JPS63153270A - Mechanism for exchanging substrate in vacuum vessel - Google Patents

Mechanism for exchanging substrate in vacuum vessel

Info

Publication number
JPS63153270A
JPS63153270A JP29835286A JP29835286A JPS63153270A JP S63153270 A JPS63153270 A JP S63153270A JP 29835286 A JP29835286 A JP 29835286A JP 29835286 A JP29835286 A JP 29835286A JP S63153270 A JPS63153270 A JP S63153270A
Authority
JP
Japan
Prior art keywords
substrate
chamber
wafer
vacuum chamber
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29835286A
Other languages
Japanese (ja)
Other versions
JPH0660397B2 (en
Inventor
Izumi Nakayama
泉 中山
Akitoshi Suzuki
鈴木 章敏
Hiroyuki Nawa
名和 浩之
Tomohiko Kaneko
智彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP61298352A priority Critical patent/JPH0660397B2/en
Publication of JPS63153270A publication Critical patent/JPS63153270A/en
Publication of JPH0660397B2 publication Critical patent/JPH0660397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • C23C14/566Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber

Abstract

PURPOSE:To shorten the waiting time in a reaction chamber and to improve productivity by taking the next substrate into a substrate exchanging chamber during the treatment of a substrate in the CVD reaction chamber and completing vacuum evacuation before the end of said treatment. CONSTITUTION:A substrate 47, 47' support 24 is provided in the substrate 47, 47' exchanging chamber 5 in which a vacuum state is maintained by closing gate valves 10, 11 in both side wall parts and opening a gate valve 6 with a binder chamber 3. The untreated substrate 47 is held imposed in an upper supporting part 58 thereof. The treated substrate 47' is then imposed in the vacuum state to the lower supporting part 59 of the support 24 by the combination of the forward and backward motion of a fork 8 in the above-mentioned chamber 3 and the vertical motion of a driving shaft 24 which moves the support 24 vertically in such a manner that said support can be stopped in prescribed plural positions. The substrate 47 is ejected in this state to the above-mentioned chamber 3 by the fork 8 and thereafter, the above-mentioned valves 10, 11, 6 are opened and closed to maintain the atm. pressure in the chamber 5. The substrate 47' is ejected by a belt 14 to a cassette 15 and the substrate 47 in a cassette 13 is carried into the supporting part 58 by a belt 12, etc. The inside of the chamber 5 is then evacuated and the above-mentioned operations are repeated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は真空槽内における基板交換機構に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a substrate exchange mechanism within a vacuum chamber.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

第11図は従来の大気から真空槽内へのウェハーの取り
込み機構の一例を示すが、図にかいて本機構は大気から
ベルト搬送機(109)等の手段によりゲートバルブも
しくは仕切パルプ(lOS)を通って真空槽(101)
内に送夛込まれたウェハー(106)を真空槽(101
)内に設けたベルト搬送機構(102)によυ槽(lO
t)内の適当な位置まで取シ込み、これを別に設けたウ
ェハー上下機構によシベルト位置よシ上方に持ち上げ、
次にウェハー(106)の下方に侵入した別のメカニズ
ム上におろす機能を有する。
Figure 11 shows an example of a conventional mechanism for taking wafers from the atmosphere into a vacuum chamber. Through the vacuum chamber (101)
The wafer (106) sent into the vacuum chamber (101)
) The belt transport mechanism (102) installed in the υ tank (lO
t), and lift it above the seat belt position using a separately provided wafer up/down mechanism.
It then has the ability to lower the wafer (106) onto another mechanism that penetrates beneath it.

今、これを更に詳しく説明すれば以下の通りである。す
なわち第11図人に示すように、大気から仕切パルプ(
IcII)を通過して真空槽(101)内に送り込まれ
た表面処理すべきウェハー(106)は、さらに真空槽
(101)内に設けられたベルト搬送機構(102) 
Kより適当な位置まで運ばれ停止する。そこで仕切パル
プ(104)が閉り、真空槽(101)内は真空に排気
される。
This will now be explained in more detail as follows. In other words, as shown in Figure 11, the partition pulp (
The wafer (106) to be surface-treated, which has passed through the vacuum chamber (101) and is sent into the vacuum chamber (101), is further transferred to a belt transport mechanism (102) provided in the vacuum chamber (101).
It is carried to an appropriate position by K and stopped. The partition pulp (104) is then closed, and the inside of the vacuum chamber (101) is evacuated.

次に第11図Bに示すように前記時点ではベルト(10
2)のウェハー(106)が乗る位置よシ下方に位置し
ていたウェハー・プッシャー(lO8)カベa −ズ(
105)を介して真空シールを保りたま\ウェハー上下
駆動シリンダー(103)によシ上昇しベルト面より上
方にウェハー(106)を持ち上げる。
Next, as shown in FIG. 11B, the belt (10
2) The wafer pusher (lO8) cabinet was located below the position where the wafer (106) was placed.
While maintaining a vacuum seal through the wafer (105), the wafer (106) is lifted up by the wafer vertical drive cylinder (103) and lifted above the belt surface.

しかる後に、ウェハー(106)の下方に別のウェハー
搬送メカニズム(107) (例えばフォーク搬送のビ
、クア、プ等)がウェハー(lO6)の下方に侵入して
くる。
After that, another wafer transport mechanism (107) (for example, a fork transport system such as Bi, Qua, Pu, etc.) enters below the wafer (106).

次に第11図Cに示すようにウェハー、プッシャー (
108)が下降し別のウェハー搬送メカニズム(107
)上にウェハー(406)が受は渡される。
Next, as shown in Figure 11C, the wafer, pusher (
108) is lowered and another wafer transport mechanism (107
) on which the wafer (406) is transferred.

以上が大気側から真空槽(lot)内へウェハー(10
6)を取シ込む場合の動作であるが逆に処理済のウェハ
ー(106)を大気側へ取シ出す手順はこの逆となる。
The above wafers (10
6), but the procedure for taking out the processed wafer (106) to the atmosphere is the opposite.

すなわち、上記従来例では、真空に排気されている真空
槽(101)内へ、すでに処理の終ったウェハー(10
6)をメカニズム(7)によシ搬送し、その後、真空槽
(101)をべ/トシ、処理済ウェハー (106)を
とシ出す。さらに、未処理ウェハー(106)を真空槽
(t(H)内に取り込み真空排気を行い、その後に、メ
カニズム(107)により、処理室へ搬送する。以上の
大気→真空の排気サイクルを含むウェハーの取9出し、
取り込み作業の間、処理室は、待時間となり、能率が悪
い。
That is, in the conventional example described above, a wafer (10
6) is conveyed through the mechanism (7), and then the vacuum chamber (101) is transferred and the processed wafer (106) is taken out. Furthermore, the unprocessed wafer (106) is taken into the vacuum chamber (t(H) and evacuated, and then transported to the processing chamber by the mechanism (107).The wafer including the above atmospheric → vacuum exhaust cycle Take 9 out,
During the import operation, the processing room becomes inefficient due to waiting time.

この問題を避けるためウェハー取り込み用真空槽と、ウ
ェハー取シ出し用真空槽を別々に設ける方法もよく用い
られるが、この方法では装置の構成が複雑となる。
To avoid this problem, a method is often used in which a vacuum chamber for taking in wafers and a vacuum chamber for taking out wafers are provided separately, but this method requires a complicated configuration of the apparatus.

また真空槽を1つしか持たせない場合、装置のスルーブ
ツトにも依るが通常は大気→真空の排気サイクルを速く
するため急速排気及び急速なベントが必要となるがLS
Iのパターンサイズが微細化している昨週、ウェハーへ
のパーティクル付着を極力抑えることが不可欠となって
おり、パーティクルの舞い上りをおこし易い真空槽内の
急速な排気やベントは好ましくない。
In addition, when only one vacuum chamber is provided, rapid exhaust and rapid venting are usually required to speed up the exhaust cycle from atmosphere to vacuum, although it depends on the throughput of the equipment.
Last week, as I pattern sizes became smaller, it became essential to suppress particle adhesion to wafers as much as possible, and rapid exhaust or venting of the vacuum chamber, which tends to cause particles to fly up, is undesirable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記従来の種々の欠点を克服し、処理室におい
て、前に取り込まれたウェハー(基板)を処理している
間に次のウェハーを、真空槽内に取シ込んでおき、さら
に、真空排気を完了しておくことにより、処理室のウェ
ハー交換作業から、ベント、排気に要する時間をはふき
処理室の待ち時間を減少させて生産性を向上する真空槽
内における基板交換機構を提供することを目的とする。
The present invention overcomes the various drawbacks of the prior art described above, and provides for loading a next wafer into a vacuum chamber while a previously loaded wafer (substrate) is being processed in the processing chamber, and further: By completing vacuum evacuation, we provide a substrate exchange mechanism in a vacuum chamber that reduces waiting time in the processing chamber and improves productivity by eliminating the time required for wafer exchange, venting, and exhaust in the processing chamber. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

以上の目的は、側壁部に少なくとも2個の開口を有し、
これをゲートバルブで開閉自在とした真空槽内に配設さ
れ、基板支持部を上下に少なくとも2段有する基板支持
体と;該基板支持体を上下方向に所定の複数の位置で停
止可能に駆動する昇降駆動部とから成シ、前記2段のう
ち一方には表面処理済の基板を載置させ得るようにし、
他方には未処理の基板を載置させ得るようにしたことを
特徴とする真空槽内における基板交換機構によって達成
される。
The above object has at least two openings in the side wall,
A substrate support that is disposed in a vacuum chamber that can be opened and closed by a gate valve, and that has at least two levels of substrate support sections above and below; the substrate support is driven so that it can be stopped at a plurality of predetermined positions in the vertical direction; a lifting and lowering drive unit that allows a surface-treated substrate to be placed on one of the two stages;
This is achieved by a substrate exchange mechanism in a vacuum chamber, which is characterized in that an unprocessed substrate can be placed on the other side.

〔作 用〕[For production]

上下2段の基板支持部のいずれか一方に未処理の基板を
載置させているときに、他方に処理済の基板を載置させ
るのを真空状態で行ない、次いでこの状態で未処理の基
板を所要の処理室へと搬出し、この後、真空槽内を大気
圧にして、未処理の基板を上記一方の基板支持部に搬入
し、処理済の基板を大気中の所要の場所へと搬出する。
When an unprocessed substrate is placed on one of the upper and lower substrate supports, a processed substrate is placed on the other in a vacuum state, and then the unprocessed substrate is placed on the other side. After that, the vacuum chamber is brought to atmospheric pressure, the unprocessed substrate is carried into one of the substrate supports, and the processed substrate is moved to the desired location in the atmosphere. Carry it out.

次いで真空槽内を排気して上述の操作をくシ返す。Next, the inside of the vacuum chamber is evacuated and the above-mentioned operation is repeated.

以上の一連の作業のうち、真空槽内を大気圧にして未処
理の基板を一方の基板支持部に搬入し、処理済の基板を
大気中の所要の場所へと搬出し、さらに真空槽内を排気
する作業は、先に処理室へ運ばれた未処理基板が、処理
されている間に完了しておく。
In the above series of operations, the vacuum chamber is brought to atmospheric pressure, the unprocessed substrate is carried into one of the substrate supports, the processed substrate is carried out to the required location in the atmosphere, and then the unprocessed substrate is carried into the vacuum chamber. The work of exhausting the air is completed while the unprocessed substrates that have been transported to the processing chamber first are being processed.

〔実施例〕〔Example〕

以下、本発明の実施例によるCVD装置について図面を
参照して説明する。
Hereinafter, a CVD apparatus according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本装置(1)の全体を示すが、左右には一対の
CVD反応室(2a)(2りが設けられ、これらの間に
バッファー室(3)が設けられている。バッファー室(
3)と両反応室(2す(2b)との間の隔壁にはゲート
バルブ(4a)(4b)が設けられ、これらを介してウ
ェハーの受は渡しが行われるようになっている。
Fig. 1 shows the whole of the present device (1), in which a pair of CVD reaction chambers (2a) (2) are provided on the left and right, and a buffer chamber (3) is provided between them.Buffer chamber (
Gate valves (4a) and (4b) are provided on the partition wall between the reaction chamber 3) and both reaction chambers (2b), and wafers are received and transferred through these gate valves.

バクファー室(3)の前方には本発明に係わるウエノ・
−交換室(5)が設けられ、ゲートバルブ(6)を介し
てこれら室(3) (5)間でウェハーの受は渡しが行
われるようになっている。
In front of the buffer chamber (3), there is a Ueno film according to the present invention.
- An exchange chamber (5) is provided, and wafers are received and transferred between these chambers (3) and (5) via a gate valve (6).

バッファー室(3)内にはウェハー転送機構(7)が設
けられ、これは搬送用フォーク(8)を備え、矢印aで
示すように中心軸(9)の回りに回動自在であり、かつ
矢印すで示すように伸縮自在となっている。
A wafer transfer mechanism (7) is provided in the buffer chamber (3), which is equipped with a transfer fork (8), is rotatable around a central axis (9) as shown by arrow a, and It can be expanded and contracted as shown by the arrow.

ウェハー交換室(5)の両側壁部にもゲートバルブ(1
0cIηが設けられ、この一方側には未処理ウェハー搬
入用ベルト(2)が設けられ、ウェハースドック、カセ
ット(至)から所定のタイミングで一枚宛、自動的に取
シ出してベルト四によシウェハー交換案(5)内に搬入
するようになっている。また他方には処理済ウェハー搬
出用ベルトα◆が設けられ、処理済ウェハースドック・
カセット(ト)へと搬入するようになっている。
Gate valves (1) are also installed on both side walls of the wafer exchange room (5).
A belt (2) for carrying in unprocessed wafers is installed on one side of the belt (2), which automatically takes out one wafer from the wafer dock and cassette (to) at a predetermined timing and transfers it to the belt (4). It is designed to be carried into the wafer exchange plan (5). In addition, a belt α◆ for carrying out processed wafers is provided on the other side, and a processed wafer dock/belt α◆ is installed.
It is designed to be carried into a cassette (G).

次に第2図〜第9図を参照してウェハー交換室(5)の
詳細について説明する。
Next, details of the wafer exchange room (5) will be explained with reference to FIGS. 2 to 9.

ウェハー交換室(5)は第2図に示すように密閉槽Q1
1によりて画成され、上述したように両側壁部にゲート
バルブ顛αυ(第2図では図示省略)及び後壁邪にゲー
トバルブ(6)を備えてお9、これらゲートバルブ(6
)α0αηの詳細は後述するが、これらの閉状態によっ
て室の内は密封状態とされ、図示しない排気機構によっ
て室の内は真空もしくは減圧状態におかれるようになっ
ている、 呈ノ内には第5図にその全体的形状が明示される基板支
持体C241が配設され、この底面には駆動軸+251
が固定され、これは密閉槽Qυの底壁部を気密に挿通し
て下方の大気中に延びておりスクリエー係合体面に固定
されている。駆動軸のは真空シールc261によりて上
下方向に気密に摺動自在に支承されている。
The wafer exchange room (5) is a sealed tank Q1 as shown in Figure 2.
1, and as described above, it is provided with gate valve sections αυ (not shown in FIG. 2) on both side walls and gate valves (6) on the rear wall 9, and these gate valves (6)
) The details of α0αη will be described later, but the interior of the chamber is sealed by these closed states, and the interior of the chamber is kept in a vacuum or reduced pressure state by an exhaust mechanism (not shown). A substrate support C241, the general shape of which is shown in FIG.
is fixed, which extends into the atmosphere below by airtightly passing through the bottom wall of the closed tank Qυ, and is fixed to the surface of the screed engagement body. The drive shaft is supported by a vacuum seal C261 so as to be slidable in an airtight manner in the vertical direction.

スクIJ、−係合体(2)はボールスフIJ、−■に螺
合しており、このスクリ為−啜の下端部にはプーリ■が
固定されている。モータC311は図示せずとも機枠に
固定され、この回転軸に固定されたプーリ1321と上
述のブーIJ C291との間にベルト■が巻装されて
いる。モータ6υの回転によりボールスクリユーのが回
転し、これによりスクリエー係合体面、従って駆動軸困
は上方か下方へと移動する、モータC311は正逆回転
自在であシ、この回転方向に応じて駆動軸のは上方か下
方へと移動する。スクIJ、−係合体面の一側方には高
さセンサー装置■が設けられ、駆動軸ωの各高さ位置が
これによって検知され、この検知信号によりモータO1
lは駆動制御される。
The screw IJ, - engaging body (2) is screwed into the ball stopper IJ, -■, and a pulley ■ is fixed to the lower end of this screw. The motor C311 is fixed to the machine frame (not shown), and a belt (2) is wound between the pulley 1321 fixed to the rotating shaft and the above-mentioned boot IJC291. The rotation of the motor 6υ causes the ball screw to rotate, thereby moving the screw engaging body surface, and thus the drive shaft, upward or downward. The drive shaft moves upward or downward. A height sensor device (■) is provided on one side of the engaging body surface, and each height position of the drive shaft ω is detected by this, and this detection signal is used to control the motor O1.
l is driven and controlled.

ボールスクリユー■は公知のようにねじ溝にボールを嵌
めた構成となっておυ、駆動軸四をバックラッシ為なく
正確に所定の位置へ上昇又は下降させることができる。
As is well known, the ball screw (2) has a structure in which a ball is fitted into a threaded groove, and the drive shaft (4) can be accurately raised or lowered to a predetermined position without backlash.

スクリエー係合体面の小径部には冷却水入口及び出口が
層成され、これに冷却水導入用チー−プ(至)及び導出
用チェーブ(ロ)が接続されている。駆動軸C内には図
示せずとも導入路及び導出路が形成され、基板支持体C
I!41の基部c3n内に蛇行状に形成される循環路田
と連通している。iお、基板支持体(241はアルミニ
ウムから成9熱伝導性にすぐれている。
A cooling water inlet and an outlet are formed in layers in the small diameter portion of the surface of the screed engaging body, and a cooling water introduction cheep (to) and a cooling water outlet channel (b) are connected to these. Although not shown in the drawings, an introduction path and an exit path are formed in the drive shaft C, and the substrate support C
I! It communicates with a circulation path formed in a meandering manner within the base c3n of 41. The substrate support (241) is made of aluminum and has excellent thermal conductivity.

密閉槽CDの3側壁部には上述のようにゲートバルブ(
6)αOQ]、lが配設され、これら側壁部に形成され
た開口(6a)(toa)(tta)  を気密に閉じ
るように構成され、第1図では略図で示され、第2図で
はゲートバルブ(6)については詳しく図示されている
As mentioned above, there is a gate valve (
6) αOQ], l are arranged and configured to airtightly close the openings (6a) (toa) (tta) formed in these side wall portions, which are schematically shown in FIG. 1 and shown schematically in FIG. The gate valve (6) is shown in detail.

まず、ゲートバルブ(6)について第2図を参照して説
明すると、これはすでに広く用いられている構造であっ
て、主として開口(6m)を開閉するグーに突出してお
9シリンダ装置σeによって上下に駆動されるようにな
っている。第2図ではゲート本体συが開口(6a)を
閉じているが、駆動部材σ2を下降させるとゲート本体
συは開口(6りを開放し、これから駆動部材σ2を上
昇させると第2図に示すように開口(6a)を閉じるよ
うになっている。
First, the gate valve (6) will be explained with reference to FIG. 2. This is a structure that has already been widely used, and it mainly protrudes into the groove that opens and closes the opening (6m) and is raised and lowered by a nine-cylinder device σe. It is designed to be driven by In Figure 2, the gate body συ closes the opening (6a), but when the drive member σ2 is lowered, the gate body συ opens the opening (6a), and when the drive member σ2 is raised from now on, the opening (6a) is closed, as shown in Figure 2. The opening (6a) is closed as shown in FIG.

次にゲートバルブaQ叩の詳細について説明するが、ゲ
ートバルブQOQllについては同一の構成を有するの
で、ゲートバルブ(10についてのみ第3図及び第4図
を参照しにして以下、説明する。第3図はゲートバルブ
QOの作動状態を示す要部断面図であ2て、大気圧空量
大と真空室B(ウニノル−交換室(5))とを仕切る隔
壁Cには、通孔lが穿設され該通孔Cυの真空室B側の
開口(lon)は上向きに傾斜して形成されている。
Next, the details of the gate valve aQ will be explained, but since the gate valve QOQll has the same configuration, only the gate valve (10) will be explained below with reference to FIGS. 3 and 4. Figure 2 is a sectional view of the main part showing the operating state of the gate valve QO.A through hole L is bored in the partition wall C that partitions the large atmospheric pressure air volume and the vacuum chamber B (Uninor exchange chamber (5)). The opening (lon) of the through hole Cυ on the vacuum chamber B side is formed to be inclined upward.

上記開口(log)には、その周シに形成された弁座部
を開閉する弁板け3が対向して設けられており、該弁板
(43は、ウェハーUでの直径よ)大きく形成され、且
つ上記通孔C11を挿んでその両側に隔壁Cを貫通して
斜め下方に延びる2本のロッド(44す(44b)(第
3図にはその一方が示されている。)を介して、大気圧
空量大の下方に設置された流体圧(油圧又は空気圧)駆
動シリンダ(ハ)に連結されている。
A valve plate 3 that opens and closes a valve seat formed on the periphery of the opening (log) is provided facing the opening (log), and the valve plate (43 is larger than the diameter of the wafer U). and two rods (44b) (one of which is shown in FIG. 3) extending diagonally downward through the partition wall C on both sides of the through hole C11. It is connected to a fluid pressure (hydraulic or pneumatic) drive cylinder (c) installed below with a large atmospheric pressure air volume.

上記2本のロッド(44g)(44b)は、第4図に示
すようK、上端が弁板43の両側部のQIJング(43
a)よシ内側に取付けられ且つ、ロッドと弁板は、結合
部から漏れないように溶接(43b)等でシールされて
いる。また下端は、2本のロッドを連結する接続部材(
44C)を介してシリンダ(ハ)のピストンロクド圓に
連結されている。なお、図中、(45a)(45b)は
シリンダーへの圧力流体の供給又は排出導管、a2咽は
大気圧空間A及び真空室Bにそれぞれ設置された搬送用
ベルトIIは軸受プツシ&(ト)は0リングを示す。
The above two rods (44g) (44b) are connected to the QIJ ring (43
a) It is attached to the inside of the wall, and the rod and valve plate are sealed by welding (43b) or the like to prevent leakage from the joint. In addition, the lower end has a connecting member (
44C) is connected to the piston locked circle of the cylinder (C). In the figure, (45a) and (45b) are pressure fluid supply or discharge conduits to the cylinder, and a2 is a conveyor belt II installed in atmospheric pressure space A and vacuum chamber B, respectively, is a bearing pusher & (g). indicates 0 ring.

上記のように構成されているので、通常時、即ちウェハ
ーを送シ込まない時には、シリンダ回内で下方へ働く流
体圧によりて弁板(43は、逆圧状態即ち通孔(10a
)を経て開弁方向に圧力(大気圧)が働いている状態で
、隔壁Cの通孔(tea)の真空室側開口(42を密閉
している。従って、真空室Bの真空は該通孔(10a)
を経て漏れることはない。
With the structure described above, under normal conditions, that is, when wafers are not being fed, the valve plate (43) is in a reverse pressure state, that is, the through hole (10a
) in the valve opening direction, the vacuum chamber side opening (42) of the through hole (tea) in the partition wall C is sealed. Therefore, the vacuum in the vacuum chamber B is Hole (10a)
It will not leak after passing through.

次に、搬送用ベルト(2)によって大気圧空量大より送
られて来たウェハー(4?)を、真空室Bへ移送すると
きは、シリンダ(451の流体通路を切換えて、ロッド
1441 (44M)(44b)を介して弁板(43を
上昇させ、開ウェハー+47)の通過には支障はなく、
該ウェハーは真空室Bへ円滑に移送される。
Next, when transferring the wafer (4?) sent by the conveyor belt (2) from a large atmospheric pressure air volume to the vacuum chamber B, the fluid passage of the cylinder (451) is switched and the rod 1441 ( 44M) There is no hindrance to the passage of the valve plate (43 raised, open wafer +47) via (44b),
The wafer is smoothly transferred to vacuum chamber B.

次いで、ウェハー(4ηが真空室B内へ移行し終った段
階で、再びシリンダ(451の流路を切換えて弁板(4
3を下降させ、開口(lOりを閉鎖する。なお、真空g
B内へ移行されたウェハー(4ηは搬送用ベルト(48
1によって基板支持体(241の所定の位置へ搬送され
る。
Next, when the wafer (4η) has finished moving into the vacuum chamber B, the flow path of the cylinder (451) is switched again and the valve plate (4η
3 and close the opening (lO). Note that the vacuum g
The wafer transferred into B (4η is the conveyor belt (48
1 to a predetermined position on the substrate support (241).

この実施例によれば、弁板を作動する駆動源が大気側に
設けられており、また弁板作動のための摺動部がすべて
ウェハーより下方に位置されているので、該摺動部よシ
生じるゴミ等がウェハー上に落ちる恐れは全くない。真
空室も駆動源によって汚染されない。また、弁板とロッ
ドが真空隔壁に対して傾斜して設けられているので、コ
ンパクトに形成でき、両室におけるウェハーの両搬送用
ベルトを互いに接近して設置できるので、装置がコンパ
クトになシ、作業性もそれだけ向上する。
According to this embodiment, the driving source for operating the valve plate is provided on the atmospheric side, and all the sliding parts for operating the valve plate are located below the wafer, so that There is no fear that the resulting dust or the like will fall onto the wafer. The vacuum chamber is also not contaminated by the driving source. In addition, since the valve plate and the rod are provided at an angle with respect to the vacuum partition, it can be formed compactly, and both belts for transporting wafers in both chambers can be installed close to each other, resulting in a compact system. , workability is improved accordingly.

なお、弁板は、圧力差に抗して逆圧状態で開口をシール
することになるので、十分な剛性をもった弁板と、十分
な推力をもったシリンダ(駆動源)を選定する必要があ
る。
Note that the valve plate will resist the pressure difference and seal the opening under reverse pressure, so it is necessary to select a valve plate with sufficient rigidity and a cylinder (drive source) with sufficient thrust. There is.

上記した実施例において、弁板の駆動源として流体圧駆
動シリンダを用いfc構造について説明したが、これに
限らないことは勿論であり、機械的駆動機構に代えるこ
とも可能である。
In the embodiments described above, the fc structure has been described using a fluid pressure driven cylinder as the drive source for the valve plate, but it is needless to say that the present invention is not limited to this, and it is also possible to replace it with a mechanical drive mechanism.

次に第5図〜第9図を参照して基板支持体c!41の詳
細について説明する。
Next, referring to FIGS. 5 to 9, the substrate support c! 41 will be explained in detail.

基板支持体C4の基板部6ηには、この上面より一段と
低くなったフォーク受入れ用凹所御が形成され、これに
連通して一対の溝(52a)(52b)が形成されてい
る。第6図にはウェハー搬送用フォーク(8)の一部が
図示されているが、このフォーク部(8a)(8b)が
溝(52m)(52b)に挿通可能となっている。
A fork-receiving recess that is lower than the upper surface of the substrate portion 6η of the substrate support C4 is formed, and a pair of grooves (52a) (52b) are formed in communication with the fork-receiving recess. A part of the wafer transport fork (8) is shown in FIG. 6, and the fork portions (8a) (8b) can be inserted into the grooves (52m) (52b).

溝(52g)(52b)の延在方向とは直角方向に基板
支持体(至)のウェハー搬入側半部には全高にわたって
一対の平行な切欠き(53a)(53b)が形成され、
また、これらに整列してウェハー搬出側半部にも一対の
平行な切欠き(54a)(54b)が形成されているが
、第6図及び第8図に明示されるように一端部において
は全高にわたっておらず連結部(ト)によって覆われて
いる。
A pair of parallel notches (53a) (53b) are formed over the entire height in the wafer loading side half of the substrate support (to) in a direction perpendicular to the extending direction of the grooves (52g) (52b);
In addition, a pair of parallel notches (54a) and (54b) are formed in the wafer unloading side half in alignment with these, but as clearly shown in FIGS. 6 and 8, at one end It does not span the entire height and is covered by the connecting part (G).

切欠き(53a)(53b)(54a)(54b)とは
上下方向に整列してベルトコンベヤ(56す(56b)
(57m)(57b)が配設され、これらは基板支持体
(至)が上下するときに切て第3図が示すベルトコンベ
ヤ(4印を構成するものである。
The notches (53a), (53b), (54a), and (54b) are aligned vertically to form the belt conveyor (56s (56b)).
(57m) and (57b) are provided, which are cut when the substrate support (to) goes up and down to form a belt conveyor (marked 4) as shown in FIG.

基板支持体(241の中央上部には部分的環状の下段基
板支持部■及びこれより下方に位置して同心的に部分的
円形状の下段基膜支持部6鵠が形成されている。上段基
板支持部■は第6図に明示されるように円弧状の受面(
58a)(58b)(s8c)(58d)(58e)(
58f)から成っておシ、これらは同一レベル上部ある
が、第7図及び第8図で一点鎖線で示されているように
、これらから成る上段基板支持部5&上に未処理のウェ
ハー顛が載置されるようになっている。また下段基板支
持部$は同一レベル上にあシ各々、円の一部を構成する
受面(59a)(59b)(59c)(59d)(59
e)(59fX59g)から底っておシ、やはり第7図
及び第8図で一点鎖線で示されているように、これらに
は表面処理済のウェハー471’が載置されるようにな
つている。
At the upper center of the substrate support (241), there is formed a partially annular lower substrate support part (2) and a partially circular lower base film support part (6) positioned below this and concentrically.Upper board The support part ■ has an arcuate receiving surface (as shown in Fig. 6).
58a) (58b) (s8c) (58d) (58e) (
58f), which are located on the same level, but as shown by the dashed line in FIGS. It is about to be placed. In addition, the lower board support portions are placed on the same level and have receiving surfaces (59a), (59b), (59c), (59d), and (59d) that form part of a circle, respectively.
e) At the bottom from (59f x 59g), surface-treated wafers 471' are placed on these, as shown by the dashed lines in FIGS. 7 and 8. There is.

基板部口の底面には円形の段孔凹所山が形成されている
が、こ\に上述の駆動軸5の上端部が嵌着され、図示せ
ずともねじ等により固定されるようになりている。
A circular stepped hole recess is formed on the bottom of the board opening, into which the upper end of the drive shaft 5 is fitted, and is fixed with a screw or the like (not shown). ing.

以上は本実施例の構成について説明したが次に作用につ
いて説明する。
The configuration of this embodiment has been described above, and the operation will now be described.

第1O図A、Fは基板支持体Uの各高さ位置を示してい
るが本実施例によれば基板支持体(241は5つの高さ
位置を取る事が出来る。問、バッファ室(3)から伸縮
するフォーク(8)のレベル及びベルトコンベヤ(56
a)(56b)(57a)(57りのレベルは一定であ
る。第1O図に於て基板支持体制の形状は簡略化して示
されてかり、また上述したウェハーの上段支持部■及び
下段支持部59)は図面をわかりやすくする為にコ字状
の上アーム上及び下アーム上としUまたはDでこれ等を
示すものとす゛る。(すなわちUとDとは上段支持部■
と下段支持部61と等価である。)今、基板支持体(2
41は第1O図人の高さ位置に1未処理のウェハー(4
ηは上段支持部Uに載置されているものとする。また両
側壁部のゲートバルブ(10QIJは閉じているものと
する。、(ゲートバルブ(6)は開で真空状態にある入
この状態においてフォーク(8)はバッファ室(3)か
ら伸びてきて処理済のウェハーに7)′を載置させて第
10図人に示すように上段支持部Uと下段支持部りとの
間に至る。
FIG. 1A and F show the height positions of the substrate support U. According to this embodiment, the substrate support (241) can take five height positions. ) and the level of the fork (8) extending and retracting from the belt conveyor (56
a) (56b) (57a) (57) The levels of In order to make the drawing easier to understand, the portion 59) is shown as U-shaped upper arm and lower arm U-shaped, respectively. (In other words, U and D are the upper support part■
is equivalent to the lower support section 61. ) Now the substrate support (2
41 indicates 1 unprocessed wafer (4
It is assumed that η is placed on the upper support portion U. In addition, the gate valves (10QIJ) on both side walls are assumed to be closed. (The gate valve (6) is open and in a vacuum state. In this state, the fork (8) extends from the buffer chamber (3) and processes 7)' is placed on the finished wafer and reaches between the upper support part U and the lower support part as shown in FIG.

ここで基板支持体c!aは第1O図Bで示す位置へと上
昇する。この上昇途上において処理済のウェハー(4〃
は下段支持部り上に載置されて、こ\で停止し、尚、基
板支持体c!瘤は上昇し第1O図Bの位置で停止するの
であるが、こ\ではフォーク(8)は処理済のウェハー
(477から離れて図示の位置(溝(52a )(52
b)内)にある。この位置においてフォーク(8)は矢
印で示す如くバッファ室(3)へと後退する。
Here, the substrate support c! a rises to the position shown in FIG. Processed wafers (4
is placed on the lower support part and stops at this point, and the substrate support c! The bump rises and stops at the position B in Figure 1O, where the fork (8) has moved away from the processed wafer (477) to the position shown (groove (52a) (52)).
b) in). In this position the fork (8) is retracted into the buffer chamber (3) as indicated by the arrow.

第10図Cに示すように基板支持体Q41は下降し再び
第10図人の高さと同じ位置を取る。ついで、フォーク
(8)が第10図Cで矢印で示すようにバッファ室(3
)からウェハー交換室(5)内に伸びてきて図示の位置
を取る、基板支持体e41は下方へと移動し第10図り
の位置を取る。これによりフォーク(8)により未処理
のウェハー(4ηが担持される。ついで、フォーク(3
)はバッファ室(3)へと退却する。
As shown in FIG. 10C, the substrate support Q41 descends and assumes the same position as the person in FIG. 10 again. The fork (8) then moves into the buffer chamber (3) as shown by the arrow in Figure 10C.
) extends into the wafer exchange chamber (5) and assumes the position shown in the figure, and the substrate support e41 moves downward and assumes the position shown in the 10th figure. As a result, the unprocessed wafer (4η) is supported by the fork (8).
) retreats to the buffer room (3).

第五〇図Eに示すように基板支持体@は更に下方へと移
動する。この位置でゲートバルブが閉じられウェハー交
換室(5)は大気圧にもどされる。そしてゲートバルブ
顛助が開けられる。
As shown in Figure 50E, the substrate support @ moves further downward. At this position, the gate valve is closed and the wafer exchange chamber (5) is returned to atmospheric pressure. Then, the gate valve Kinsuke is opened.

第10図Eの位置に基板支持体@が停止するとベルトコ
ンベヤ(57g+)(5・7b)上に処理済のウェハー
+4?)’が図示する如く載せられる。こ\でゲートバ
ルブαQ叩が開かれているので処理済のウェハーf47
)’は開口(n−)を通シベルトコンベヤα轡により移
送されて、処理済のウェハーカセット(ト)内に導入さ
れる。
When the substrate support @ stops at the position shown in Fig. 10E, processed wafers +4? )' are placed as shown. Since the gate valve αQ is opened here, the processed wafer f47
)' is transferred by a belt conveyor α through an opening (n-) and introduced into a processed wafer cassette (g).

基板支持体C4)は更に下方へと移動し第1O図Fの位
置をとる。この位置ではベルトコンベヤQ2(56a)
(56b)は基板支持体@の上段支持部Uよシ上方に位
置する寿のであるが、この位置で未処理のウェハースド
ックカセット(至)から取出されたウェハーA1はベル
トコンベヤ(2)によシ移送されて開口(14a)を通
ってウェハー交換室(5ン内に導ひかれる。ついで基板
支持体Q41は上方へと移動し再び第10図人のウェハ
ー(4では上段U上に載置される。こ\でゲートバルブ
(2)東が閉じられ交換室(5)内は真空状態に排気さ
れる。ついで冒頭に述べた如くゲートバルブ(6)が開
けられフォーク(8)がバッファ室(3)よシウェハー
交換寥(5)内に処理済のウェハー147)′を載せて
第1O図人に示す位置に至る。以下、上述の操作を繰返
す。
The substrate support C4) moves further downwards and assumes the position of FIG. 1F. At this position, belt conveyor Q2 (56a)
(56b) is located above the upper support part U of the substrate support @, and at this position, the wafer A1 taken out from the unprocessed wafer dock cassette (toward) is carried by the belt conveyor (2). The substrate support Q41 is then moved upward and is again placed on the upper stage U in Figure 10. The east side of the gate valve (2) is then closed and the inside of the exchange chamber (5) is evacuated to a vacuum state.Then, as mentioned at the beginning, the gate valve (6) is opened and the fork (8) is moved into the buffer chamber. (3) Place the processed wafer 147)' in the wafer exchange box (5) and reach the position shown in Figure 1O.The above-mentioned operations are then repeated.

なお、以上の工程において処理済のウェハー(49′が
下段支持部りに載置されているときには基板支持体(2
)の基板部OD内には冷却水が循環しているので、これ
との熱交換によシ処理済で熱いウェハー147)’は冷
却される。これによシウェハー交換室内から大気へと搬
出されるときには化学変化を殆んど受けることなく安定
した状態でカセット(至)内に収めることができる。
In addition, in the above steps, when the processed wafer (49') is placed on the lower support part, the substrate support (2
Since cooling water is circulating in the substrate portion OD of the wafer 147)', the processed and hot wafer 147)' is cooled by heat exchange with the cooling water. As a result, when the wafer is carried out from the wafer exchange chamber to the atmosphere, it can be stored in the cassette in a stable state with almost no chemical changes.

以上本発明の実施例について説明したが、勿論、本発明
はこれに限定されることなく本発明の技術的思想にもと
づいて種々の変形が可能である。
Although the embodiments of the present invention have been described above, the present invention is of course not limited thereto, and various modifications can be made based on the technical idea of the present invention.

例えば、以上の実施例では上段支持部■には未処理のウ
ェハー(4つを載置し、下段支持部5値には処理済のウ
ェハーt471’を載置させるようにしたが、これ等の
支持部の段数を更に増加し、これ等を2つのグループに
分けて、一方のグループには未処理のウェハーをそれぞ
れ載置するようにし、また他方のグループには各々処理
済のウェハーを載置するようにしてもよい。処理済のウ
ェハー及び未処理のウェハーの搬入及び搬出はそれぞれ
同期して行うようにすればよい。この場合、段数に応じ
て搬入搬出用のベルトコンベヤが必要であシ、またバッ
ファ室から交換室へのまたこの逆のウェハーの搬入搬出
には複数のフォークが必要であるが、こn等の7オーク
を上下に一体化して同期させるようにしてもよい。
For example, in the above embodiment, four unprocessed wafers (4) were placed on the upper support part 5, and a processed wafer t471' was placed on the lower support part 5. The number of stages of the support section is further increased, and these are divided into two groups, with unprocessed wafers placed in one group and processed wafers placed in the other group. Processed wafers and unprocessed wafers may be loaded and unloaded synchronously.In this case, a belt conveyor is required for loading and unloading depending on the number of stages. Also, although a plurality of forks are required for carrying in and out of wafers from the buffer room to the exchange room and vice versa, these 7 forks may be integrated vertically and synchronized.

えて上段の支持部に加熱手段を設け、この上に載置され
る未処理のウェハーを加熱するようにしてもよい。この
加熱したウェハーをバッファ室(3)及び反応室(2り
又は(2りに導入させるようにしてもよい。
Alternatively, a heating means may be provided on the upper support section to heat the unprocessed wafer placed thereon. The heated wafer may be introduced into the buffer chamber (3) and the reaction chamber (2 or 2).

更に、基板支持体(241において上段支持部と下段支
持部との間に熱絶縁材を介設させ、上段支持部には加熱
手段を設は下段支持部には上記実施例と同様に冷却手段
を設けるようにしてもよい。
Further, in the substrate support (241), a thermal insulating material is interposed between the upper support part and the lower support part, the upper support part is provided with a heating means, and the lower support part is provided with a cooling means as in the above embodiment. may be provided.

また以上の実施例では基板支持体@の高さ位置は5つと
したが、更にこの数を増大させてそれぞれの高さの位置
において上記ウェハーの搬入、搬出方法以外の方法によ
シ搬入搬出を行うようにしてもよい。この場合、搬入、
搬出機構としてのベルトコンベヤ及びフォークのレベル
も実施例のように一箇所だけでなく、上下に複数、設け
るようにしてもよい。また、搬入、搬出手段もフォーク
やベルトコンベヤに限定されることなく公知の種々の手
段が適用可能である。また以上の実施例では処理済のウ
ェハーと未処理のウェハーとを別々のゲートバルブを介
して搬入、搬出するようにしているが、共通の一つのゲ
ートバルブを介してこ基板又換機構に依れば、大気中の
所定の位置ヘウエバー交換室から処理済ウェハーを搬出
及び大気中の所定の位置からつ2バー交換室へウェハー
を搬入する作業、さらにそれに伴うベント、排気作業を
処理室で他のウェハーの処理を行っている間に平行して
行うことが可能となり、処理室でのウェハー交換作業上
要する時間を最小にすることが出来、生産性を一段と向
上させる事が出来る。
In addition, in the above embodiment, the number of height positions of the substrate support @ is five, but this number can be further increased to allow loading and unloading of wafers at each height position by a method other than the above-mentioned loading/unloading method. You may also do so. In this case, import,
The level of the belt conveyor and fork serving as the carrying-out mechanism is not limited to one level as in the embodiment, but may be provided at a plurality of levels above and below. Moreover, the carrying in and carrying out means are not limited to forks or belt conveyors, and various known means can be applied. Furthermore, in the above embodiments, processed wafers and unprocessed wafers are carried in and out through separate gate valves, but this substrate switching mechanism is carried out through a common gate valve. For example, the work of transporting processed wafers from a predetermined position in the atmosphere to a two-bar exchange chamber, carrying the wafers from a predetermined position in the atmosphere to a two-bar exchange chamber, and the accompanying venting and exhausting work are carried out in the process room. This can be done in parallel while wafers are being processed, and the time required for wafer exchange work in the processing chamber can be minimized, making it possible to further improve productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に依るCVD装置全体の配置を
示す平面図、第2図は上記装置に於ける基板交換機構の
断面図、第3図は同基板交換機構に於けるゲートバルブ
の詳細を示す断面図、第4図は第3図に於ける一部分の
斜視図、第5図は同基板交換機構に於ける基板支持体の
拡大斜視図、第6図は同平面図、第7図は第6図に於け
る■−4線方線方向図、第8図は第6図に於ける■−■
線方向断面図、第9図は第6図に於けるW−E[線方向
断面図、基−繍り第1O図人乃至Fは本実施例の作用を
示すための要部の各側面図である。第11図は従来例の
基板交換機構を示す断面図である。 なお図において、
FIG. 1 is a plan view showing the overall arrangement of a CVD apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view of the substrate exchange mechanism in the above apparatus, and FIG. 3 is a gate valve in the substrate exchange mechanism. 4 is a partial perspective view of FIG. 3, FIG. 5 is an enlarged perspective view of the substrate support in the same substrate exchange mechanism, FIG. 6 is a plan view of the same, and FIG. Figure 7 is the ■-4 line direction diagram in Figure 6, and Figure 8 is the ■-■ diagram in Figure 6.
9 is a sectional view taken along line W-E in FIG. 6; FIG. It is. FIG. 11 is a sectional view showing a conventional board exchange mechanism. In the figure,

Claims (5)

【特許請求の範囲】[Claims] (1)側壁部に少なくとも2個の開口を有し、これをゲ
ートバルブで開閉自在とした真空槽内に配設され、基板
支持部を上下に少なくとも2段有する基板支持体と;該
基板支持体を上下方向に所定の複数の位置で停止可能に
駆動する昇降駆動部とから成り、前記2段のうち一方に
は表面処理済の基板を載置させ得るようにし、他方には
未処理の基板を載置させ得るようにしたことを特徴とす
る真空槽内における基板交換機構。
(1) A substrate support which has at least two openings in its side wall, which is disposed in a vacuum chamber that can be opened and closed by a gate valve, and which has at least two levels of substrate support above and below; It consists of an elevating drive unit that drives the body so that it can be stopped at a plurality of predetermined positions in the vertical direction, and one of the two stages is configured such that a surface-treated substrate can be placed thereon, and an unprocessed substrate can be placed on the other. A substrate exchange mechanism in a vacuum chamber, characterized in that a substrate can be placed thereon.
(2)前記2段のうち一方を冷却するようにしたことを
特徴とする前記第1項に記載の基板交換機構。
(2) The substrate exchange mechanism according to item 1, wherein one of the two stages is cooled.
(3)前記2段のうち他方を加熱するようにしたことを
特徴とする前記第1項に記載の基板交換機構。
(3) The substrate exchange mechanism according to item 1, wherein the other of the two stages is heated.
(4)前記両ゲートバルブのうち大気と連通、遮断を行
うゲートバルブは前記真空槽の側壁部に設けられた通孔
の真空室側の開口を、上向きに傾斜して設け、該開口を
開閉する弁板を、真空隔壁を貫通して大気側に斜めに引
き出されたロッドを介して、大気側に設置された駆動源
によつて昇降させるように構成したことを特徴とする前
記第1項に記載の基板交換機構。
(4) Of the two gate valves, the gate valve that communicates with and shuts off the atmosphere has an opening on the vacuum chamber side of the through hole provided in the side wall of the vacuum chamber that is inclined upward, and opens and closes the opening. Item 1 above, characterized in that the valve plate is configured to be raised and lowered by a drive source installed on the atmosphere side via a rod extending obliquely to the atmosphere side through the vacuum partition. The board exchange mechanism described in .
(5)前記弁板は、基板の直径より大きく形成され、そ
の両側部に取付けられ大気側に引き出された2本のロッ
ドを介して、大気側に設置されたシリンダに連結されて
いることを特徴とする前記第4項に記載の基板交換機構
(5) The valve plate is formed larger in diameter than the base plate, and is connected to a cylinder installed on the atmosphere side via two rods attached to both sides of the valve plate and pulled out to the atmosphere side. The board exchange mechanism according to item 4 above.
JP61298352A 1986-12-15 1986-12-15 Substrate exchange device in a vacuum chamber Expired - Lifetime JPH0660397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61298352A JPH0660397B2 (en) 1986-12-15 1986-12-15 Substrate exchange device in a vacuum chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61298352A JPH0660397B2 (en) 1986-12-15 1986-12-15 Substrate exchange device in a vacuum chamber

Publications (2)

Publication Number Publication Date
JPS63153270A true JPS63153270A (en) 1988-06-25
JPH0660397B2 JPH0660397B2 (en) 1994-08-10

Family

ID=17858570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61298352A Expired - Lifetime JPH0660397B2 (en) 1986-12-15 1986-12-15 Substrate exchange device in a vacuum chamber

Country Status (1)

Country Link
JP (1) JPH0660397B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475604B1 (en) * 1990-08-29 1998-02-04 Hitachi, Ltd. Vacuum processing apparatus and cleaning method therefor
US7089680B1 (en) 1990-08-29 2006-08-15 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
USRE39756E1 (en) 1990-08-29 2007-08-07 Hitachi, Ltd. Vacuum processing operating method with wafers, substrates and/or semiconductors
USRE39775E1 (en) 1990-08-29 2007-08-21 Hitachi, Ltd. Vacuum processing operating method with wafers, substrates and/or semiconductors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147069U (en) * 1984-08-25 1986-03-29 株式会社島津製作所 Processing material transfer device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147069U (en) * 1984-08-25 1986-03-29 株式会社島津製作所 Processing material transfer device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6634116B2 (en) 1990-08-09 2003-10-21 Hitachi, Ltd. Vacuum processing apparatus
US6484414B2 (en) 1990-08-29 2002-11-26 Hitachi, Ltd. Vacuum processing apparatus
US6330755B1 (en) 1990-08-29 2001-12-18 Hitachi, Ltd. Vacuum processing and operating method
US6487794B2 (en) 1990-08-29 2002-12-03 Hitachi, Ltd. Substrate changing-over mechanism in vacuum tank
US6263588B1 (en) 1990-08-29 2001-07-24 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6301801B1 (en) 1990-08-29 2001-10-16 Shigekazu Kato Vacuum processing apparatus and operating method therefor
US6301802B1 (en) 1990-08-29 2001-10-16 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6330756B1 (en) 1990-08-29 2001-12-18 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6487793B2 (en) 1990-08-29 2002-12-03 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6332280B2 (en) 1990-08-29 2001-12-25 Hitachi, Ltd. Vacuum processing apparatus
US6446353B2 (en) 1990-08-29 2002-09-10 Hitachi, Ltd. Vacuum processing apparatus
US6457253B2 (en) 1990-08-29 2002-10-01 Hitachi, Ltd. Vacuum processing apparatus
US6460270B2 (en) 1990-08-29 2002-10-08 Hitachi, Ltd. Vacuum processing apparatus
US6487791B2 (en) 1990-08-29 2002-12-03 Hitachi, Ltd. Vacuum processing apparatus
US6463678B2 (en) 1990-08-29 2002-10-15 Hitachi, Ltd. Substrate changing-over mechanism in a vaccum tank
US6467187B2 (en) 1990-08-29 2002-10-22 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6467186B2 (en) 1990-08-29 2002-10-22 Hitachi, Ltd. Transferring device for a vacuum processing apparatus and operating method therefor
US6470596B2 (en) 1990-08-29 2002-10-29 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6473989B2 (en) 1990-08-29 2002-11-05 Hitachi, Ltd. Conveying system for a vacuum processing apparatus
US6484415B2 (en) 1990-08-29 2002-11-26 Hitachi, Ltd. Vacuum processing apparatus
EP0475604B1 (en) * 1990-08-29 1998-02-04 Hitachi, Ltd. Vacuum processing apparatus and cleaning method therefor
US6463676B1 (en) 1990-08-29 2002-10-15 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6108929A (en) * 1990-08-29 2000-08-29 Hitachi, Ltd. Vacuum processing apparatus
US6112431A (en) * 1990-08-29 2000-09-05 Hitachi, Ltd. Vacuum processing and operating method
US6490810B2 (en) 1990-08-29 2002-12-10 Hitachi, Ltd. Vacuum processing apparatus
US6499229B2 (en) 1990-08-29 2002-12-31 Hitachi, Ltd. Vacuum processing apparatus
US6505415B2 (en) 1990-08-29 2003-01-14 Hitachi, Ltd. Vacuum processing apparatus
US6588121B2 (en) 1990-08-29 2003-07-08 Hitachi, Ltd. Vacuum processing apparatus
US6625899B2 (en) 1990-08-29 2003-09-30 Hitachi, Ltd. Vacuum processing apparatus
US6070341A (en) * 1990-08-29 2000-06-06 Hitachi, Ltd. Vacuum processing and operating method with wafers, substrates and/or semiconductors
US6655044B2 (en) 1990-08-29 2003-12-02 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6662465B2 (en) 1990-08-29 2003-12-16 Hitachi, Ltd. Vacuum processing apparatus
US6880264B2 (en) 1990-08-29 2005-04-19 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6886272B2 (en) 1990-08-29 2005-05-03 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6904699B2 (en) 1990-08-29 2005-06-14 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US6968630B2 (en) 1990-08-29 2005-11-29 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
US7089680B1 (en) 1990-08-29 2006-08-15 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor
USRE39756E1 (en) 1990-08-29 2007-08-07 Hitachi, Ltd. Vacuum processing operating method with wafers, substrates and/or semiconductors
USRE39775E1 (en) 1990-08-29 2007-08-21 Hitachi, Ltd. Vacuum processing operating method with wafers, substrates and/or semiconductors
USRE39776E1 (en) 1990-08-29 2007-08-21 Hitachi, Ltd. Vacuum processing apparatus and operating method with wafers, substrates and/or semiconductors
USRE39824E1 (en) 1990-08-29 2007-09-11 Hitachi, Ltd. Vacuum processing apparatus and operating method with wafers, substrates and/or semiconductors
USRE39823E1 (en) 1990-08-29 2007-09-11 Hitachi, Ltd. Vacuum processing operating method with wafers, substrates and/or semiconductors
US7367135B2 (en) 1990-08-29 2008-05-06 Hitachi, Ltd. Vacuum processing apparatus and operating method therefor

Also Published As

Publication number Publication date
JPH0660397B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US20020032972A1 (en) Substrate changing-over mechanism in vacuum tank
KR101058326B1 (en) Batch Processing Platform for Atomic Layer Deposition and Chemical Vapor Deposition
US6742977B1 (en) Substrate processing device, substrate conveying device, and substrate processing method
KR100487666B1 (en) A load-lock mechanism and processing apparatus
US5388944A (en) Vertical heat-treating apparatus and heat-treating process by using the vertical heat-treating apparatus
TWI517286B (en) Loading unit and processing system
KR102355575B1 (en) vacuum processing unit
JPH0555148A (en) Method and apparatus for multichamber-type single wafer processing
JPH11307614A (en) Multi-chamber system for etching equipment of semiconductor element manufacture
JP2001135704A (en) Substrate treatment apparatus and transfer control method for substrate transfer tray
JP2013136839A (en) Vacuum processing system
KR102491212B1 (en) Vacuum processing device and substrate transfer method
JP3604241B2 (en) Vertical heat treatment equipment
JPS63153270A (en) Mechanism for exchanging substrate in vacuum vessel
US20060156982A1 (en) Apparatus for fabricating semiconductor device
KR100719519B1 (en) Semiconductor manufacturing apparatus for use of hot process
JP4209658B2 (en) Substrate processing equipment
JPH07254538A (en) Heat treatment device
CN114197056A (en) Semiconductor material annealing device and annealing method
JP2001267254A (en) Device for producing semiconductor
JPS63153271A (en) Vacuum treatment device
US6030459A (en) Low-pressure processing device
JPH04271139A (en) Semiconductor manufacturing equipment
JP2006108348A (en) Substrate processing apparatus
JP2020145329A (en) Substrate storage device