높이는 실험을 진행하였다.In the composition of MTMS-GPTMS-AA system sol, the composition of A-4, A-5 and A-6 was excellent in adhesion to magnesium substrate and surface hardness. Therefore, an experiment was conducted to increase the surface hardness by adding titania sol and zirconia sol prepared by fixing MTMS: GPTMS: AA = 1: 0.0625: 0.0312.

Titania sol / Zirconia sol의 함량변화(MTMS : GPTMS : AA = 1 : 0.0625 : 0.0312)Titania sol / Zirconia sol content change (MTMS: GPTMS: AA = 1: 0.0625: 0.0312) GroupGroup MTMS/GPTMS/AA
(wt%)
MTMS / GPTMS / AA
(wt%)
zirconia sol
(wt%)
zirconia sol
(wt%)
titania sol
(wt%)
titania sol
(wt%)
Viscosity
*(cP)
Viscosity
* (cP)
Pencil Hardness (H)Pencil Hardness (H)
B-1B-1 100100 00 00 8.18.1 33 B-2B-2 9696 00 44 8.18.1 33 B-3B-3 9494 00 66 8.18.1 44 B-4B-4 9292 00 88 7.27.2 44 B-5B-5 9090 00 1010 6.96.9 44 B-6B-6 8585 00 1515 7.57.5 44 C-1C-1 9090 00 1010 6.96.9 44 C-2C-2 8181 99 1010 75.075.0 <1<1 C-3C-3 8383 77 1010 97.297.2 <1<1 C-4C-4 8585 55 1010 27.627.6 33 C-5C-5 8787 33 1010 12.012.0 44 C-6C-6 8989 1One 1010 9.39.3 55 D-1D-1 92.592.5 0.50.5 77 9.49.4 44 D-2D-2 91.591.5 0.50.5 88 9.79.7 44 D-3D-3 90.590.5 0.50.5 99 9.69.6 44 D-4D-4 89.589.5 0.50.5 1010 8.98.9 44 D-5D-5 88.588.5 0.50.5 1111 8.48.4 44 E-1E-1 9494 1.01.0 55 9.19.1 44 E-2E-2 9393 1.01.0 66 8.88.8 4~54 to 5 E-3E-3 9292 1.01.0 77 8.78.7 55 E-4E-4 9191 1.01.0 88 8.88.8 55

* 점도 측정 조건 : 100rpm/Spindle S62* Viscosity measurement conditions: 100 rpm / Spindle S62

B group에서 titania sol의 함량이 0~15%까지 증가하여도 점도변화는 크게 나타나지 않았다. 이는 titania sol 속의 킬레이팅제(Acetyl acetone)가 비교적 안정한 sol 상태를 유지하게 만드는 것으로 생각된다. 6%이상의 첨가는 마그네슘 기판에서 연필경도를 3H→4H 수준으로 향상시켰고, 15%까지 첨가량을 늘려도 더 이상 표면경도는 향상되지 못하였다. 반면, C group에서와 같이 zirconia sol의 5% 이상 첨가는 급격한 점도 증가를 가져왔다. 또한 sol의 점도가 높을수록 표면경도가 저하되었다. In group B, the titania sol content increased from 0 to 15%, but the viscosity did not change significantly. This suggests that the chelating agent in titania sol maintains a relatively stable sol state. The addition of more than 6% improved the pencil hardness from 3H to 4H in the magnesium substrate, and the surface hardness was no longer improved even when the addition amount was increased up to 15%. On the other hand, as in the C group, the addition of more than 5% of zirconia sol resulted in a sudden increase in viscosity. Also, the higher the sol viscosity, the lower the surface hardness.

본 발명에서는 Zirconia sol/Titania sol ratio가 1/10 이하일 때 가장 높은 표면경도를 나타내었다. D와 E group은 Zirconia sol을 각각 0.5%, 1.0%로 고정하고, titania sol 량을 증가시키면서 실험하였다.In the present invention, the highest surface hardness was exhibited when the zirconia sol / Titania sol ratio was 1/10 or less. D and E groups were fixed with 0.5% and 1.0% zirconia sol, respectively, and titania sol was increased.

본 발명에서는 산성 촉매와 Mg 기판과의 표면 부식 반응 정도를 알아보기 위해 12가지의 산성촉매 용액을 Mg 기판 표면에 떨어뜨려 그 경향성을 알아보았다. 촉매는 sol-gel 공정에서 가수분해 반응과 중합반응을 촉진시키는 작용을 한다. 적게는 0.0001M%에서 많게는 0.1M%까지 촉매의 종류에 따라 투여하게 된다.In the present invention, twelve acidic catalyst solutions were dropped on the surface of the Mg substrate to investigate the surface corrosion reaction between the acid catalyst and the Mg substrate. Catalysts catalyze hydrolysis and polymerization in the sol-gel process. From 0.0001M% to 0.1M%, depending on the kind of the catalyst.

먼저 탈이온수 100g에 각각의 산성촉매를 0.01M% 투여하여 마그네슘 표면에서의 화학반응을 관찰하였다. 아래 표 3에는 실험에 사용한 산(acid)을 나타내었다. First, 0.01M% of each acidic catalyst was administered to 100g of deionized water to observe the chemical reaction on the magnesium surface. Table 3 below shows the acid used in the experiment.

마그네슘 기판에 각각의 산성 용액을 떨어뜨리고 건조 전과 건조 후의 표면변화를 관찰하였다. 질산, 염산, 황산 등 무기산(Inorganic acid)의 경우 0.01M% 용액의 pH는 2이하로 강산성을 나타내고, 아크릴산, 락틱산과 같은 유기산(Organic acid)의 경우 pH는 3~5로 약산성 나타내었다. 모든 산성 용액에서 마그네슘 표면은 부식되었고 백화 또는 흑변 현상이 나타났다.Each acidic solution was dropped on a magnesium substrate, and surface changes before and after drying were observed. Inorganic acid such as nitric acid, hydrochloric acid, and sulfuric acid showed strong acidity at pH of 2 or less in 0.01M% solution and organic acid such as acrylic acid and lactic acid showed weak acidity at pH 3 ~ 5. In all acid solutions, the magnesium surface was corroded and whitened or blackened.

이때 마그네슘 기판의 전처리는 다음과 같다. At this time, the pretreatment of the magnesium substrate is as follows.

마그네슘 표면의 유기 불순물을 제거하고 표면 활성화를 위해 유기용매 세척과 산세척을 실시하였다. 유기용매 세척은 아세톤(99.5%)을 이용하여 5분간 초음파 세척을 실시한 후 Dry-air로 1차 건조 후 60℃ 건조기에서 30분간 완전히 건조시켰다. 1.5wt%의 질산용액을 만들어 30초간 침지한 후 IPA(isopropyl alcohol)로 씻어내어 60℃ 건조기에서 완전 건조시켰다. 건조된 표면은 색상변화 없이 metallic surface를 그대로 유지하였다.Organic impurities on the magnesium surface were removed and organic solvent washing and pickling were performed for surface activation. The organic solvent was washed with acetone (99.5%) for 5 minutes, then dried with a dry air dryer, and completely dried in a 60 ° C dryer for 30 minutes. 1.5 wt% nitric acid solution was prepared and immersed for 30 seconds, washed with isopropyl alcohol (IPA), and completely dried in a drier at 60 ° C. The dried surface retained the metallic surface without color change.

0.01M%의 Acid 용액 0.01 M% of Acid solution No.No. AcidAcid M.WM.W PurityPurity
(%)(%)
weighingweighing
(g)(g)
molemole pH (30℃)pH (30 DEG C)
1One HNOHNO 33 63.0163.01 6262 1.02 1.02 0.01001 0.01001 1.841.84 22 HH 22 SOSO 44 98.0798.07 9595 1.03 1.03 0.01001 0.01001 1.431.43 33 HH 33 POPO 44 98.00 98.00 85.0 85.0 1.15 1.15 0.01001 0.01001 1.951.95 44 Acrylic acidAcrylic acid 72.06 72.06 99.0 99.0 0.73 0.73 0.01000 0.01000 2.792.79 55 Citric acidCitric acid 192.12 192.12 99.5 99.5 1.93 1.93 0.01000 0.01000 2.372.37 66 Benzoic acidBenzoic acid 122.13 122.13 99.5 99.5 1.23 1.23 0.01000 0.01000 3.103.10 77 Boric AcidBoric Acid 61.84 61.84 99.5 99.5 0.62 0.62 0.01001 0.01001 4.954.95 88 ** EDTA-2NaEDTA-2Na 372.24 372.24 98.0 98.0 3.80 3.80 0.01000 0.01000 4.564.56 99 Formic acidFormic acid 46.03 46.03 99.0 99.0 0.47 0.47 0.01000 0.01000 2.652.65 1010 HClHCl 36.46 36.46 38.0 38.0 0.96 0.96 0.01000 0.01000 1.621.62 1111 Lactic AcidLactic Acid 90.08 90.08 99.0 99.0 0.91 0.91 0.01000 0.01000 2.522.52 1212 Acetic AcidAcetic Acid 60.05 60.05 99.7 99.7 0.60 0.60 0.01001 0.01001 3.033.03

*EDTA-2Na : Di-sodium ethylenediaminetetraacetic acid* EDTA-2Na: Di-sodium ethylenediaminetetraacetic acid

상기한 12가지의 0.01M% 산성촉매 용액을 마그네슘 기판에 떨어뜨리고 건조 후 표면 화학반응을 관찰하였다. 모든 용액에서 마그네슘 표면에 국부전지가 형성되고, 기포가 발생하면서 부식반응이 진행되었다. 열 건조 후 백화 또는 흑변이 관찰되었다. 마그네슘의 부식반응은 아래 반응식과 같이 산화, 환원반응에 의해서 일어난다. 즉, 모든 산성 환경에서 산화환원반응은 필연적이다.The above-mentioned 12 kinds of 0.01M% acidic catalyst solution was dropped on a magnesium substrate, followed by drying and observing the surface chemical reaction. In all the solutions, a local cell was formed on the magnesium surface, and the corrosion reaction proceeded while bubbles were generated. After heat drying, whitening or blackening was observed. The corrosion reaction of magnesium occurs by oxidation and reduction reaction as shown in the following reaction formula. That is, redox reactions are inevitable in all acidic environments.

Mg = Mg2+ + 2e- Mg = Mg 2+ + 2e -

2H+ + 2e- = H2 2H + + 2e - = H 2

2H2O + 2e- = H2 + 2OH- 2H 2 O + 2 e - = H 2 + 2 OH -

Mg + 2H+ = Mg2+ + H2 Mg + 2H + = Mg 2+ + H 2

Mg2+ + 2OH- = Mg(OH)2 Mg 2+ + 2OH - = Mg (OH) 2

Mg + 2H2O = Mg(OH)2 + H2 (반응생성식) Mg + 2H 2 O = Mg ( OH) 2 + H 2 ( reaction generation equation)

위 반응식과 같이 수소이온 환경에서 마그네슘의 산화환원반응은 더욱 빨리 진행된다. 무기산의 경우 각각 MgCl2(흰색), MgNO3(흰색), MgSO4(흰색)의 염을 생성한다. 반면, 고농도의 인산 첨가는 흑변을 일으킨다는 보고가 있지만(Theories and applications of Chem. Eng., 2012), 가수분해 속도를 올리기 위해 소량의 인산 촉매 첨가는 Mg 기판에 적용할 코팅제 합성에는 바람직하다고 볼 수 있다. 즉, Mg 표면에서 인산수용액은 Mg(PO4)2와 같은 부동태막을 형성시켜 코팅액의 부착성을 더욱 좋게 할 수 있다.As shown in the above equation, the redox reaction of magnesium proceeds faster in the hydrogen ion environment. In the case of inorganic acids, salts of MgCl 2 (white), MgNO 3 (white) and MgSO 4 (white) are produced, respectively. On the other hand, a high concentration of phosphoric acid addition is to cause the blackening is reported, but (Theories and applications of Chem. Eng ., 2012), a small amount of phosphoric acid catalyst was added to increase the rate of hydrolysis is seen to be desirable, the coating composite to be applied to the Mg substrate . That is, a phosphoric acid aqueous solution on the surface of Mg can form a passivation film such as Mg (PO 4 ) 2 to improve the adhesion of the coating solution.

본 발명 코팅제는 Titania sol의 첨가가 많을수록 코팅횟수에 따른 두께가 증가하였다. 실험조성에서는 Void 없는 깨끗한 도막이 완성됨을 확인하였다.The thickness of the coating agent according to the number of coatings increased as the amount of Titania sol was increased. In the experimental composition, it was confirmed that a clean coating without a void was completed.

Soda-lime Glass 상에 spin coating 법을 이용하여 코팅된 본 발명 코팅제의 투과율을 측정한 결과를 도 4에 나타내었다. UV-visible spectroscopy (Cary 100, Varian, Mulgrave, Australia)를 이용하여 측정한 결과이며, 그래프에서 나타나는 바와 같이 모든 박막이 가시광선 영역에서 Glass 기판보다 높은 가시광 투과율을 보였다. 투과율은 Bare soda-lime glass를 기준으로 측정을 실시하였으며, 평균 투과율은 100.9% 이상을 나타내었다. The transmittance of the coating solution of the present invention coated on the soda-lime glass by the spin coating method is shown in FIG. As can be seen from the graph, all the thin films showed higher visible light transmittance than the glass substrate in the visible light region. The transmittance was measured based on bare soda-lime glass, and the average transmittance was over 100.9%.

본 발명 코팅제를 스핀코터를 이용하여 마그네슘 표면에 얇은 도막을 만들고 150℃~170℃ 범위에서 열경화시킨 후, 100℃에서 농도 15% 소금물에 2시간동안 끓여 표면의 부식저항성을 관찰하였다. 도 5는 인산촉매에 따른 코팅막의 내염수성을 보여준다. Bare 기판은 내염수성 실험에서 표면이 완전 부식되었고, 가수분해 촉매로 0.2wt%의 인산(H3PO4, M.W. 98, 85%)을 사용한 경우에는 도막 표면의 백화가 관찰되지 않고 내염수성이 우수한 반면, 0.6wt%의 인산촉매 첨가는 오히려 표면이 뿌옇고 가장자리부터 부식이 진행되었다.A thin coating film was formed on the surface of magnesium using a spin coater according to the present invention and thermally cured in a temperature range of 150 ° C to 170 ° C and then boiled in salt water of 15% concentration at 100 ° C for 2 hours to observe the corrosion resistance of the surface. FIG. 5 shows the salt resistance of the coating film according to the phosphoric acid catalyst. The surface of the bare substrate was completely corroded in the flameproof test. When 0.2 wt% of phosphoric acid (H 3 PO 4 , MW 98, 85%) was used as the hydrolysis catalyst, no whitening of the surface of the film was observed, On the other hand, addition of 0.6 wt% of phosphoric acid catalysts resulted in surface pitting and corrosion from the edge.

이때 (a) Bare 기판 (b) 인산촉매 0.2wt%사용한 경우 (c) 인산촉매 0.6wt%사용한 경우이다.In this case, (a) 0.2 wt% of bare substrate (b) phosphoric acid catalyst was used, and (c) 0.6 wt% of phosphoric acid catalyst was used.

이처럼 본 발명 코팅제 조성물은 항온항습 및 염수분무시험, 진동내구성, 연필경도, 내산성, 내용제성이 매우 우수한 특성을 갖는 것이며, 이를 공인시험성적서로 도 6 내지 도 17도에 표시하였다.As described above, the coating composition of the present invention has excellent properties of constant temperature and humidity and salt spray test, vibration durability, pencil hardness, acid resistance and solvent resistance, and is shown in FIG. 6 to FIG. 17 as an official test report.

상술 한 바와 같이 본 발명은 비록 한정된 실시예들에 의해 설명되었으나, 본 발명은 이것에 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능하다 할 것이다.Although the present invention has been described in connection with certain exemplary embodiments, it is to be understood that the present invention is not limited thereto and that various changes and modifications will be apparent to those skilled in the art. Various modifications and variations are possible within the scope of the appended claims.

Claims (2)

Methyltrimethoxysilane(MTMS) 또는 MTES(Methyltriethoxysilane), ETMS(Ethyltrimethoxysilane), ETES(Ethyltriethoxysilane) 중 선택된 어느 하나의 성분 : 3-Glycidoxypropyltrimethoxysilane(GPTMS) : Deionized Water(DI water) : 이중결합 또는 삼중결합이 존재하고 카르복실기를 가지고 있는 모노카르복실산(Monomeric Carboxylic Acid) 또는 폴리카르복실산(Polymeric Carboxylic acid) 중 선택된 어느 하나의 성분 : 이소프로필알콜(Isopropyl alcohol) = 1 : 0.0625~0.25 : 3.5 ~ 5 : 0.0312~0.125 : 3~6의 몰비로 된 조성물 88~94.5wt%와, Zirconia sol 0.5~1.0wt%와, Titania sol 5~11wt%로 이루어짐을 특징으로 하는 마그네슘 표면보호용 유-무기 복합 코팅제 조성물.
3-Glycidoxypropyltrimethoxysilane (GPTMS): Deionized water (DI water): A double or triple bond exists and the carboxyl group is present. Isopropyl alcohol = 1: 0.0625 to 0.25: 3.5 to 5: 0.0312 to 0.125: isopropyl alcohol, Inorganic composite coating composition for magnesium surface protection, comprising 88 to 94.5 wt% of a composition having a molar ratio of 3 to 6, 0.5 to 1.0 wt% of zirconia sol, and 5 to 11 wt% of titania sol.
청구항 1에 있어서, 상기 Zirconia sol은 Zirconium(IV) propoxide : Isopropyl alcohol : Acetyl Acetone(AcAc) : Deionized water(DI water) : Acetic acid = 1 : 40 : 1 : 5 : 0.01의 몰비로 상온에서 가수분해가 종료된 용액이고, Titania sol은 Titanium(IV) isopropoxide : Acetyl acetone : Isopropyl alcohol : DI water : Acetic acid = 1 : 1.5 : 60 : 5 : 0.01의 몰비로 상온에서 가수분해가 종료된 용액으로 이루어짐을 특징으로 하는 마그네슘 표면보호용 유-무기 복합 코팅제 조성물.

The zirconia sol according to claim 1, wherein the zirconia sol is hydrolyzed at a molar ratio of zirconium (IV) propoxide: isopropyl alcohol: Acetyl Acetone (AcAc): Deionized water (DI water): Acetic acid = 1: 40: Titania sol is a solution of hydrolyzed at room temperature in a molar ratio of 1: 1.5: 60: 5: 0.01 Titanium (IV) isopropoxide: Acetyl acetone: Isopropyl alcohol: DI water: Acetic acid Inorganic composite coating composition for protecting a magnesium surface.

KR1020160105462A 2016-08-19 2016-08-19 Oraganic-Inorganic Coating Agent KR101689559B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160105462A KR101689559B1 (en) 2016-08-19 2016-08-19 Oraganic-Inorganic Coating Agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160105462A KR101689559B1 (en) 2016-08-19 2016-08-19 Oraganic-Inorganic Coating Agent

Publications (1)

Publication Number Publication Date
KR101689559B1 true KR101689559B1 (en) 2016-12-26

Family

ID=57733790

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160105462A KR101689559B1 (en) 2016-08-19 2016-08-19 Oraganic-Inorganic Coating Agent

Country Status (1)

Country Link
KR (1) KR101689559B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772549B1 (en) * 2017-05-01 2017-08-29 (주)필스톤 Insulation coating composition and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538364A (en) * 2001-06-28 2004-12-24 アルガート シェルティ ギムール テュファティ Treatment to improve corrosion resistance of magnesium surface
KR20060135654A (en) * 2003-11-13 2006-12-29 엔디에스유 리서치 파운데이션 Magnesium-Containing Coatings and Coating Systems
JP2009001750A (en) * 2007-06-25 2009-01-08 Nippon Paint Co Ltd Manufacturing method of inorganic-organic complex coating composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538364A (en) * 2001-06-28 2004-12-24 アルガート シェルティ ギムール テュファティ Treatment to improve corrosion resistance of magnesium surface
KR20060135654A (en) * 2003-11-13 2006-12-29 엔디에스유 리서치 파운데이션 Magnesium-Containing Coatings and Coating Systems
JP2009001750A (en) * 2007-06-25 2009-01-08 Nippon Paint Co Ltd Manufacturing method of inorganic-organic complex coating composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772549B1 (en) * 2017-05-01 2017-08-29 (주)필스톤 Insulation coating composition and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP2009073B1 (en) Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film
US10662348B2 (en) Aluminium-zinc hot-plated steel plate having excellent weather resistance, corrosion resistance and alkali resistance, and manufacturing method and surface treating agent therefor
CN103289031B (en) High-transparency super-hydrophobicity coating material and application thereof
KR102220245B1 (en) A coating composition, a preparation method therefore, and use thereof
US10246780B2 (en) Non-combustible color steel sheet for household appliances and building materials and method for manufacturing same
CN102898946B (en) Preservative solution use for copper and copper alloy surface, preparation method and application
US20180112459A1 (en) Heat ray reflective material, window, and method for manufacturing heat ray reflective material
CN104745075B (en) Inorganic passivation coating material, method for forming the same, and inorganic passivation protective film formed thereby
TWI630246B (en) Aqueous antifouling coating agent, antifouling coating layer, laminate and solar cell module
KR101689559B1 (en) Oraganic-Inorganic Coating Agent
Pathak et al. Sol gel derived organic-inorganic hybrid coating: A new era in corrosion protection of material
JP2004307897A (en) Surface-treated metallic material having silica-zirconia-based coating and method for producing the same
CN113015770A (en) Organic-inorganic composite coating composition and galvanized steel sheet surface-treated with the same
JPH0786185B2 (en) Coating composition for coating
KR101069950B1 (en) Steel Sheet Having Superior Electro-Conductivity and Resin Composition Therefor
KR101254065B1 (en) Coating solution for magnesium materials having excellent corrosion resistance, method of preparing the same, and coating method of magnesium materials using the same
KR101220679B1 (en) Compositie resin composition for coating galvanized steel sheet and galvanized steel sheet coated with the composition
JP7520862B2 (en) Nanostructured Hybrid Sol-Gel Coatings for Surface Protection
KR101091339B1 (en) Steel plate with excellent electrical conductivity and heat dissipation
JP2009275316A (en) Fiber sheet and light-weight structure material produced using the same
KR101302720B1 (en) Coating composition for forming scratch resistant silica thin layers containing silica nano-particles of different sizes, method of preparing the same
JP5343553B2 (en) Surface-treated steel sheet and manufacturing method thereof
KR20100030069A (en) A black coloring resin coated steel sheet, black coloring resin composition having anti-fingerprint property and an adhesive resin composition
KR101516379B1 (en) Surface treatment method for magnesium or magnesium alloy
JP6661410B2 (en) Coating agent, method for producing coating agent, and method for forming coating film

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20160819

PA0201 Request for examination
PA0302 Request for accelerated examination

Patent event date: 20161011

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20160819

Patent event code: PA03021R01I

Comment text: Patent Application

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20161219

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20161220

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20161220

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20191125

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20191125

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20211013

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20221006

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20231016

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20241010

Start annual number: 9

End annual number: 9