JPS63150490A - Scroll gas compressor - Google Patents

Scroll gas compressor

Info

Publication number
JPS63150490A
JPS63150490A JP29947886A JP29947886A JPS63150490A JP S63150490 A JPS63150490 A JP S63150490A JP 29947886 A JP29947886 A JP 29947886A JP 29947886 A JP29947886 A JP 29947886A JP S63150490 A JPS63150490 A JP S63150490A
Authority
JP
Japan
Prior art keywords
chamber
oil
compression
pressure
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29947886A
Other languages
Japanese (ja)
Other versions
JPH073229B2 (en
Inventor
Katsuharu Fujio
藤尾 勝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29947886A priority Critical patent/JPH073229B2/en
Publication of JPS63150490A publication Critical patent/JPS63150490A/en
Publication of JPH073229B2 publication Critical patent/JPH073229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant

Abstract

PURPOSE:To obtain the captioned device having high efficiency and the superior durability by realizing an oil feeding passage controller having a wide application range by utilizing the pressure difference between a suction chamber and compression chamber which does not communicate to a discharge chamber and the suction chamber. CONSTITUTION:A compressor starts operation, and a swire scroll 10 performs a turning movement to inhale the gas in a suction chamber 33 into a compression chamber, and said gas is compressed to a certain compression ratio and then discharged into a discharge chamber 5. Further, the plunger of an oil feeding passage control valve device 17 installed midway in an oil feeding passage is advanced by the differential pressure force between a back pressure chamber A36 communicating to the first compressor which does not communicate to the discharge chamber 5 nor the suction chamber 33 and a back pressure chamber B39 which communicates to the second compression chamber communicating to the suction chamber 33, and the oil feeding passage is opened, and the lubricating oil in an oil reservoir part 23 is supplied to the space where lubrication is necessary, by the differential pressure. While, when the compressor stops, the pressure in the compression space and the pressure in the suction chamber 33 are made nearly equal through the gap of the compression space, and also the differential pressure between in the both back pressure chambers A and B becomes zero, and the plunger retreats to cut off the oil feeding passage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスクロール気体圧縮機に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a scroll gas compressor.

従来の技術 低振動、低騒音特性を備えたスクロール圧縮機は、吸入
室が外周部に有り、吐出ボートが渦巻きの中心部に設け
られ、圧縮流体の流れが一方向で往復動式圧縮機や回転
式圧縮機のような流体を圧縮するための吐出弁を必要と
せず圧縮比が一定で、吐出脈動も比較的小さくて大きな
吐出空間を必要としないことが一般に知られている。
Conventional technology Scroll compressors with low vibration and low noise characteristics have a suction chamber on the outer periphery and a discharge boat in the center of the vortex. It is generally known that a rotary compressor does not require a discharge valve for compressing fluid, has a constant compression ratio, has relatively small discharge pulsation, and does not require a large discharge space.

しかし、特に気体を圧縮する場合などは圧縮部の漏れ隙
間を小さくするために渦巻き部の寸法精度を極めて高く
する必要があるが、部品形状の複雑さ、寸法精度のバラ
ツキなどにより、スクロール気体圧縮機のコストが高く
性能のバラツキも大きいという問題があった。
However, especially when compressing gas, it is necessary to make the dimensional accuracy of the scroll part extremely high in order to reduce the leakage gap in the compression part. The problem was that the machine cost was high and performance varied greatly.

そこで、この種の問題解決のための方策として、圧縮途
中の気体漏れ防止のために潤滑油膜を利用したシール効
果により渦巻き部寸法精度の適正化と圧縮機性能の安定
化を期待することが太き(、第18図に示す構成が考え
られ、摺動部に供給した潤滑油の一部を吸入気体と共に
圧縮室に流入させ、圧縮吐出後に圧縮気体から潤滑油を
分離後、油戻し通路を介して再び潤滑油溜に通じる空間
に戻して圧縮機外部への潤滑油流出を少なくするという
考え方の下に、吐出空間582に設けられたキャップ5
19内の空間520で圧縮気体から分離された潤滑油が
孔522〜孔584の油戻し通路を通じて吸入通路とな
る空間580に戻され、油溜508に集められ、ポンプ
装置によって再び摺動部に供給される構成であった(特
開昭60−75795号公報)。
Therefore, as a measure to solve this kind of problem, it is expected that the dimensional accuracy of the spiral part will be optimized and the compressor performance will be stabilized by the sealing effect using a lubricating oil film to prevent gas leakage during compression. (The configuration shown in Fig. 18 is considered, in which a part of the lubricating oil supplied to the sliding part flows into the compression chamber together with the suction gas, and after the lubricating oil is separated from the compressed gas after being compressed and discharged, the oil return passage is opened. The cap 5 provided in the discharge space 582 is designed to reduce lubricant oil leakage to the outside of the compressor by returning the lubricant oil to the space communicating with the lubricant reservoir through the
The lubricating oil separated from the compressed gas in the space 520 in the 19 is returned to the space 580 which becomes the suction passage through the oil return passages of the holes 522 to 584, collected in the oil sump 508, and returned to the sliding part by the pump device. The structure was supplied (Japanese Patent Laid-Open No. 60-75795).

また、第19図の構成も考えられ、吐出室674に設け
られた油分離エレメント672によって圧縮気体に含ま
れる潤滑油を分離して固定スクロール鏡板603上の油
溜673に潤滑油を収集し、固定スクロール601と旋
回スクロール606との間の摺動面631に差圧給油の
後、吸入室699に潤滑油を流入させて油膜のシール効
果によって圧縮室内での圧縮気体漏れを少なくする構成
であった(特開昭56−165787号公報)。
In addition, the configuration shown in FIG. 19 is also considered, in which the lubricating oil contained in the compressed gas is separated by an oil separation element 672 provided in the discharge chamber 674, and the lubricating oil is collected in an oil reservoir 673 on the fixed scroll end plate 603. After the sliding surface 631 between the fixed scroll 601 and the orbiting scroll 606 is lubricated with differential pressure, lubricating oil is allowed to flow into the suction chamber 699 to reduce leakage of compressed gas in the compression chamber by the sealing effect of the oil film. (Japanese Unexamined Patent Publication No. 165787/1987).

また、第20図、第21図のように潤滑油を圧縮途中の
圧縮室に直接流入させる構成も考えられ、第20図は密
閉容器701内の上部にモータ703を配置し下部に圧
縮部を配置して密閉容器内空間702を吐出室とした構
造で、吐出室底部の油溜710の潤滑油を油吸い込み管
722を介して圧縮途中の圧縮室723に直接流入させ
る構成であり(特開昭57−8386号公報)、第21
図は密閉容器801内の上部に圧縮部を配置し下部にモ
ータ803を配置して密閉容器内空間802を吐出室と
した構造で、旋回スクロール804の気体圧縮時に作用
するスラスト力を軽減するために旋回スクロール804
の反圧縮室側背面に設けた中間圧力状態の背圧室808
を中継し、その前後に設けた駆動軸802内の袖穴89
9、給油配管815を通して密閉容器801内底部の油
溜809の潤滑油を圧縮途中の圧縮室823に差圧によ
り流入させる構成であった(特開昭59−110893
号公報)。
Alternatively, a configuration in which lubricating oil is directly flowed into the compression chamber during compression as shown in FIGS. 20 and 21 is also considered, and in FIG. It has a structure in which the internal space 702 of the sealed container is used as a discharge chamber, and the lubricating oil in the oil reservoir 710 at the bottom of the discharge chamber is directly flowed into the compression chamber 723 in the middle of compression through the oil suction pipe 722 (as disclosed in Japanese Patent Application Laid-Open No. Publication No. 57-8386), No. 21
The figure shows a structure in which a compression section is placed in the upper part of a closed container 801 and a motor 803 is placed in the lower part, and a space 802 inside the closed container is used as a discharge chamber. Orbiting scroll 804
A back pressure chamber 808 in an intermediate pressure state provided on the back side on the side opposite to the compression chamber.
A sleeve hole 89 in the drive shaft 802 provided before and after the
9. The lubricating oil in the oil reservoir 809 at the bottom of the closed container 801 is caused to flow through the oil supply pipe 815 into the compression chamber 823 during compression by differential pressure (Japanese Patent Laid-Open No. 59-110893
Publication No.).

発明が解決しようとする問題点 しかしながら上記の第18図のような油戻し通路(孔5
22〜孔584)を介して吐出空間582と低圧側の空
間580とが常に連通している」成では、例え常に空間
520や吐出空間582に潤滑油が存在する場合でも圧
縮機駆動軸の回転速度の変化に伴い摺動部給油量などが
変化して、圧縮気体中に含まれる潤滑油量も変化すると
共に吐出空間582と低圧側の空間580との差圧や潤
滑油の粘性も変化するなどして、過不足なく潤滑油を戻
す油戻し通路の設定が権めて困難であり、圧縮機高速運
転時などは潤滑油の吐出量が多くて圧縮機外部への潤滑
油多量流出を防ぐことが不可能である。
Problems to be Solved by the Invention However, if the oil return passage (hole 5
In the configuration in which the discharge space 582 and the low pressure side space 580 are always in communication through the holes 22 to 584), even if lubricating oil is always present in the space 520 and the discharge space 582, the rotation of the compressor drive shaft is prevented. As the speed changes, the amount of oil supplied to the sliding parts changes, and the amount of lubricating oil contained in the compressed gas also changes, as well as the differential pressure between the discharge space 582 and the low-pressure side space 580 and the viscosity of the lubricating oil. It is extremely difficult to set up an oil return passage that returns the lubricating oil in just the right amount, and when the compressor is operating at high speed, the amount of lubricating oil discharged is large, preventing large amounts of lubricating oil from leaking outside the compressor. It is impossible.

また、圧縮機停止中に空間520や吐出空間582の潤
滑油が差圧や自重などで圧縮機底部の油溜508に流入
し、圧縮機再起動後しばらくの間は空間520や吐出空
間5B2に充分な潤滑油が無く、多量の圧縮気体が油戻
し通路(孔522〜孔584)を通して低圧側の空間5
80に流入して吸入効率、圧縮効率の著しい低下や耐久
性劣化を招くという問題があった。
Furthermore, while the compressor is stopped, the lubricating oil in the space 520 and the discharge space 582 flows into the oil sump 508 at the bottom of the compressor due to differential pressure and dead weight, and for a while after the compressor is restarted, the lubricating oil in the space 520 and the discharge space 582 flows into the space 520 and the discharge space 5B2. There is not enough lubricating oil, and a large amount of compressed gas passes through the oil return passage (holes 522 to 584) to the space 5 on the low pressure side.
There was a problem in that the suction efficiency and compression efficiency were significantly lowered and the durability was deteriorated.

また、上記の第19図のような固定スクロール鏡板60
3上の油溜673の潤滑油を摺動面631を介して吸入
室699に流入させる構成では、第18図の場合と同様
に圧縮機駆動軸が高速回転して気体吐出量が増加すると
油溜673の憫滑油が無い状態もある。このような場合
には吐出室674の圧縮気体が摺動面631を介して吸
入室699に多量流入し、吸入効率、圧縮効率の著しい
低下は勿論のこと摺動面631の摩耗や焼き付きを引き
起こすなどの問題があった。
In addition, a fixed scroll end plate 60 as shown in FIG.
In the configuration in which the lubricating oil in the oil reservoir 673 above 3 flows into the suction chamber 699 through the sliding surface 631, when the compressor drive shaft rotates at high speed and the gas discharge amount increases, as in the case of FIG. There are also situations where there is no lubricant in the reservoir 673. In such a case, a large amount of compressed gas in the discharge chamber 674 flows into the suction chamber 699 via the sliding surface 631, causing not only a significant decrease in suction efficiency and compression efficiency but also wear and seizure of the sliding surface 631. There were other problems.

また、上記の第20図のような吐出圧力に等しい密閉容
器内空間702の底部の油溜710の潤滑油を圧縮途中
の圧縮室723に差圧により流入させる構成では、冷媒
圧縮機などに使用する際、圧縮機停止中にその自重や差
圧などにより圧縮機外部の冷凍サイクルから圧縮機内に
帰還した多量の冷媒が液化状態で油溜710の上部のモ
ータ703下面にまで溜まり、冷媒液や潤滑油が油吸い
込み管722などを通じて圧縮室723に流入し充満す
る場合もあり、このような状態では圧縮負荷が過大のた
め再起動運転不能であり、例えモータ703の起動トル
クが大きくて再起動できるとも圧縮機破損を招く。
In addition, a configuration in which the lubricating oil in the oil reservoir 710 at the bottom of the closed container internal space 702, which is equal to the discharge pressure as shown in FIG. When the compressor is stopped, a large amount of refrigerant that returns to the compressor from the refrigeration cycle outside the compressor due to its own weight and differential pressure accumulates in a liquefied state on the underside of the motor 703 above the oil sump 710, causing refrigerant liquid and In some cases, lubricating oil flows into the compression chamber 723 through the oil suction pipe 722 and fills the compression chamber 723, and in such a state, the compression load is too large and restart operation is impossible. Even if it is possible, it will cause damage to the compressor.

また、圧縮機運転条件によって油溜710の潤滑油が不
足する場合もあり、このような状態では圧縮室723に
圧縮気体が流入して圧縮効率の著しい低下や圧縮室内異
常圧力上昇に伴う圧縮機破損などを招くという問題があ
った。
Furthermore, depending on the compressor operating conditions, there may be a shortage of lubricating oil in the oil reservoir 710. In such conditions, compressed gas may flow into the compression chamber 723, resulting in a significant decrease in compression efficiency or an abnormal pressure increase in the compression chamber, causing the compressor to malfunction. There was a problem that it caused damage.

また、上記の第21図のような圧縮機底部の油溜809
に通じる中間圧力状態の背圧室808を経由して圧縮途
中の圧縮室823に潤滑油を供給する構成でも、上記の
第20図の場合と同様に油溜809の潤滑油が不足する
場合には圧縮効率の著しい低下や耐久性低下を招くとい
う問題もあった。
In addition, the oil sump 809 at the bottom of the compressor as shown in FIG.
Even with the configuration in which lubricating oil is supplied to the compression chamber 823 in the middle of compression via the back pressure chamber 808 in an intermediate pressure state leading to However, there was also the problem that compression efficiency was significantly lowered and durability was lowered.

また一方、第22図、第23図でも示すように圧縮機運
転時に吐出室910底部の油溜916に通じる給油通路
919を開いて圧縮部に差圧給油し、圧縮機停止時に給
油通路を閉じる構成の発明が特公昭59−44517号
公報によっても知られているが、この発明は吐出ポート
907の下流に吐出弁908を必要とするスライドベー
ン型回転式圧縮機の吐出弁908通過前のシリンダ92
7の圧力と吐出弁908通過後の吐出室910の圧力と
の差圧を利用してプランジャー922を作動させ給油通
路919の開閉弁925を制御する構成である。
On the other hand, as shown in FIGS. 22 and 23, when the compressor is operating, the oil supply passage 919 leading to the oil sump 916 at the bottom of the discharge chamber 910 is opened to supply differential pressure oil to the compression section, and when the compressor is stopped, the oil supply passage is closed. The invention of the structure is also known from Japanese Patent Publication No. 59-44517, and this invention is a slide vane rotary compressor that requires a discharge valve 908 downstream of the discharge port 907. 92
7 and the pressure in the discharge chamber 910 after passing through the discharge valve 908 is used to operate the plunger 922 to control the on-off valve 925 of the oil supply passage 919.

しかし、圧縮機冷時起動運転直後しばら(の間などは、
吐出室910の圧力が低くてシリンダ927内圧縮初期
行程から吐出弁908が開き吐出室910とシリンダ9
27との圧力差が小さい。
However, for a while (for example, immediately after starting operation when the compressor is cold),
Since the pressure in the discharge chamber 910 is low, the discharge valve 908 opens from the initial compression stroke in the cylinder 927 and the discharge chamber 910 and the cylinder 9 open.
The pressure difference with 27 is small.

このため開閉弁925が開かず圧縮部への給油も無いの
で、ベーン5のジャンピング現象が生じて異音や圧縮効
率低下を招くなどの問題があり、圧縮機運転条件に影響
されない給油通路制御装置の実用化が望まれていた。
For this reason, the on-off valve 925 does not open and there is no oil supply to the compression section, which causes problems such as a jumping phenomenon of the vanes 5, causing abnormal noise and a reduction in compression efficiency.The oil supply passage control device is not affected by the compressor operating conditions. It was hoped that it would be put into practical use.

そこで、本発明はスクロール圧縮機が圧縮室圧力を上昇
させるための吐出弁を必要とせず圧縮比が一定であるこ
とに着目し、吸入室および吐出室に連通しない圧縮室と
吸入室などとの圧力差を利用して応用範囲の広い給油通
路制御装置を実用化することにより高効率、耐久性に優
れたスクロール気体圧縮機を提供するものである。
Therefore, the present invention focuses on the fact that a scroll compressor does not require a discharge valve to increase the pressure in the compression chamber and has a constant compression ratio. The objective is to provide a scroll gas compressor with high efficiency and excellent durability by putting into practical use a fuel supply passage control device that utilizes pressure differences and has a wide range of applications.

問題点を解決するための手段 上記問題を解決するために本発明のスクロール、気体圧
縮機は、油溜まり部とその油溜まり部よりも圧力の低い
空間とを給油通路により連通させ、給油通路の途中には
給油通路を開閉する開閉弁とその開閉弁を制御するアク
チェータとで構成される給油通路制御弁装置を設け、ア
クチェータには弁体とその弁体の両側に配置した背圧室
Aおよび背圧室Bを設け、背圧室Aは吐出室にも吸入室
にも連通しない第1圧縮室に通じ、背圧室Bは吸入室に
通じる第2圧縮室または吸入室またはこれに通じる吸入
側に通じ、背圧室Aと背圧室日との間の差圧により弁体
が前進して開閉弁を開き、差圧の無い場合に弁体の自重
またはバネ装置の付勢力などによって弁体が後退して開
閉弁を閉じる給油通路制御弁装置を備えた構成である。
Means for Solving the Problems In order to solve the above problems, the scroll and gas compressor of the present invention communicates an oil reservoir with a space whose pressure is lower than that of the oil reservoir through an oil supply passage. A refueling passage control valve device consisting of an on-off valve that opens and closes the refueling passage and an actuator that controls the on-off valve is installed in the middle, and the actuator has a valve body and a back pressure chamber A and a back pressure chamber arranged on both sides of the valve body. A back pressure chamber B is provided, and the back pressure chamber A communicates with a first compression chamber that does not communicate with either the discharge chamber or the suction chamber, and the back pressure chamber B communicates with the second compression chamber or suction chamber that communicates with the suction chamber or the suction chamber that communicates with this. The pressure difference between the back pressure chamber A and the back pressure chamber A causes the valve body to move forward and open the on-off valve, and when there is no pressure difference, the valve body closes due to its own weight or the biasing force of a spring device. This configuration includes an oil supply passage control valve device whose body moves backward to close the on-off valve.

作   用 本発明は上記構成によって、圧縮機が始動し旋回スクロ
ールが旋回運動をして吸入室内の気体が圧縮室(第2圧
縮室)に吸入され一定の圧縮比にまで圧縮されて吐出室
に吐出されると共に、給油通路の途中に設けられた給油
通路制御弁装置のアクチェータの弁体は吐出室にも吸入
室にも連通しない第1圧縮機に通じる背圧室Aと、吸入
室に通じる第2圧縮室などに通じる背圧室臼との間の差
圧力により前進して開閉弁を開いて給油通路を連通させ
、油溜まり部の潤滑油は給油を必要とする空間に差圧給
油される。
According to the above structure, the compressor is started, the orbiting scroll performs an orbiting motion, and the gas in the suction chamber is sucked into the compression chamber (second compression chamber), compressed to a constant compression ratio, and then transferred to the discharge chamber. At the same time as the oil is discharged, the valve body of the actuator of the oil supply passage control valve device provided in the middle of the oil supply passage communicates with a back pressure chamber A that communicates with the first compressor, which does not communicate with either the discharge chamber or the suction chamber, and the suction chamber. The back pressure chamber leading to the second compression chamber moves forward due to the pressure difference between the die and the opening/closing valve to open the oil supply passage, and the lubricating oil in the oil reservoir is supplied to the space that requires lubrication under the differential pressure. Ru.

圧縮機が停止すると圧縮室間の隙間を通じて圧室との間
に設けられている場合は圧縮室と吸入室L の圧力が吸入側の圧力になり、逆電防止弁が吸入側に設
けられている場合は圧縮室と吸入室の圧力克 が吐出室圧力になり、逆粘防止弁のない場合は旋回スク
ロールが逆転をして圧縮室と吸入室との圧力差が瞬時に
無くなる)、圧縮空間および吸入室にそれぞれ通じる背
圧室Aと背圧室Bとの間の差圧も無くなって弁体の自重
ま、たはバネ装置の付勢力などによって弁体が後退して
開閉弁を閉じて給油通路を遮断し、油溜まり部の潤滑油
の無駄な流失を防ぎ、有益な潤滑油の使用によって圧縮
効率と耐久性を向上することができる。
When the compressor stops, the pressure in the compression chamber and suction chamber L becomes the pressure on the suction side if there is a gap between the compression chamber and the pressure chamber, and a non-return valve is installed on the suction side. If there is no anti-viscosity valve, the pressure difference between the compression chamber and suction chamber will become the discharge chamber pressure, and if there is no anti-viscosity valve, the orbiting scroll will rotate in reverse and the pressure difference between the compression chamber and suction chamber will instantly disappear). The differential pressure between back pressure chamber A and back pressure chamber B, which communicate with the suction chamber, also disappears, and the valve body retreats due to its own weight or the biasing force of the spring device, closing the on-off valve. By blocking the oil supply passage and preventing unnecessary loss of lubricating oil in the oil reservoir, compression efficiency and durability can be improved by using useful lubricating oil.

実施例 以下本発明の7実施例のスクロール気体圧縮機について
、図面を参照しながら説明する。第1図は本発明の第1
の実施例における密閉型スクロール冷媒圧縮機の縦断面
図を示し、第2図、第3図は第1図における給油通路制
御弁装置の動作を説明する縦断面図を示し、第4図は第
1図のA−A変化の説明図を示し、第6図、第16図は
吐出側に近くて吐出室に連通しない圧縮室の圧力変化と
給油通路制御弁装置に導入された圧力変化との比較説明
図を示し、第7〜第14図、第17図は本発明の別の実
施例における密閉型スクロール冷媒圧縮機の縦断面図と
給油通路制御弁装置の動作などを説明する部分断面図を
示す。
EXAMPLES Below, a scroll gas compressor according to seven embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the first embodiment of the present invention.
2 and 3 are longitudinal sectional views illustrating the operation of the oil supply passage control valve device in FIG. 1, and FIG. An explanatory diagram of the A-A change in Fig. 1 is shown, and Figs. 6 and 16 show the relationship between the pressure change in the compression chamber that is close to the discharge side and does not communicate with the discharge chamber, and the pressure change introduced into the oil supply passage control valve device. 7 to 14 and 17 are longitudinal sectional views of a hermetic scroll refrigerant compressor in another embodiment of the present invention, and partial sectional views illustrating the operation of the oil supply passage control valve device, etc. shows.

第1図において、1,2は鉄製の密閉ケース、3は鉄製
のフレームでその外周面部で密閉ケース1゜2と共に単
一の溶接ビード4によって溶接密封され密閉ケース1,
2内を上側の吐出室5と下側の駆動室6(低圧側)に仕
切っている。
In FIG. 1, 1 and 2 are iron sealed cases, 3 is an iron frame, and the outer peripheral surface of the sealed case 1 and 2 are welded and sealed by a single weld bead 4.
2 is partitioned into an upper discharge chamber 5 and a lower drive chamber 6 (low pressure side).

フレーム3に支承されインバータ電源(図示なし)によ
って運転制御されるモータ7により回転駆動される駆動
軸8の上端部の偏心穴9には旋回スクロール10の旋回
軸11が填め込まれ、旋回スクロール10の自転阻止部
品12が旋回スクロール10とフレーム3に係合し、旋
回スクロール10に噛み合う固定スクロール13がフレ
ーム3にボルト固定され、固定スクロール13の鏡板1
4には吐出ポート15が設けられ、鏡板14の上面には
吐出ポート15の開口端を塞ぐ逆止弁16と給油通路制
御弁装置17が取り付けられている。
An orbiting shaft 11 of an orbiting scroll 10 is fitted into an eccentric hole 9 at the upper end of a drive shaft 8 which is supported by a frame 3 and rotationally driven by a motor 7 whose operation is controlled by an inverter power supply (not shown). The rotation prevention part 12 engages with the orbiting scroll 10 and the frame 3, the fixed scroll 13 that meshes with the orbiting scroll 10 is bolted to the frame 3, and the end plate 1 of the fixed scroll 13
4 is provided with a discharge port 15, and a check valve 16 for closing the open end of the discharge port 15 and an oil supply passage control valve device 17 are attached to the upper surface of the end plate 14.

吐出室5の底部は吐出室油溜18でその上部には多数の
小穴を有した傘状のパンチングメタル19が密閉ケース
1に取り付けられ、密閉ケース1とパンチングメタル1
9との間には細鉄線から成るフィルター20が詰められ
、吐出室5は密閉ケース1の上面に設けられた吐出管2
1を通じて外部の冷凍サイクル配管系を経て密閉ケース
2の側面に設けられた吸入管22を通じて低圧側の駆動
室6に連通し、駆動室6の底部にはモータ室油溜23が
設けられ、偏心穴9とモータ室油溜23とを連通する偏
心油入24を有した駆動軸8の下端がモータ室部゛溜2
3に埋没している。
The bottom of the discharge chamber 5 is a discharge chamber oil reservoir 18, and the upper part thereof is an umbrella-shaped punching metal 19 with many small holes attached to the sealed case 1.
A filter 20 made of fine iron wire is packed between the discharge chamber 5 and the discharge pipe 2 provided on the upper surface of the sealed case 1.
1 through the external refrigeration cycle piping system, and through a suction pipe 22 provided on the side surface of the sealed case 2 to the drive chamber 6 on the low pressure side. The lower end of the drive shaft 8 has an eccentric oil filler 24 communicating between the hole 9 and the motor chamber oil reservoir 23.
It is buried in 3.

第2図、第3図、第4図において、給油通路制御弁装置
17は鏡板14にガスケット25を挟んで取り付けられ
、本体ケース26に設けられてその一端がメクラ栓27
によって塞がれたシリンダ28内には外周溝29を有し
たプランジャー30が移動可能に装着されている。シリ
ンダ28はプランジャー30によって2つの背圧室に仕
切られ、メクラ栓27の側の背圧室831はガス穴32
によって吸入室33に通じ、他方の背圧室A34は極細
の圧力導入穴35によって吐出ポート15とは連通せず
吐出ポート15に最も近い圧縮室A36(第1圧縮室)
に連通している。背圧室831にはプランジャー30の
一端に設けられた円筒穴37に挿入支持された形状記憶
合金材料製のコイルバネ38が配置され、コイルバネ3
8はその一端がメクラ栓27に押接してコイルバネ38
に付勢力を与え、その付勢力は吸入室33と圧縮室A3
6との間の差圧がほとんど無い場合に背圧室B31の容
積を広げるべくプランジャー30を一定量移動させ、第
3図の位置でプランジャー30が停止し、吸入室3鵞と
圧縮室A36との間の差圧が設定値を超えた場合に背圧
室831の容積を一定量まで狭めるべくプランジャー3
0を移動させ、第2図の位置でプランジャー30が停止
し、それ自身の温度が設定温度(例えば130’(1)
を超えるとバネ定数が急増して付勢力を強めて吸入室3
1iIと圧縮室A36との間の差圧が設定値を超えた場
合でも背圧室831の容積を広げるべくプランジャー3
0を一定量移動させるように設定されている。吸入室3
3と圧縮室A36との間に位置して吸入室33とは連通
しない圧縮室B59(第3圧縮室)(圧縮室Ba39m
)は極細の油インジェクション穴40(インジェクショ
ン管4oa)と外周溝29と極細の油吸い込み穴41を
介して吐出室油溜18の底部に通じ、プランジャー30
の停止位置により連通または遮断される。
In FIGS. 2, 3, and 4, the oil supply passage control valve device 17 is attached to the end plate 14 with a gasket 25 interposed therebetween, and is provided in the main body case 26, with one end connected to a blind stopper 27.
A plunger 30 having an outer circumferential groove 29 is movably mounted inside the cylinder 28 which is closed by the cylinder 28 . The cylinder 28 is partitioned into two back pressure chambers by the plunger 30, and the back pressure chamber 831 on the side of the blind stopper 27 is connected to the gas hole 30.
The other back pressure chamber A34 does not communicate with the discharge port 15 through the ultra-thin pressure introduction hole 35 and is connected to the compression chamber A36 (first compression chamber) closest to the discharge port 15.
is connected to. A coil spring 38 made of a shape memory alloy material is disposed in the back pressure chamber 831 and is inserted and supported in a cylindrical hole 37 provided at one end of the plunger 30.
8 has one end pressed against the blind stopper 27 and the coil spring 38
A biasing force is applied to the suction chamber 33 and the compression chamber A3.
When there is almost no differential pressure between the back pressure chamber B31 and the back pressure chamber B31, the plunger 30 is moved a certain amount to expand the volume of the back pressure chamber B31, and the plunger 30 stops at the position shown in FIG. Plunger 3 is used to reduce the volume of back pressure chamber 831 to a certain amount when the differential pressure between A36 and A36 exceeds a set value.
0, the plunger 30 stops at the position shown in Figure 2, and its own temperature reaches the set temperature (for example, 130' (1)
When it exceeds the spring constant, the spring constant increases and the biasing force is strengthened.
1iI and the compression chamber A36 exceeds the set value, the plunger 3 is used to expand the volume of the back pressure chamber 831.
0 is set to move by a certain amount. Suction chamber 3
Compression chamber B59 (third compression chamber) located between 3 and compression chamber A36 and not communicating with suction chamber 33 (compression chamber Ba39m
) communicates with the bottom of the discharge chamber oil sump 18 via an extremely thin oil injection hole 40 (injection pipe 4OA), an outer circumferential groove 29, and an extremely fine oil suction hole 41, and the plunger 30
Communication or interruption occurs depending on the stop position.

第5図において、横軸は駆動軸重の回転角度を表し、縦
軸は冷媒圧力を表し、吸入・圧縮・吐出過程における冷
媒ガスの圧力変化状態を表す。
In FIG. 5, the horizontal axis represents the rotation angle of the drive shaft load, and the vertical axis represents the refrigerant pressure, which represents the state of change in the pressure of the refrigerant gas during the suction, compression, and discharge processes.

第6図において、横軸は駆動軸重の回転角度を表し、縦
軸は冷媒圧力を表し、実線42は圧縮室A36の圧力を
表し、一点鎖線43は背圧室A34の圧力を表し、二点
鎖線42−は圧縮室B39の圧力を表す。
In FIG. 6, the horizontal axis represents the rotation angle of the drive axle load, the vertical axis represents the refrigerant pressure, the solid line 42 represents the pressure in the compression chamber A36, the dashed line 43 represents the pressure in the back pressure chamber A34, and the vertical axis represents the refrigerant pressure. The dashed dotted line 42- represents the pressure in the compression chamber B39.

第7図は別の実施例のスクロール冷媒圧縮機の縦断面図
で、固定スクロール13mの鏡板14mに取り付けられ
た給油通路制御弁装置17を介して吐出室油溜18がフ
レーム3aの軸受油溜44に通じている。すなわち、吐
出室油溜18から軸受油溜44までの給油通路は、固定
スクロール13mの鏡板14mに設けられた油吸い込み
穴41a1給油通路制御弁装置17のプランジャー30
の外周溝29、鏡板14gに設けられ、その途中に逆流
防止弁(図示なし)を内蔵した油入A45、フレーム3
aに設けられた油入B46によって順次通じている。
FIG. 7 is a longitudinal sectional view of a scroll refrigerant compressor according to another embodiment, in which the discharge chamber oil sump 18 is connected to the bearing oil sump of the frame 3a via the oil supply passage control valve device 17 attached to the end plate 14m of the fixed scroll 13m. 44. That is, the oil supply passage from the discharge chamber oil sump 18 to the bearing oil sump 44 is connected to the oil suction hole 41a1 provided in the end plate 14m of the fixed scroll 13m, and the plunger 30 of the oil supply passage control valve device 17.
The outer circumferential groove 29 of the frame 3 is provided with an oil-filled A45 provided in the end plate 14g and has a built-in check valve (not shown) in the middle.
They are successively communicated through an oil filler B46 provided in a.

第8図は別の実施例のスクロール冷媒圧縮機の断面図で
、1b、2bは鉄製の密閉ケース、45は鉄製の支持板
でその外周面部で密閉ケース1b、2bと共に単一の溶
接ビードによって溶接密封され、支持板45の上面には
旋回スクロール10bを挟んで固定スクロール13bが
取り付けられ下面には駆動軸8bを支承するフレーム3
bが取り付けられ、吐出室5bと駆動室6bとは固定ス
クロール13bの鏡板14bの上面に開口した吐出ガス
通路46mと支持板45に設けられた吐出ガス通路46
bとで連通し、旋回スクロール10bと支持板45とフ
レーム3bとで形成された中間圧背圧室47は駆動軸8
bに設けられた軸芯油穴48や駆動軸8bに係合する軸
受49 、50 、旋回軸受51の各微小隙間を経由し
てモータ室油溜23bに連通すると共に旋回スクロール
10bに設けられた極細のバイパス穴50を介して吸入
室3C1にも連通している。旋回スクロール10bが中
間圧背圧室47の圧力によって押し付けられる固定スク
ロール13bの鏡板14bの下面に設けられた環状油溝
53は鏡板14b上面に取り付けられた給油通路制御弁
装置17を介して吐出室油溜18bに通じている。すな
わち、吐出室油溜18bから環状油溝53までの給油通
路は、固定スクロール13bの鏡板14bに設けられた
油吸い込み穴41b1給油通路制御弁装置17のプラン
ジャー30の外周溝29、鏡板14bに設けられた油入
54によって順次通じている。
FIG. 8 is a sectional view of a scroll refrigerant compressor according to another embodiment, in which 1b and 2b are iron closed cases, 45 is an iron support plate, and a single weld bead is formed on the outer peripheral surface of the scroll refrigerant compressor together with the closed cases 1b and 2b. The fixed scroll 13b is attached to the upper surface of the support plate 45 with the orbiting scroll 10b interposed therebetween, and the frame 3 supporting the drive shaft 8b is attached to the lower surface of the supporting plate 45.
b is attached, and the discharge chamber 5b and drive chamber 6b are composed of a discharge gas passage 46m opened on the upper surface of the end plate 14b of the fixed scroll 13b and a discharge gas passage 46 provided in the support plate 45.
An intermediate pressure back pressure chamber 47 formed by the orbiting scroll 10b, the support plate 45, and the frame 3b communicates with the drive shaft 8
It communicates with the motor chamber oil sump 23b via the shaft core oil hole 48 provided in b, the bearings 49 and 50 that engage with the drive shaft 8b, and the orbiting bearing 51, and communicates with the motor chamber oil reservoir 23b, and is provided on the orbiting scroll 10b. It also communicates with the suction chamber 3C1 via an extremely thin bypass hole 50. The annular oil groove 53 provided on the lower surface of the end plate 14b of the fixed scroll 13b against which the orbiting scroll 10b is pressed by the pressure of the intermediate pressure back pressure chamber 47 is connected to the discharge chamber via the oil supply passage control valve device 17 attached to the upper surface of the end plate 14b. It communicates with the oil sump 18b. That is, the oil supply passage from the discharge chamber oil reservoir 18b to the annular oil groove 53 is connected to the oil suction hole 41b1 provided in the end plate 14b of the fixed scroll 13b, the outer peripheral groove 29 of the plunger 30 of the oil supply passage control valve device 17, and the end plate 14b. They are successively communicated by a provided oil tank 54.

吸入管22bは密閉シェル1bと鏡板14bを貫通して
吸入室331>に達し、吸入管22bの端部と吸入室3
3bとの間には逆止弁16bが設けられ、吐出管21b
は密閉シェル2bに設けられて駆動室6bに通じている
The suction pipe 22b passes through the sealed shell 1b and the end plate 14b to reach the suction chamber 331>, and the end of the suction pipe 22b and the suction chamber 3
A check valve 16b is provided between the discharge pipe 21b and the discharge pipe 21b.
is provided in the closed shell 2b and communicates with the drive chamber 6b.

第9図は別の実施例のスクロール冷媒圧縮機の縦断面図
で、密閉シェル1Gの内部全体が吐出室5cで、上部に
モータ7、下部に圧縮部と給油通路制御弁装置17cと
が固定スクロール13cの鏡板14aに取り付けられ底
部の油溜23cに浸漬して配置され、油溜23cから吸
入室33cまでの給油通路は給油通路制御弁装置17c
の本体ケース26cに設けられた油吸い込み穴41a、
外周溝29、鏡板14cに設けられた油入55、フレー
ム3Gと固定スクロール13cに挟まれた支持板45c
に設けられた油入56、フレーム3cに設けられた油入
57、駆動軸8Cを支承する軸受58の微小な軸受隙間
、フレーム3Cと支持板45cと旋回スクロール10c
とで形成された中間圧背圧室47c、駆動軸8Cの下端
に設けられた旋回軸受51cと旋回スフミール10cの
旋回軸11cとの間の微小な軸受隙間、旋回スクロール
10cに設けられた油入59、バイパス穴52cで構成
され、吐出ポート15oから吐出室5cまでの圧縮ガス
連路は固定スクロール13cと本体ケース26cとで形
成された吐出ガス連路60、固定スクロール13cと支
持板45cとフレーム3Gにそれぞれ設けられた吐出ガ
ス通路61.62.63で構成される。
FIG. 9 is a longitudinal cross-sectional view of a scroll refrigerant compressor according to another embodiment, in which the entire interior of the sealed shell 1G is a discharge chamber 5c, the motor 7 is fixed to the upper part, and the compression part and the oil supply passage control valve device 17c are fixed to the lower part. It is attached to the end plate 14a of the scroll 13c and is placed immersed in the oil reservoir 23c at the bottom, and the oil supply passage from the oil reservoir 23c to the suction chamber 33c is connected to the oil supply passage control valve device 17c.
An oil suction hole 41a provided in the main body case 26c,
An outer circumferential groove 29, an oil filler 55 provided on the end plate 14c, and a support plate 45c sandwiched between the frame 3G and the fixed scroll 13c.
an oil well 56 provided in the frame 3c, an oil well 57 provided in the frame 3c, a minute bearing gap between the bearing 58 that supports the drive shaft 8C, the frame 3C, the support plate 45c, and the orbiting scroll 10c.
The intermediate pressure back pressure chamber 47c formed by the 59, the compressed gas passage from the discharge port 15o to the discharge chamber 5c is composed of a bypass hole 52c, a discharge gas passage 60 formed by the fixed scroll 13c and the main body case 26c, the fixed scroll 13c, the support plate 45c, and the frame. It is composed of discharge gas passages 61, 62, and 63 provided in 3G, respectively.

また、フレーム3Gに設けられた軸受64に対向する駆
動軸8cの表面には螺線状の油溝65が設けられ、油溝
65の巻き方向は駆動軸8Gの回転に伴うネジポンプ作
用により油入57の潤滑油を軸受64の上部開口端へも
供給できる方向に設けられている。
Further, a spiral oil groove 65 is provided on the surface of the drive shaft 8c facing the bearing 64 provided on the frame 3G, and the winding direction of the oil groove 65 is controlled by the screw pump action as the drive shaft 8G rotates. The lubricating oil of 57 can also be supplied to the upper open end of the bearing 64.

また、吸入管22aは密閉シェルICを訂通して固定ス
クロール13cに挿入され逆止弁(図示なし)を介して
吸入室33cに連通し、吐出管21cは密閉ケース1c
の上側面に設けられている。
Further, the suction pipe 22a is inserted into the fixed scroll 13c through a sealed shell IC and communicates with the suction chamber 33c via a check valve (not shown), and the discharge pipe 21c is inserted into the sealed case 1c.
It is installed on the upper side of the .

第10図は給油通路制御弁装置の開閉弁部を固定スクロ
ール13dの鏡板14dの内部に設けた別の実施例のス
クロール冷媒圧縮機の部分断面図で、シリンダ28dが
鏡板14dに設けられ、吐出室5とは連通せず吐出室5
に最も近い側の圧縮室A36と背圧室A34dとは埋め
込みネジ66とネジ穴との微小隙間を介した圧力導入穴
35dで連通され、吸入室33とは連通せず吸入室33
に近い側の圧縮室B39とプランジャー30の外周溝2
9とは鏡板14dに設けられたインジェクション穴40
d、鏡板14dとガスケット25dとガスケット押さえ
67とで形成される極細のインジェクション通路68と
で連通し、プランジャー30に付勢力を与えるコイルバ
ネ38はそれ自身が設定温度(例えば130°C)を超
えるとその付勢力を強めて外周溝29とインジェクショ
ン通路68との連通を断つべくプランジャー30を作動
させるようなバネ特性を備えた形状記憶合金材質から成
り、吐出室油溜18から圧縮室839までの給油通路が
油吸い込み穴41d、外周溝29、インジェクション通
路68、インジェクション穴40dで構成される。
FIG. 10 is a partial sectional view of a scroll refrigerant compressor of another embodiment in which the on-off valve part of the oil supply passage control valve device is provided inside the end plate 14d of the fixed scroll 13d, and the cylinder 28d is provided in the end plate 14d, and the discharge Discharge chamber 5 without communicating with chamber 5
The compression chamber A 36 and the back pressure chamber A 34 d, which are closest to each other, communicate with each other through a pressure introduction hole 35 d through a small gap between the embedded screw 66 and the screw hole, and do not communicate with the suction chamber 33 .
Compression chamber B39 on the side closer to and outer circumferential groove 2 of plunger 30
9 is an injection hole 40 provided in the mirror plate 14d.
d. The coil spring 38, which communicates with an extremely thin injection passage 68 formed by the end plate 14d, the gasket 25d, and the gasket retainer 67, and applies a biasing force to the plunger 30, has a temperature that exceeds the set temperature (for example, 130°C). It is made of a shape memory alloy material with spring characteristics that actuates the plunger 30 to strengthen the biasing force and cut off the communication between the outer circumferential groove 29 and the injection passage 68, and extends from the discharge chamber oil sump 18 to the compression chamber 839. The oil supply passage includes an oil suction hole 41d, an outer circumferential groove 29, an injection passage 68, and an injection hole 40d.

第11図は給油通路制御弁装置の通路開閉機構の異なる
別の実施例のスクロール冷媒圧縮機の縦断面図で、第1
1図〜第16図において、プランジャー30に付勢力を
与えるバネ装置がコイルバネA38mとコイルバネ83
8bの二重構造で形成され、コイルバネB58bの外側
に配置されたコイルバネA38mはその自由長さがコイ
ルバネB58bよりも長く、コイルバネB58bのバネ
定数はコイルバネA38mよりも極端に大きく設定され
、通常運転時の吐出室油溜18から圧縮室A36までの
給油通路が第12図に示すように鏡板14に設けられた
油吸い込み穴41、プランジャー30の外周溝29、シ
リンダ28eに開口して本体ケース26・に設けられた
インジェクション穴4oe(またはインジェクション管
40a)、鏡板14に設けられたインジェクション穴4
0によって形成され、プランジャー30はコイルバネB
58bを僅かに収縮せしめた状態で停止している。また
、圧力導入穴35を介して圧縮室A36に通じる背圧室
A34の圧力が異常上昇した場合には、プランジャー3
0がコイルバネA38a。
FIG. 11 is a vertical sectional view of a scroll refrigerant compressor of another embodiment in which the passage opening/closing mechanism of the oil supply passage control valve device is different;
1 to 16, the spring devices that apply biasing force to the plunger 30 are a coil spring A38m and a coil spring 83.
The coil spring A38m, which is formed with a double structure of 8b and placed outside the coil spring B58b, has a longer free length than the coil spring B58b, and the spring constant of the coil spring B58b is set to be extremely larger than that of the coil spring A38m. As shown in FIG. 12, the oil supply passage from the discharge chamber oil sump 18 to the compression chamber A36 opens into the oil suction hole 41 provided in the end plate 14, the outer peripheral groove 29 of the plunger 30, and the cylinder 28e. Injection hole 4oe (or injection pipe 40a) provided in ・Injection hole 4 provided in end plate 14
0, the plunger 30 is formed by a coil spring B
58b is stopped in a slightly contracted state. In addition, if the pressure in the back pressure chamber A34 communicating with the compression chamber A36 through the pressure introduction hole 35 increases abnormally, the plunger 3
0 is coil spring A38a.

コイルバネB58bに抗して移動し、第14図の状態で
停止して吐出室油溜18と圧縮室839との給油通路が
遮断される。
It moves against the coil spring B58b and stops in the state shown in FIG. 14, thereby blocking the oil supply passage between the discharge chamber oil reservoir 18 and the compression chamber 839.

また、第13図は吸入室33に通じる背圧室日31と背
圧室A34との間の差圧がほとんど無くなった場合にプ
ランジャー30がコイルバネA38mの付勢力によって
移動して給油通路が遮断された状態を示す。
In addition, Fig. 13 shows that when the differential pressure between the back pressure chamber 31 leading to the suction chamber 33 and the back pressure chamber A34 is almost eliminated, the plunger 30 is moved by the biasing force of the coil spring A38m and the refueling passage is blocked. Indicates the state in which the

また、コイルバネB58bはそれ自身の温度が設定温度
(例えば130°C)を超えた場合にプランジャー30
に付勢力を与えない程度にまで収縮するような特性を備
えた形状記憶合金材質から出来ている。
In addition, when the temperature of the coil spring B58b exceeds the set temperature (for example, 130°C), the plunger 30
It is made of a shape memory alloy material that has the characteristic of shrinking to the extent that it does not apply any biasing force to the body.

も 第15図において、横軸は駆動軸重の回転角度を表し、
縦軸は冷媒圧力を表し、実線42は正常運転時の圧縮室
A36の圧力、点線71は異常圧力上昇時の圧縮室A3
6の圧力、一点鎖線43は正常運転時の背圧室834の
圧力、二点鎖線72は圧縮室A36の圧力が異常上昇し
た場合に追従して変化する背圧室A34の圧力をそれぞ
れ表す。
In Fig. 15, the horizontal axis represents the rotation angle of the drive axle load,
The vertical axis represents the refrigerant pressure, the solid line 42 represents the pressure in the compression chamber A36 during normal operation, and the dotted line 71 represents the pressure in the compression chamber A3 during abnormal pressure rise.
The one-dot chain line 43 represents the pressure in the back pressure chamber 834 during normal operation, and the two-dot chain line 72 represents the pressure in the back pressure chamber A34 that changes following an abnormal increase in the pressure in the compression chamber A36.

第17図は給油通路制御弁装置の別の実施例を固定スク
ロールに取り付けた状態の部分断面図を示し、本体26
9とケース26イとで挟まれた薄板のダイヤフラム80
がその外周部で単一の溶接ビード81により本体26.
とケース26fと共に密封溶接され、本体269とケー
ス26fとで形成される内部空間を背圧室B51fと背
圧家人34fに仕切っている。背圧室A34fは圧力導
入管35gと固定スクロール13の鏡板14に設けられ
た極細の圧力導入穴35fを介して圧縮室A36に通じ
、背圧室B51fは本体26gに設けられたガス穴82
と鏡板14に設けられたガス穴32fとを介して吸入室
33に通じている。本体26gには背圧室831fに開
口したシリンダ28fと、シリンダ28fに継続して設
けられシリンダ28fの直径よりも大きく本体269の
鏡板41取り付は面に開口した弁穴83とが設けられ、
弁穴83の開口端は鏡板14に設けられ吐出室油溜18
の底部に開口した油吸い込み穴41に通じている。本体
26gに設けられたインジェクション穴40fはその上
端をシリンダ28fの中央部内壁に開口し、その他端が
鏡板14に設けられたインジェクション穴40を介して
圧縮室B39に通じている。弁穴83にはシリンダ31
fの直径よりも大きいコイルバネ38fとその上部に鋼
球84が装着され、シリンダ31fにはその下半部が細
径ピン形状で上半部が精密円筒形状でその中央部に外周
溝29fを有したプランジャー30fが遊合状態で装着
されている。外周溝29fは小穴85を介して弁穴83
に通じプランジャー30fの上端はダイヤフラム80に
よって移動を規制され、下端はコイルバネ38fによっ
て付勢力を得た鋼球84によって移動を規制される。
FIG. 17 shows a partial sectional view of another embodiment of the oil supply passage control valve device attached to the fixed scroll, and shows the main body 26.
A thin plate diaphragm 80 sandwiched between 9 and case 26a
is attached to the body 26. by a single weld bead 81 at its outer periphery.
and the case 26f are hermetically welded together, and the internal space formed by the main body 269 and the case 26f is partitioned into a back pressure chamber B51f and a back pressure chamber 34f. The back pressure chamber A34f communicates with the compression chamber A36 via a pressure introduction pipe 35g and an extremely thin pressure introduction hole 35f provided in the end plate 14 of the fixed scroll 13, and the back pressure chamber B51f communicates with the gas hole 82 provided in the main body 26g.
It communicates with the suction chamber 33 via a gas hole 32f provided in the end plate 14. The main body 26g is provided with a cylinder 28f that is open to the back pressure chamber 831f, and a valve hole 83 that is continuous with the cylinder 28f and is larger than the diameter of the cylinder 28f and that is open on the surface where the end plate 41 of the main body 269 is attached.
The opening end of the valve hole 83 is provided in the end plate 14 and is connected to the discharge chamber oil sump 18.
It communicates with an oil suction hole 41 opened at the bottom. The injection hole 40f provided in the main body 26g has its upper end opened in the central inner wall of the cylinder 28f, and the other end communicates with the compression chamber B39 via the injection hole 40 provided in the end plate 14. The cylinder 31 is located in the valve hole 83.
A coil spring 38f larger than the diameter of f and a steel ball 84 are attached to the upper part of the coil spring 38f, and the cylinder 31f has a lower half in the shape of a small diameter pin, an upper half in the shape of a precision cylinder, and has an outer circumferential groove 29f in the center thereof. The plunger 30f is attached in an idle state. The outer circumferential groove 29f connects to the valve hole 83 through the small hole 85.
The movement of the upper end of the plunger 30f is regulated by a diaphragm 80, and the movement of the lower end is regulated by a steel ball 84 biased by a coil spring 38f.

以上のように構成されたスクロール冷媒圧縮機について
、その動作を説明する。
The operation of the scroll refrigerant compressor configured as above will be explained.

第1図〜第6図において、モータ7によって駆動軸8が
回転駆動されると旋回スクロール10が旋回運動をし、
圧縮機に接続した冷凍サイクルから吸入冷媒ガスが吸入
管22を通して駆動室6に流入し、その中に含まれる潤
滑油の一部が分離された後に吸入室33に吸入され、吸
入冷媒ガスは旋回スクロール10と固定スクロール13
との間に形成された圧縮室内に閉じ込められ、旋回スク
ロール10の旋回運動に伴って順次圧縮され中央部の吐
出ポート15、逆止弁16を経て吐出室5へ吐出され、
吐出冷媒ガス中に含まれる潤滑油の一部はその自重およ
びパンチングメタル19の小穴や純鉄線から成るフィル
ター20を通過する際にその表面に付着などして吐出冷
媒ガスから分離して吐出室油溜18に収集され、残りの
潤滑油は吐出冷媒ガスと共に吐出管21を経て外部の冷
凍サイクルへ搬出され、再び吸入冷媒ガスと共に吸入管
22を通して圧縮機内に帰還する。
1 to 6, when the drive shaft 8 is rotationally driven by the motor 7, the orbiting scroll 10 makes an orbiting motion,
Suction refrigerant gas flows into the drive chamber 6 through the suction pipe 22 from the refrigeration cycle connected to the compressor, and after a part of the lubricating oil contained therein is separated, it is sucked into the suction chamber 33, and the suction refrigerant gas swirls. Scroll 10 and fixed scroll 13
It is confined in a compression chamber formed between the orbiting scroll 10, is sequentially compressed as the orbiting scroll 10 rotates, and is discharged into the discharge chamber 5 through the central discharge port 15 and the check valve 16.
A part of the lubricating oil contained in the discharged refrigerant gas is separated from the discharged refrigerant gas due to its own weight and adheres to the surface of the punched metal 19 when passing through the small holes and the filter 20 made of pure iron wire, and is separated from the discharged refrigerant gas and becomes discharge chamber oil. The remaining lubricating oil is collected in the reservoir 18, and is carried out to the external refrigeration cycle through the discharge pipe 21 together with the discharged refrigerant gas, and is returned into the compressor through the suction pipe 22 together with the sucked refrigerant gas.

一方、駆動室6で吸入冷媒ガスから分離した底部のモー
タ室油溜23に収集された潤滑油は駆動軸8の偏心油入
24による遠心ポンプ作用で偏心油入24、駆動軸8に
係わる軸受隙間(偏心穴9と旋回軸11との隙間を含む
)、旋回スクロール10に係わるスラスト軸受部や自転
阻止部品12の摺動面を順次叫滑して吸入冷媒ガスと共
に吸入室33へ流入し、隣接する圧縮空間の隙間を油膜
で密封し圧縮冷媒ガスの漏洩を少なくする。
On the other hand, the lubricating oil collected in the motor chamber oil sump 23 at the bottom separated from the suction refrigerant gas in the drive chamber 6 is pumped by the centrifugal pump action by the eccentric oil tank 24 of the drive shaft 8, and the lubricating oil is pumped into the eccentric oil tank 24 and the bearings related to the drive shaft 8. The refrigerant flows into the suction chamber 33 together with the suction refrigerant gas by sequentially sliding on the sliding surface of the clearance (including the gap between the eccentric hole 9 and the rotation shaft 11), the thrust bearing part related to the orbiting scroll 10, and the rotation prevention component 12, The gap between adjacent compression spaces is sealed with an oil film to reduce leakage of compressed refrigerant gas.

また、吐出室5に連通せず吐出ポート15に最も近い側
の圧縮室A36の圧縮機運転中の圧力は第6図に示すよ
うに大きく変化するが、極細の圧力導入穴35を介して
導入した背圧室A圧力43はその変化が少なくて圧縮室
間隙間42mの最大値よりも大きい。このため背圧室A
34の圧力は吸入室33に通じる背圧室831の圧力よ
りも安定して大きく、このためにプランジャー30がコ
イルバネ38の付勢力に抗してメクラ栓27の方向へ移
動し、第2図に示すように吐出室油溜18と圧縮室B5
9(吸入室33に連通せず吸入室に近い側の圧縮室)と
の間が油吸い込み穴41、外周溝29、極細のインジェ
クション穴40で構成される給油通路により連通され、
吐出室油溜18の潤滑油が給油通路を通り適切に漸次減
圧されて圧縮室839に間欠給油され、この潤滑油はモ
ータ室油溜23から給油され、吸入冷媒ガスと共に吸入
室33を経て圧縮室839に搬送されて来た潤滑油と合
流し、隣接する圧縮室間の隙間を油膜でより一層の密封
を図る。
In addition, the pressure in the compression chamber A36, which is not connected to the discharge chamber 5 and is closest to the discharge port 15, changes greatly during compressor operation as shown in FIG. The back pressure chamber A pressure 43 changes little and is larger than the maximum value of the compression chamber gap 42m. For this reason, back pressure chamber A
34 is stably higher than the pressure in the back pressure chamber 831 communicating with the suction chamber 33, and for this reason, the plunger 30 moves in the direction of the blind stopper 27 against the biasing force of the coil spring 38, as shown in FIG. As shown in the figure, the discharge chamber oil sump 18 and the compression chamber B5
9 (compression chamber on the side close to the suction chamber that does not communicate with the suction chamber 33) is communicated with an oil supply passage consisting of an oil suction hole 41, an outer circumferential groove 29, and an extremely thin injection hole 40,
The lubricating oil in the discharge chamber oil sump 18 passes through the oil supply passage, is gradually reduced in pressure, and is intermittently supplied to the compression chamber 839. This lubricating oil is supplied from the motor chamber oil sump 23, and is compressed together with the suction refrigerant gas through the suction chamber 33. It joins with the lubricating oil conveyed to chamber 839, and further seals the gap between adjacent compression chambers with an oil film.

また、圧縮機停止後は逆止弁16が閉じ、吐出室5の圧
力は数分間はぼ吐出圧力状態を保持されるが相対滑り運
動の無い圧縮室間の隙間は油膜による密封効果が無く、
吐出ボート15と各圧縮室の圧力は旋回スクロールの瞬
時逆転によって吸入室33と同じ圧力になる。この結果
、プランジャー30はコイルバネ38の付勢力によって
移動し、第3図に示すように給油通路が遮断されて吐出
室油溜1Bから圧縮室B39への給油が停止する。
In addition, after the compressor is stopped, the check valve 16 is closed, and the pressure in the discharge chamber 5 is maintained at the discharge pressure state for several minutes, but the gap between the compression chambers where there is no relative sliding movement is not sealed by the oil film.
The pressure in the discharge boat 15 and each compression chamber becomes the same as that in the suction chamber 33 by instantaneous reversal of the orbiting scroll. As a result, the plunger 30 is moved by the biasing force of the coil spring 38, and as shown in FIG. 3, the oil supply passage is blocked and oil supply from the discharge chamber oil reservoir 1B to the compression chamber B39 is stopped.

また、万一、圧縮機運転中に冷凍すオクル配管系の詰ま
り現象などによって圧縮機内への潤滑油帰還が無く吐出
室油溜18の潤滑油が不足して給油通路を経て吐出冷媒
ガスが多量に圧縮室839に流入した場合は、短時間に
圧縮室や吐出室5内で異常温度上昇しコイルバネ38が
設定温度(例えば130’C)を超え、形状記憶合金材
質から成るコイルバネ38の付勢力が増大してプランジ
ャー30は第3図の位置(圧縮機停止中と同じ位置)錦 で辱止し給油通路が遮断される。
In addition, in the unlikely event that the lubricating oil is not returned to the compressor due to a phenomenon such as a clogging of the occlu piping system that freezes during compressor operation, there is a shortage of lubricating oil in the discharge chamber oil sump 18, and a large amount of refrigerant gas is discharged through the oil supply passage. If it flows into the compression chamber 839, the temperature in the compression chamber and the discharge chamber 5 will rise abnormally in a short period of time, causing the coil spring 38 to exceed the set temperature (for example, 130'C), causing the biasing force of the coil spring 38 made of a shape memory alloy material to increase. increases, the plunger 30 is stopped at the position shown in FIG. 3 (the same position as when the compressor is stopped), and the oil supply passage is blocked.

第7図においては、圧縮機運転中の吐出室油溜18の涌
滑油は上述のようにプランジャー30の作動によって油
吸い込み穴41a1外周溝29、油水A45、油水B4
6で構成される給油通路を経て適切に漸次減圧され軸受
油溜44に給油され、その後は駆動軸8に係わる軸受部
や旋回スクロール10のスラスト軸受部などの摺動面を
潤滑しながら低圧側の駆動室6や吸入室33に流入する
In FIG. 7, during operation of the compressor, the oil in the discharge chamber oil sump 18 is transferred to the oil suction hole 41a1, the outer circumferential groove 29, the oil water A45, the oil water B4 by the operation of the plunger 30 as described above.
6, the pressure is gradually reduced and oil is supplied to the bearing oil reservoir 44, and then the low pressure side is lubricated on the sliding surfaces of the bearings related to the drive shaft 8, the thrust bearings of the orbiting scroll 10, etc. The liquid flows into the drive chamber 6 and suction chamber 33 of.

吸入冷媒ガスと共に吸入若釉流入した潤滑油は上述のよ
うに隣接する圧縮室間の隙間を油膜により密封して圧縮
効率を高め、駆動室6に流入した潤滑油は底部のモータ
室油溜23に収集された後、駆動軸8に設けられた偏心
油穴24の遠心ポンプ作用によって上述のように各摺動
面へ供給される。
The lubricating oil that has flowed into the suction waka glaze together with the suction refrigerant gas seals the gap between adjacent compression chambers with an oil film as described above to increase compression efficiency, and the lubricating oil that has flowed into the drive chamber 6 is transferred to the motor chamber oil sump 23 at the bottom. After being collected, the oil is supplied to each sliding surface as described above by the centrifugal pump action of the eccentric oil hole 24 provided in the drive shaft 8.

なお、圧縮機停止後の給油通路の遮断や冷媒ガスの流れ
、冷媒ガス中の潤滑油の分離などについては上述と同様
で説明を省略する。
Note that the shutoff of the oil supply passage, the flow of refrigerant gas, the separation of lubricating oil in refrigerant gas, etc. after the compressor is stopped are the same as described above, and a description thereof will be omitted.

第8図においては、モータ7によって駆動軸8が回転駆
動されて旋回スクロールが旋回運動をし、圧縮機に接続
した冷凍サイクルから吸入冷媒ガスが吸入管22bを通
り、その終端部に設けられた逆止弁16bに抗して吸入
室33bに流入され、圧縮室内で一定の圧縮比にまで圧
縮された後、吐出室5bへ吐出され、吐出冷媒ガス中に
含まれる潤滑油の一部はその自重などによって吐出冷媒
ガスから分離して吐出室油溜18bに収集される。
In FIG. 8, a drive shaft 8 is rotationally driven by a motor 7 to cause an orbiting scroll to orbit, and suction refrigerant gas from a refrigeration cycle connected to a compressor passes through a suction pipe 22b provided at its terminal end. It flows into the suction chamber 33b against the check valve 16b, is compressed to a certain compression ratio in the compression chamber, and is then discharged to the discharge chamber 5b, where part of the lubricating oil contained in the discharged refrigerant gas is It is separated from the discharged refrigerant gas due to its own weight and collected in the discharge chamber oil sump 18b.

その後、吐出冷媒ガスは吐出冷媒ガス通路46a、ta
bを経て駆動室6bに搬送され、吐出冷媒ガス中の潤滑
油の一部は駆動室6bでも分離して底より駆動室8bの
軸心油穴48、旋回軸受51のされた後、バイパス穴5
2を通じて吸入室33bに流入して隣り合う圧縮室間隙
間を油膜で密封しロール10bを固定スクロール13b
の鏡板14b面に押圧するスラスト力を生じる。
Thereafter, the discharged refrigerant gas is discharged through the discharged refrigerant gas passages 46a, ta.
A part of the lubricating oil in the discharged refrigerant gas is also separated in the drive chamber 6b and is passed from the bottom to the shaft center oil hole 48 of the drive chamber 8b, the slewing bearing 51, and then to the bypass hole. 5
2 into the suction chamber 33b, the gap between adjacent compression chambers is sealed with an oil film, and the roll 10b is fixed to the fixed scroll 13b.
A thrust force is generated that presses against the surface of the mirror plate 14b.

また、給油通路制御弁装置17のプランジャーaOは前
述の如く圧縮機運転中に給油通路を開き、吐出室油溜1
8bの潤滑油は油吸い込み穴41b、外周溝29、油水
54を経て鏡板14bの環状油溝53に差圧給油され、
鏡板14bと旋回スクロール10bとの摺動面の潤滑に
供された後、吸入室33bに流入して隣り合う圧縮室間
の隙間の密封にも寄与する。また、圧縮機停止後は逆止
弁16bが吸入管22bを塞ぎ、圧縮室圧力は吐出室圧
力に等しくなり、前述の如くプランジャー30は給油通
路を遮断する。
Further, the plunger aO of the oil supply passage control valve device 17 opens the oil supply passage during compressor operation as described above, and the plunger aO of the oil supply passage control valve device 17 opens the oil supply passage during the compressor operation, and
The lubricating oil 8b is differentially supplied to the annular oil groove 53 of the end plate 14b through the oil suction hole 41b, the outer circumferential groove 29, and the oil/water 54,
After being used to lubricate the sliding surfaces of the end plate 14b and the orbiting scroll 10b, it flows into the suction chamber 33b and also contributes to sealing the gap between adjacent compression chambers. Further, after the compressor is stopped, the check valve 16b closes the suction pipe 22b, the compression chamber pressure becomes equal to the discharge chamber pressure, and the plunger 30 blocks the oil supply passage as described above.

第9図においては、吸入管22cを通して吸入室33c
に流入した吸入冷媒ガスは圧縮された後、吐出ポート1
5a1吐出ガス通路60.61.62.63を経て吐出
室5cに吐出され、吐出冷媒ガス中に含まれる潤滑油の
一部はその自重などによって吐出冷媒ガスから分離して
底部のモータ室油溜23cに収集され、残りの潤滑油は
吐出冷媒ガスと共に吐出管21aを通して外部の冷凍サ
イクルへ搬出される。
In FIG. 9, the suction chamber 33c is passed through the suction pipe 22c.
After being compressed, the suction refrigerant gas flowing into the discharge port 1
5a1 is discharged into the discharge chamber 5c through the discharge gas passage 60.61.62.63, and a part of the lubricating oil contained in the discharged refrigerant gas is separated from the discharged refrigerant gas due to its own weight and is stored in the motor room oil sump at the bottom. 23c, and the remaining lubricating oil is carried out to the external refrigeration cycle through the discharge pipe 21a together with the discharged refrigerant gas.

前述の如く圧縮機運転中は、給油通路制御弁装置17c
のプランジャー30が作動して給油通路を開き、モータ
室油溜23aの潤滑油は油吸い込み穴41c1外周溝2
9、油水55.56.57、駆動軸8@と軸受58との
間の微小隙間、中間圧背圧室47c、旋回軸11cと旋
回軸受51aとの間の微小隙間、油水59、バイパス穴
52cを経て漸次減圧され摺動面を潤滑しながら吸入室
33aに流入し、吸入冷媒ガスと共に再び圧縮・吐出さ
れる。なお、油水57の潤滑油の一部は駆動軸8cの外
周に設けられた螺線状の油溝のネジポンプ作用により吐
出室5cへも搬出されて軸受64の摺動面を潤滑する。
As mentioned above, during compressor operation, the oil supply passage control valve device 17c
The plunger 30 operates to open the oil supply passage, and the lubricating oil in the motor chamber oil reservoir 23a flows through the oil suction hole 41c1 and the outer circumferential groove 2.
9. Oil/water 55, 56, 57, minute gap between drive shaft 8@ and bearing 58, intermediate pressure back pressure chamber 47c, minute gap between rotating shaft 11c and rotating bearing 51a, oil/water 59, bypass hole 52c The refrigerant gas is gradually depressurized and flows into the suction chamber 33a while lubricating the sliding surfaces, and is again compressed and discharged together with the suction refrigerant gas. A portion of the lubricating oil in the oil water 57 is also carried out to the discharge chamber 5c by the screw pump action of a spiral oil groove provided on the outer periphery of the drive shaft 8c, and lubricates the sliding surface of the bearing 64.

また、前述の如く圧縮機停止後は、プランジャー30が
給油通路を遮断する。
Further, as described above, after the compressor is stopped, the plunger 30 blocks the oil supply passage.

第10図においては、圧縮機運転中に吐出室油溜18の
潤滑油が不足した場合には、高温で粘性の少ない圧縮冷
媒ガスが給油通路(油吸い込み穴41d1外周溝29、
インジェクション通路68、インジェクション穴40d
)を経て圧縮室839に多量流入し、圧縮冷媒ガスの圧
力や温度を異常上昇せしめる。この結果、鏡板14dの
内部に装着された形状記憶合金材質から成るコイルバネ
38は圧縮室A36、圧縮室839、吐出室5か等の直
接的伝熱によって早急に設定温度(例えば130°C)
を超えて付勢力が増大しプランジャー30を後退せしめ
て給油通路を遮断する。
In FIG. 10, when the lubricating oil in the discharge chamber oil sump 18 runs out during compressor operation, high temperature and low viscosity compressed refrigerant gas is transferred to the oil supply passage (oil suction hole 41d1 outer circumferential groove 29,
Injection passage 68, injection hole 40d
) and flows into the compression chamber 839 in large quantities, causing the pressure and temperature of the compressed refrigerant gas to rise abnormally. As a result, the coil spring 38 made of a shape memory alloy material mounted inside the end plate 14d quickly reaches the set temperature (for example, 130°C) by direct heat transfer between the compression chamber A36, the compression chamber 839, the discharge chamber 5, etc.
The biasing force increases beyond this point, causing the plunger 30 to retreat and cutting off the oil supply passage.

また、吐出室油溜18に潤滑油が充分にあり、通常の圧
縮機運転中や停止後の給油通路の開閉については上述の
通りである。
Further, there is sufficient lubricating oil in the discharge chamber oil reservoir 18, and the opening and closing of the oil supply passage during normal compressor operation and after stopping is as described above.

第11〜第16図においては、圧縮機に接続する冷凍サ
イクルから吸入冷媒ガスが吸入管22を通して駆動室6
に流入し吐出室5、吐出管21を経て再び冷凍サイクル
へ搬出される過程およびモータ室油溜23の潤滑油の流
れ過程は第1図と同様であるが、給油通路制御弁装置1
7eの動作が前述の内容と異なる。すなわち、吐出室油
溜18に充分な潤滑油が存在した圧縮機運転中は、吐出
室5に連通せず吐出ポート15に最も近い側の圧縮室A
36の圧力導入穴開口部圧力42は第16図に示すよう
に大きく変化するが、極細の圧力導入穴35を介して導
入した背圧室Aの圧力43はその変化が少なくてインジ
ェクション穴開口部の圧縮室日の圧力42aの最大値よ
りも大きいので吸入室3aに通じる背圧室B31の圧力
よりも安定して大きい。このため、プランジャー30が
コイルバネA3Bmの付勢力に抗して前進しコイルバネ
B58bにも付勢力を与える。しかし、コイルバ*B5
8bの付勢力が大きいのでプランジャー30は第12図
に示す位置で停止して給油通路が開かれ、吐出室油溜1
8の潤滑油は油吸い込み穴41、外周溝29、インジェ
クション穴40 e(またはインジェクション管40m
)、インジェクション穴40を経て漸次減圧されて圧縮
室B39に流入し、上述の如く潤滑油の効果を生じて圧
縮冷媒ガスと共に吐出室5へ吐出される。また、万一、
圧縮機運転中に冷凍サイクル配管系の詰まり現象などに
よって圧縮機内への潤滑油帰還が無く吐出室油溜18の
潤滑油が不足して給油通路を経て高温で粘性の小さい吐
出冷媒ガスが圧縮室日39に多量流入した場合は、第1
5図に示すように圧縮室の圧力が点線70のように異常
上昇し、第16図に示すように圧力導入穴開口部の圧縮
室Aの圧カフ2もその平均圧力が高くなる。この結果、
プランジャー30はコイルバネB 38 bの付勢力に
抗して前進し第14図に示す位置で停止し給油通路を遮
断する。また、圧縮機停止後は前述の如くプランジャー
30が第13図に示す位置に後退して給油通路を遮断す
る。
11 to 16, suction refrigerant gas is passed through the suction pipe 22 from the refrigeration cycle connected to the compressor into the drive chamber 6.
The process of the lubricating oil flowing into the refrigeration cycle through the discharge chamber 5 and the discharge pipe 21 and the flow process of the lubricating oil in the motor chamber oil sump 23 are the same as those shown in FIG.
The operation of 7e is different from the above description. That is, during compressor operation when there is sufficient lubricating oil in the discharge chamber oil sump 18, the compression chamber A closest to the discharge port 15 does not communicate with the discharge chamber 5.
The pressure 42 at the opening of the pressure introduction hole 36 changes greatly as shown in FIG. Since it is larger than the maximum value of the pressure 42a in the compression chamber 3a, it is stably larger than the pressure in the back pressure chamber B31 communicating with the suction chamber 3a. Therefore, the plunger 30 moves forward against the biasing force of the coil spring A3Bm, and also applies a biasing force to the coil spring B58b. However, the coil bar*B5
8b is large, the plunger 30 stops at the position shown in FIG. 12, the oil supply passage is opened, and the oil sump 1 in the discharge chamber is opened.
The lubricating oil No. 8 is supplied to the oil suction hole 41, the outer circumferential groove 29, the injection hole 40e (or the injection pipe 40m
), the pressure is gradually reduced through the injection hole 40, and the refrigerant flows into the compression chamber B39, produces the effect of lubricating oil as described above, and is discharged into the discharge chamber 5 together with the compressed refrigerant gas. Also, in the unlikely event that
During compressor operation, lubricating oil is not returned to the compressor due to a clogging phenomenon in the refrigeration cycle piping system, and the lubricating oil in the oil sump 18 in the discharge chamber is insufficient, and the discharged refrigerant gas with high temperature and low viscosity flows through the oil supply passage into the compression chamber. If there is a large inflow on the 39th, the first
As shown in FIG. 5, the pressure in the compression chamber increases abnormally as indicated by the dotted line 70, and as shown in FIG. 16, the average pressure of the pressure cuff 2 in the compression chamber A at the opening of the pressure introduction hole also increases. As a result,
The plunger 30 moves forward against the biasing force of the coil spring B38b and stops at the position shown in FIG. 14, thereby blocking the oil supply passage. Further, after the compressor is stopped, the plunger 30 retreats to the position shown in FIG. 13 to block the oil supply passage as described above.

第17図においては、圧縮機が運転され圧縮室A36に
通じる背圧室A34fが圧力上昇し、吸入室33に通じ
る背圧室B51fと背圧室A34 fとの差圧によって
ダイヤフラム80が変形してその中央部はプランジャー
30fの先端を押圧し、コイルバネ38fの付勢力に抗
して鋼球84を移動させ、吐出室油溜18から圧縮室8
39までの給油通路(油吸い込み穴41、弁穴83、シ
リンダ28f、小穴85、外周溝29、インジェクショ
ン穴40.40f)が開き、潤滑油が差圧給油される。
In FIG. 17, when the compressor is operated, the pressure in the back pressure chamber A34f communicating with the compression chamber A36 increases, and the diaphragm 80 is deformed due to the differential pressure between the back pressure chamber B51f communicating with the suction chamber 33 and the back pressure chamber A34f. The center part of the lever presses the tip of the plunger 30f, moves the steel ball 84 against the urging force of the coil spring 38f, and moves the steel ball 84 from the discharge chamber oil sump 18 to the compression chamber 8.
The oil supply passages up to 39 (oil suction hole 41, valve hole 83, cylinder 28f, small hole 85, outer peripheral groove 29, injection hole 40, 40f) are opened, and lubricating oil is supplied under differential pressure.

圧縮機停止後は上述の実施例と同様に、コイルバネ38
fの付勢力によってプランジャー30fを介してダイヤ
フラム80は80mの位置まで復帰し、鋼球84がシリ
ンダ28fの弁穴83開口端部を塞ぎ給油通路を遮断す
る。
After the compressor is stopped, the coil spring 38
The diaphragm 80 is returned to a position of 80 m by the urging force of f, and the steel ball 84 closes the open end of the valve hole 83 of the cylinder 28f, blocking the oil supply passage.

以上のように上記実施例によれば吐出室油溜18の底部
と吸入室33にも吐出室5にも通せず吸入室33に近い
側の圧縮室B59(または吸入通路に通じる駆動室6、
または駆動軸8を支承するフレーム3の軸受49.50
の隙間部や軸受49と軸受50との間に設けられた軸受
油溜44、または固定スクロール13の鏡板14と旋回
スクロール10との摺動面部の環状油溝53)との間を
油吸い込み穴41、外周溝29、インジェクション穴4
0で形成される給油通路により連通させ、給油通路の途
中には給油通路を開閉するプランジャー30(または鋼
球84)とプランジャー30(または鋼球84)を制御
するアクチェータとで構成される給油通路制御弁装置1
7を設け、そのアクチェータにはプランジャー30(ま
たはダイヤフラム80)とプランジャー30(またはダ
イヤフラム80)の両側に配置した背圧室A34(また
は34f)および背圧室B51(または31f)を設け
、背圧室A34(または34f)は吐出室5にも吸入室
33にも連通しない圧縮室A36(第1圧縮室とする)
に通じ、背圧室B51(または31?)は吸入室33に
通じ、背圧室A34(または34f)と背圧室831(
または31f)との間の差圧によりプランジャー30(
tたはダイヤフラム80)が前進して油吸い込み穴41
とプランジャー30の外周溝29とインジェクション穴
40との間(または弁穴83とシリンダ28fとインジ
ェクション穴40fとの間)を連通し、背圧家人34(
または34f)と背圧室B51(または31f)との間
の差圧の無い場合にプランジャー30の自重(またはコ
イルバネ38fの付勢力と油吸い込み穴41の潤滑油圧
力)によってプランジャー30(またはダイヤフラム8
0)が後退して開閉通路を閉じる給油通路制御弁装置1
7を備えることにより、冷媒ガスの圧縮比が一定なため
に圧縮室A36の圧力は吐出室5の圧力に影響されずに
吸入室33の圧力の一定倍率の圧力まで確実に上昇し、
プランジャー30(またはダイヤフラム80)が差圧力
によって前進して圧縮機起動直後から給油通路を開き、
吐出室油溜18の潤滑油を圧縮初期行程から圧縮室B3
9へ油インジエクショ、ンさせて隣接する圧縮室間の隙
間を油膜で密封して、圧縮機起動初期から圧縮効率を高
めると共に圧縮冷媒ガスの異常温度上昇を防ぎ耐久性を
向上できる。また、圧縮室への油インジェクションによ
りスクロール部の加工寸法精度を適性化して圧縮機コス
トの低、減が図れる。
As described above, according to the above embodiment, the bottom of the discharge chamber oil sump 18 and the compression chamber B59 (or the drive chamber 6 which communicates with the suction passage) which is not connected to the suction chamber 33 or the discharge chamber 5 but is close to the suction chamber 33,
Or the bearing 49.50 of the frame 3 that supports the drive shaft 8
An oil suction hole is formed between the gap between the bearing oil reservoir 44 provided between the bearing 49 and the bearing 50, or the annular oil groove 53 on the sliding surface between the end plate 14 of the fixed scroll 13 and the orbiting scroll 10. 41, outer circumferential groove 29, injection hole 4
A plunger 30 (or steel ball 84) that opens and closes the oil supply passage and an actuator that controls the plunger 30 (or steel ball 84) are connected in the middle of the oil supply passage. Oil supply passage control valve device 1
7, and the actuator is provided with a plunger 30 (or diaphragm 80) and a back pressure chamber A34 (or 34f) and a back pressure chamber B51 (or 31f) arranged on both sides of the plunger 30 (or diaphragm 80), The back pressure chamber A34 (or 34f) is a compression chamber A36 (referred to as the first compression chamber) that does not communicate with either the discharge chamber 5 or the suction chamber 33.
The back pressure chamber B51 (or 31?) communicates with the suction chamber 33, and the back pressure chamber A34 (or 34f) and the back pressure chamber 831 (
or 31f) due to the differential pressure between the plunger 30(
t or diaphragm 80) moves forward to open the oil suction hole 41.
and the outer circumferential groove 29 of the plunger 30 and the injection hole 40 (or between the valve hole 83, the cylinder 28f, and the injection hole 40f) are communicated, and the back pressure member 34 (
or 34f) and the back pressure chamber B51 (or 31f), the plunger 30 (or diaphragm 8
0) retreats to close the opening/closing passage
7, since the compression ratio of the refrigerant gas is constant, the pressure in the compression chamber A36 is not affected by the pressure in the discharge chamber 5 and is reliably increased to a pressure that is a constant multiple of the pressure in the suction chamber 33.
The plunger 30 (or diaphragm 80) moves forward due to the differential pressure and opens the oil supply passage immediately after starting the compressor.
The lubricating oil in the discharge chamber oil reservoir 18 is transferred from the initial compression stroke to the compression chamber B3.
9 to seal the gap between adjacent compression chambers with an oil film, it is possible to increase compression efficiency from the initial stage of compressor startup, prevent abnormal temperature rise of compressed refrigerant gas, and improve durability. In addition, by injecting oil into the compression chamber, the machining dimensional accuracy of the scroll portion can be optimized and the cost of the compressor can be reduced.

また、圧縮機停止後は吸入室33と圧縮室A36との差
圧が無(なりコイルバネ38(またはコイルバネ38f
の付勢力と油吸い込み穴41の潤滑油圧力)によってプ
ランジャー30(または鋼球84)が後退して給油通路
が遮断されるので、吐出室油溜18から圧縮室839へ
の無駄な潤滑油流入を防止して、冷却効果や隙間密封効
果を有する潤滑油の有効利用により摺動面の耐久性や圧
縮効率の向上、圧縮機再起動時の油圧縮による圧縮機破
損防止を図ることも出来る。
In addition, after the compressor is stopped, there is no differential pressure between the suction chamber 33 and the compression chamber A36 (the coil spring 38 (or coil spring 38f)
and the lubricating oil pressure in the oil suction hole 41), the plunger 30 (or steel ball 84) retreats and the oil supply passage is cut off, thereby preventing wasted lubricating oil from flowing from the discharge chamber oil sump 18 to the compression chamber 839. By preventing inflow and effectively using lubricating oil, which has a cooling effect and gap sealing effect, it is possible to improve the durability of sliding surfaces and compression efficiency, and prevent compressor damage due to oil compression when restarting the compressor. .

また、上記実施例によればアクチェータを構成するプラ
ンジャー30が給油通路の開閉弁を兼ねることにより、
給油通路の開閉弁機構が簡単で省スペースなため安価で
使用場所制限の少ない給油通路の制御装置を提供でき、
圧縮機の小型化やコスト低減が出来る。
Further, according to the above embodiment, the plunger 30 constituting the actuator also serves as an on-off valve for the oil supply passage.
The opening/closing valve mechanism for the refueling passage is simple and space-saving, making it possible to provide a control device for the refueling passage that is inexpensive and has fewer restrictions on where it can be used.
Compressor size and cost can be reduced.

また、上記実施例によれば背圧室A34fと背圧室83
1fとの間に挟まれた薄箔状のダイヤフラム80の周囲
を背圧室A34fや背圧室B51fの外壁と共に密封固
定したことにより、高圧側の背圧室A34fから低圧側
の背圧室B51fへの冷媒ガスの漏洩が無く、圧縮室A
36と吸入室B33との間の僅かな圧力差でもプランジ
ャー30fを前進させて弁穴83を開通させて吐出室油
溜18の潤滑油を圧縮室839にインジェクションでき
るので圧縮比の小さいスクロール気体圧縮機でも上述の
ように圧縮機運転状態に応じた給油通路の開閉制御が出
来る。
Further, according to the above embodiment, the back pressure chamber A34f and the back pressure chamber 83
By sealing and fixing the periphery of the thin foil diaphragm 80 sandwiched between the back pressure chamber A34f and the outer wall of the back pressure chamber B51f, the back pressure chamber A34f on the high pressure side is connected to the back pressure chamber B51f on the low pressure side. There is no leakage of refrigerant gas to compression chamber A.
36 and the suction chamber B33, the plunger 30f is advanced to open the valve hole 83, and the lubricating oil in the discharge chamber oil sump 18 can be injected into the compression chamber 839. In the compressor as well, the opening and closing of the oil supply passage can be controlled according to the operating state of the compressor, as described above.

また、ダイヤフラム80は、背圧室A34fと背圧室B
51fとの間の差圧が設定値をこえれば背圧室臼31f
の方へ反り、差圧の無い場合にはコイルバネ38fの付
勢力と油吸い込み穴41の潤滑油圧力の付勢力とで背圧
室A34fの方へ反るトラブル変形バネ特性を備えるこ
とにより、吸入室33と圧縮室A36との間に差圧脈動
のある場合でもダイヤフラムの変形が安定しており、給
油通路を開閉する鋼球84にチャタリング現象が生じな
いので安定した給油通路の開閉が出来、摺動部の耐久性
や圧縮効率の安定化を図ることが出来る。
Further, the diaphragm 80 has a back pressure chamber A34f and a back pressure chamber B.
If the differential pressure between 51f and 51f exceeds the set value, the back pressure chamber mill 31f
By providing a trouble deformation spring characteristic that warps toward the back pressure chamber A34f due to the biasing force of the coil spring 38f and the biasing force of the lubricating oil pressure in the oil suction hole 41 when there is no differential pressure, the suction Even when there is differential pressure pulsation between the chamber 33 and the compression chamber A36, the deformation of the diaphragm is stable, and no chattering phenomenon occurs in the steel ball 84 that opens and closes the oil supply passage, so the oil supply passage can be opened and closed stably. The durability of the sliding part and the compression efficiency can be stabilized.

なお、上記実施例では冷媒圧縮機について動作を説明し
たが、潤滑油を使用する酸素、窒素、ヘリウムなどの他
の気体圧縮機の場合も同様の作用効果を期待できる。
Although the operation of the refrigerant compressor has been described in the above embodiment, similar effects can be expected in the case of compressors of other gases such as oxygen, nitrogen, and helium that use lubricating oil.

また、上記実施例ではインジェクション管40暑を用い
てプランジャー30の外周溝29と圧縮室A36とを連
通したが、インジェクション管40mの代わりに鏡板1
4にその通路を設けてもよい。
Further, in the above embodiment, the injection pipe 40m was used to communicate the outer circumferential groove 29 of the plunger 30 and the compression chamber A36, but the end plate 1 was used instead of the injection pipe 40m.
4 may be provided with the passage.

また、上記実施例では背圧室831と吸入室33とを連
通したが、プランジャー30の外周隙間やフィルバネ3
8の付勢力などを適切に選定することにより、吸入室3
3に通じる圧縮室(第2圧縮室とする)と背圧室臼31
とを連通して差圧を少なくしプランジャー30を作動さ
せてもよい。また、第8図では給油通路の最上流を吐出
室油溜18bとしたが、中間圧背圧室47を給油通路の
最上流としてもよい。
Further, in the above embodiment, the back pressure chamber 831 and the suction chamber 33 are communicated with each other, but the outer peripheral gap of the plunger 30 and the fill spring 3
By appropriately selecting the biasing force of 8, etc., the suction chamber 3
3 (referred to as the second compression chamber) and back pressure chamber mortar 31
The plunger 30 may be actuated by communicating with the cylinder to reduce the differential pressure. Further, in FIG. 8, the most upstream side of the oil supply passage is set as the discharge chamber oil reservoir 18b, but the intermediate pressure back pressure chamber 47 may be placed at the most upstream side of the oil supply passage.

また、上記実施例に限定せず給油通路の上流を適当に選
択してもよい。
Moreover, the upstream side of the oil supply passage may be appropriately selected without being limited to the above embodiment.

また、上記実施例ではプランジャー30の外周部に特別
なシール部材を設けていないが、例えばテフロン製のピ
ストンリングやテフロン被膜を施して滑りを良くしたゴ
ム製のオーリングなどを使用してプランジャ−30外局
部からの軸方向漏れを少なくしてもよい。
Further, in the above embodiment, no special sealing member is provided on the outer circumference of the plunger 30, but a piston ring made of Teflon or a rubber O-ring coated with Teflon to improve slippage may be used to seal the plunger 30. -30 Axial leakage from the external part may be reduced.

発明の効果 以上のように本発明は、油溜まり部とその油溜まり部よ
りも圧力の低い空間とを給油通路により連通させ、給油
通路の途中には給油通路を開閉する開閉弁とその開閉弁
を制御するアクチェータとで構成される給油通路制御弁
装置を設け、アクチェータには弁体とその弁体の両側に
配置した背圧室Aおよび背圧室Bを設け、背圧室Aは吐
出室にも吸入室にも連通しない第1圧縮室に通じ、背圧
室Bは吸入室に通じる第2圧縮室または吸入室またはこ
れに通じる吸入側に通じ、背圧室Aと背圧室臼との間の
差圧により弁体が前進して開閉弁を開き、差圧の無い場
合に弁体の自重またはバネ装置の付勢力などによって弁
体が後退して開閉弁を閉じる給油通路制御弁装置を備え
ることにより、気体の圧縮比が一定なために第1圧縮室
の圧力は吐出室の圧力に影響されずに吸入室の圧力の一
定倍率の圧力まで確実に上昇し、第1圧縮室に通じる背
圧室Aと第2圧縮室(または吸入室またはこれに通じる
吸入側)に通じる背圧室臼との間の差圧力によってアク
チェータの弁体が前進して開閉弁を開き、これによって
圧縮機起動直後から給油通路が開いて油溜まり部からそ
れよりも圧力の低い空間(例えば給油装置のある油溜、
軸受油溜、軸受隙間、圧縮空間など)に潤滑油が差圧給
油され、冷却効果、微小隙間の密封効果、油膜形成によ
る摺動抵抗低減効果や緩衝効果などによって、圧縮機起
動初期から圧縮空間の圧縮気体漏れを少なくして圧縮効
率を高めると共に圧縮気体や摺動面部などの異常温度上
昇を防いで耐久性を向上し、スクロール部の加工寸法精
度を適正化して圧縮機コストの低減を図ることもできる
Effects of the Invention As described above, the present invention connects an oil reservoir and a space with a lower pressure than the oil reservoir through an oil supply passage, and includes an on-off valve and an on-off valve for opening and closing the oil supply passage in the middle of the oil supply passage. The actuator is provided with a valve body and a back pressure chamber A and a back pressure chamber B arranged on both sides of the valve body, and the back pressure chamber A is connected to a discharge chamber. The back pressure chamber B communicates with the second compression chamber or the suction chamber which communicates with the suction chamber or the suction side that communicates with this, and the back pressure chamber A and the back pressure chamber mill communicate with each other. A fuel supply passage control valve device in which the valve body advances due to the differential pressure between the two and opens the on-off valve, and when there is no pressure difference, the valve body moves back due to the weight of the valve body or the biasing force of a spring device to close the on-off valve. Since the compression ratio of the gas is constant, the pressure in the first compression chamber is not affected by the pressure in the discharge chamber and is reliably increased to a pressure that is a constant multiple of the pressure in the suction chamber. The differential pressure between the back pressure chamber A that communicates with the back pressure chamber A that communicates with the second compression chamber (or the suction chamber or the suction side that communicates with this) causes the valve body of the actuator to move forward and open the on-off valve, thereby causing the compression Immediately after the machine is started, the refueling passage opens and moves from the oil reservoir to a space with lower pressure (for example, an oil reservoir with a refueling device,
Lubricating oil is supplied under differential pressure to the bearing oil sump, bearing gap, compression space, etc.), and has a cooling effect, a sealing effect on minute gaps, a sliding resistance reduction effect due to oil film formation, a buffering effect, etc., and the compression space is maintained from the beginning of the compressor startup. In addition to increasing compression efficiency by reducing leakage of compressed gas, it also prevents abnormal temperature rises in the compressed gas and sliding surfaces, improving durability, and reducing compressor costs by optimizing the machining dimensional accuracy of the scroll part. You can also do that.

また、圧縮機停止後は第1圧縮室と第2圧縮室(または
吸入室またはこれに通じる吸入側)とが同じ圧力になり
、背圧室Aと背圧室日との差圧が無くなり弁体の自重や
バネ装置の付勢力などによって弁体が後退して開閉弁を
閉じて給油通路が遮断されるので、油溜まり部からの他
の空間(例えば圧縮空間や給油装置を有する油溜など)
への無駄な潤滑油流入を防止して圧縮機再起動後の給油
不足や油圧縮を無くして耐久性を向上できる。また、潤
滑油の有効利用により上述の圧縮機運転中の効果を一層
高めることも出来る。
In addition, after the compressor is stopped, the pressure in the first compression chamber and the second compression chamber (or the suction chamber or the suction side leading to it) becomes the same, and the pressure difference between the back pressure chamber A and the back pressure chamber disappears, and the valve The valve body retreats due to the weight of the body or the biasing force of the spring device, closing the on-off valve and cutting off the oil supply passage. )
By preventing unnecessary lubricating oil from flowing into the compressor, it is possible to improve durability by eliminating insufficient oil supply and oil compression after restarting the compressor. Further, by effectively utilizing lubricating oil, the above-mentioned effects during compressor operation can be further enhanced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における密閉型スクロー
ル冷媒圧縮機の縦断面図、第2図、第3図は第1図にお
ける給油通路制御弁装置の動作を説明する要部縦断面図
、第4図は第1図のA−A説明図、第6図、第16図は
圧縮室の定点における圧力変化などの比較説明図、第7
図、第8図、第9図、第11図は本発明のそれぞれ異な
る別の実施例の密閉型スクロール冷媒圧縮機の縦断面図
、第10図は本発明の別の実施例のスクロール型冷媒圧
縮機の部分断面図、第12図、第13図、第14図、第
17図は本発明の別の実施例における給油通路制御弁装
置の動作説明部分断面図、第18図、第19図、第20
図、第21図はそれぞれ異なる従来のスクロール型気体
圧縮機の縦断面図および部分断面図、第22図は従来の
給油通路制御装置を備えたロータリ型気体圧縮機の縦断
面図、第23図は第22図のA−A線における縦断面図
である。 1.2・・・・・・密閉ケース、5・・・・・・吐出室
、6・・・・・・駆動室、7・・・・・・モータ、10
・・・・・・旋回スクロール、13・・・・・・固定ス
クロール、15・・・・・・吐出ボート、17・・・・
・・給油通路制御弁装置、18・川・・吐出室油溜、2
3・・・・・・モータ室油溜、3o・・・・・・プラン
ジャー、31・・・・・・背圧室B、33・・・・・・
吸入室、34・・・・・・背圧室A136・・・・・・
圧縮室A138・山・・フィルバネ、39・川・・圧縮
室臼、40・・・・・・インジェクション穴、41・・
・・・・油吸い込み穴、44・・・・・・軸受油溜、4
7・・・・・・中間圧背圧室、8o・・・・・・ダイヤ
フラム、84・・・・・・鋼球。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 12−一一名煽ケース 3−m−フレーム 4−−−−’r’@p豐ビート 5−−一吐出菫 6−m−駆動! 7−−−モータ 3−一一駆勃駒 q−−一高IC欠 10−−一刻スクロー〕し 11−一一隻回輛 /4−−−一鍮板 15−−−TI上社しF−ト 20−一一フ(ルクー 21−−一吐昌育 2?−一一販N管 23−−−モータ室Z1溜 24−−−@IU油穴 油水−−一販X! 10−−−刀6免スクv−)し 13−m−同定7クロール !5−−−ミボート 33−−− Tl災N室 35−−一凪力暮入欠 36−−−圧」箔NA 3q−−一匠l箔’NB 句久−−−インうiりうタン管 ・35 第5図 圧 カ (緊 耶劾伯回収色友(r鉱) 泉動軸回牡角嵐(「綴) 5−−一吐出1    矩−一一貨工!A/、M−−一
同定スクロール  35改−−−正力暮\只29−−一
タドア”l 清”−−一環めジしりネジ30−一−ブラ
)う−−67−−〜ガスケヲト押え32改−一一刀゛ス
去      63−−−インジ薔クシタン1■答33
−−−吸入! 第10図 第8図 tb2b−−−”aシ罠グー人 3b−m−フレーム キーーー吉日贅ビード 5b−m−吐出! 6b−−一駆q@菫 7−−−モータ 3b−−一駆vJ柚 tab−一一友ン2回スクロー)し /3b−−一同定スク゛q−ンレ 14b−−一鏡1反 21 b−一一吐巴篭 22b−一一販X含 ?ab−−−七一夕室淘)妬 33b・−吸入室 4tb−−一油耶ヤ9p反 も−−−)主司]又 茫久6b−−−吐出力久違[各 47−−−中閲圧肯五室 4g−−一軸曳遍穴 49.5)−−一齢「役 Sl−一一後岩壓1受 52−−−バ1ベス穴 53−−一環:l又油噴 54−−一らi完、 /C−一一宅団ケミ入 30−−−フレーム 5C−一一釦3込ヤー 7−一−モーク 8C−一一駆′#柚 100−一一支回スクq−ル /IC−m−旋回軸 /3G−−−1i僧ζ又りm−ル 15C−−−TLt巴ポート 22C,−−一販入育  、 23G−−−)白滝 26C−−一杢、1杢、ケース ?デーーーP:l易ル青 30−一一プラン込− ,33c/−一一眼入望 41CP−油嬰之り穴 、S5父57−−−)匂穴 、53舛−一一駒受 、5q−−−うfB穴 60.6/6263−−− ui”ers ’jy”ス
’L5−−−惜糞 12・・・急閲矢ス lθ−−一膨Q目スクロづし   34−−一肯圧lA
/、3−1司j−スクq−ル   35−−一王力孕シ
λ3スl+−−−娩級     36−−−E:倫皇A
lδ−−−底巴lシーが協   33久−−−コイ)レ
ノ〈ネA25−−−力゛スケット     3δb−−
−コイルバネ826e−−一杢、1本ケース     
3’?−−−91楠5iLB28e−−−シリンダ′ 
    句−一−イン去りション穴29−−−外肩シー
     板+Q−−−インtりtら菅30−−−フ゛
ラン込−40e−−−インう−りうヨン欠32−−−7
)’ ス欠41−−− ”tf53 隻uN与立、33
−m−吸入! 第12図 駐剪駒@転負蔑(r綴) 享@鉤回転角簾(「a) 第18図 第19図 第22図 ハ 第23図
FIG. 1 is a vertical cross-sectional view of a hermetic scroll refrigerant compressor according to a first embodiment of the present invention, and FIGS. 2 and 3 are longitudinal cross-sectional views of main parts illustrating the operation of the oil supply passage control valve device in FIG. 1. Figure 4 is an A-A explanatory diagram of Figure 1, Figures 6 and 16 are comparative illustrations of pressure changes at fixed points in the compression chamber, and Figure 7 is an explanatory diagram of pressure changes at fixed points in the compression chamber.
8, 9, and 11 are vertical sectional views of hermetic scroll refrigerant compressors according to different embodiments of the present invention, and FIG. 10 is longitudinal sectional views of hermetic scroll refrigerant compressors according to other embodiments of the present invention. A partial sectional view of the compressor, FIGS. 12, 13, 14, and 17 are partial sectional views explaining the operation of the oil supply passage control valve device in another embodiment of the present invention, and FIGS. 18 and 19. , 20th
Fig. 21 is a vertical sectional view and a partial sectional view of different conventional scroll type gas compressors, respectively, Fig. 22 is a longitudinal sectional view of a rotary type gas compressor equipped with a conventional oil supply passage control device, and Fig. 23 22 is a vertical cross-sectional view taken along line A-A in FIG. 22. 1.2... Sealed case, 5... Discharge chamber, 6... Drive chamber, 7... Motor, 10
...Orbiting scroll, 13...Fixed scroll, 15...Discharge boat, 17...
・・Oil supply passage control valve device, 18・・・・Discharge chamber oil sump, 2
3...Motor room oil sump, 3o...Plunger, 31...Back pressure chamber B, 33...
Suction chamber, 34... Back pressure chamber A136...
Compression chamber A138・mountain・fill spring, 39・river・compression chamber mortar, 40・・・・injection hole, 41・・
...Oil suction hole, 44 ...Bearing oil sump, 4
7...Intermediate pressure back pressure chamber, 8o...Diaphragm, 84...Steel ball. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 12 - 1 person fan case 3 - m - frame 4 ----'r'@p 豐beat 5 - 1 discharge violet 6 - m - drive! 7----Motor 3-11 drive erection piece q--1 high IC missing 10--1 moment scroll] 11-11 ship rotation/4---1 brass plate 15---TI upper company F -To 20-11F (Leku 21--Ichito Changiku 2?-Ichibe N pipe 23--Motor chamber Z1 reservoir 24--@IU oil hole oil water--Ichibe X! 10-- -Katana 6men skv-) and 13-m-Identification 7 crawl! 5---Miboto 33---Tl disaster N room 35---Ichikagi power input missing 36---pressure foil NA 3q---Issho l foil'NB Kuku---in Ui Riutan tube・35 Figure 5 Pressure force (Kinya Gaihaku recovery color friend (R ore) Sendo axis rotation Oyakuran ("Tsuzuri") 5--1 discharge 1 Rectangle-11 cargo work! A/, M--1 Identification scroll 35th revision --- Shorikigure \ only 29 -- one door "l Kiyoshi" -- one internal screw 30-one bra) U--67 --- Gasket holder 32 modification -- one sword 63 --- Inji Bara Kushitan 1 ■ Answer 33
---Inhalation! Fig. 10 Fig. 8 tb2b---"a trap goo person 3b-m-frame key-auspicious day bead 5b-m-discharge! 6b--Ikkoku q @ Sumire 7---Motor 3b--Ikkke vJ Yuzu tab - 11 friend 2 scrolls) / 3b - 1 identification screen 14 b - 1 mirror 1 anti 21 b - 11 tomoe 22 b - 11 sale X included?ab---7 Ichiyushiro ta) Envy 33b - Inhalation chamber 4tb - Ichiyayaya 9p antimo ---) Shuji] Also Ikuyaku 6b --- Discharge power long difference [Each 47 --- Chubu pressure affirmation 5 chambers 4g--One-axis Hikiben hole 49.5)--1st age "Yaku Sl-11th Iwatsu 1 holder 52--B 1 Beth hole 53--Part: 1 oil spout 54--1 ra i completion , /C-Ichiyaku Dan Chemi-iri 30---Frame 5C-Ichiyakubutton 3 included Yer 7-I-Moke 8C-Ichiyuki'#Yuzu 100-Ichiichi branch scale/IC-m - Swivel axis / 3G - - 1i monk ζ Matari m - le 15C - - TLt Tomoe port 22C, - Issei Iku, 23G - -) Shirataki 26C - 1 heather, 1 heather, case? P: 11 blue 30-11 plan included-, 33c/-11-lens observation 41CP-Abura-no-ri-ana, S5 father 57--) Io-ana, 53 masu-11 piece receiving, 5q- --UfB hole 60.6/6263--- ui"ers 'jy"S'L5---Regrettable 12...Quick review arrow lθ--One roll Q eye scroll 34--One consent Pressure lA
/, 3-1 Tsukasa J-Scq-ru 35--Ichiou Rikishi λ3 Sl+---Childbirth class 36----E: Rinno A
lδ --- Bottom tomoe l sea cooperation 33ku --- Koi) Reno A25 --- Power Sket 3δb --
-Coil spring 826e--One heather, one case
3'? ---91 Kusunoki 5iLB28e---Cylinder'
Clause - 1 - Inner hole 29 - - Outer shoulder seam plate + Q - - Inner hole 30 - - Fillet included - 40e - - Inner groove missing 32 - - 7
)' Suspension 41 --- "tf53 ship uN, 33
-m- Inhalation! Fig. 12 Parking piece @ den contempt (r spelling) Kyou @ hook rotation kakuren ('a) Fig. 18 Fig. 19 Fig. 22 Fig. 23

Claims (4)

【特許請求の範囲】[Claims] (1) 固定スクロールに対して旋回スクロールを揺動
回転自在に噛み合わせ、両スクロール間に渦巻き形の圧
縮空間を形成し、前記圧縮空間は吸入側より吐出側に向
けて連続移行する複数個の圧縮室に区画されて流体を圧
縮するスクロール式圧縮機構を形成し、油溜まり部と前
記油溜まり部よりも圧力の低い空間とを給油通路により
連通させ、前記給油通路の途中には前記給油通路を開閉
する開閉弁と前記開閉弁を制御するアクチェータとで構
成される給油通路制御弁装置を設け、前記アクチェータ
には弁体と前記弁体の両側に配置した背圧室Aおよび背
圧室Bを設け、前記背圧室Aは吐出室にも吸入室にも連
通しない第1圧縮室に通じ、前記背圧室Bは吸入室に通
じる第2圧縮室または吸入室またはこれに通じる吸入側
に通じ、前記背圧室Aと前記背圧室Bとの間の差圧によ
り前記弁体が前進して前記開閉弁を開き、前記差圧の無
い場合に前記弁体の自重またはバネ装置の付勢力によっ
て前記弁体が後退して前記開閉弁を閉じる給油通路制御
弁装置を備えたスクロール気体圧縮機。
(1) An orbiting scroll is engaged with a fixed scroll so as to be able to swing and rotate freely, and a spiral-shaped compression space is formed between both scrolls. A scroll-type compression mechanism is formed that is divided into compression chambers and compresses fluid, and an oil reservoir portion is communicated with a space having a lower pressure than the oil reservoir portion through an oil supply passage, and the oil supply passage is provided in the middle of the oil supply passage. A refueling passage control valve device is provided that includes an on-off valve that opens and closes and an actuator that controls the on-off valve, and the actuator has a valve body and back pressure chambers A and B placed on both sides of the valve body. The back pressure chamber A communicates with a first compression chamber that does not communicate with either the discharge chamber or the suction chamber, and the back pressure chamber B communicates with a second compression chamber or suction chamber that communicates with the suction chamber or the suction side that communicates with this. The pressure difference between the back pressure chamber A and the back pressure chamber B causes the valve body to move forward and open the on-off valve. A scroll gas compressor comprising an oil supply passage control valve device in which the valve body is moved back by force to close the on-off valve.
(2) 弁体が開閉弁を兼ねた特許請求の範囲第1項記
載のスクロール気体圧縮機。
(2) The scroll gas compressor according to claim 1, wherein the valve body also serves as an on-off valve.
(3) 弁体がその周囲を密封固定されたダイヤフラム
で構成された特許請求の範囲第1項記載のスクロール気
体圧縮機。
(3) The scroll gas compressor according to claim 1, wherein the valve body is constituted by a diaphragm around which the valve body is sealed and fixed.
(4) ダイヤフラムは、差圧が設定値を超えれば背圧
室Bの方へ反り、差圧の無い場合にバネ装置または油溜
まり部圧力の付勢力を得て背圧室Aの方へ反るバネ特性
を備えた特許請求の範囲第3項記載のスクロール気体圧
縮機。
(4) If the differential pressure exceeds the set value, the diaphragm will warp toward back pressure chamber B; if there is no differential pressure, the diaphragm will warp toward back pressure chamber A with the biasing force of the spring device or oil reservoir pressure. 4. A scroll gas compressor according to claim 3, having spring characteristics such as:
JP29947886A 1986-12-16 1986-12-16 Scroll gas compressor Expired - Lifetime JPH073229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29947886A JPH073229B2 (en) 1986-12-16 1986-12-16 Scroll gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29947886A JPH073229B2 (en) 1986-12-16 1986-12-16 Scroll gas compressor

Publications (2)

Publication Number Publication Date
JPS63150490A true JPS63150490A (en) 1988-06-23
JPH073229B2 JPH073229B2 (en) 1995-01-18

Family

ID=17873090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29947886A Expired - Lifetime JPH073229B2 (en) 1986-12-16 1986-12-16 Scroll gas compressor

Country Status (1)

Country Link
JP (1) JPH073229B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294584A (en) * 1989-05-02 1990-12-05 Matsushita Electric Ind Co Ltd Scroll compressor
CN102022323A (en) * 2009-09-21 2011-04-20 丹佛斯涡旋技术有限责任公司 Oil return valve for a scroll compressor
CN105840520A (en) * 2016-05-24 2016-08-10 广东美的暖通设备有限公司 Oil supply adjusting device, compressor, scroll compressor and air conditioner system
CN106468260A (en) * 2015-08-18 2017-03-01 珠海格力节能环保制冷技术研究中心有限公司 Screw compressor and air conditioning system
WO2024037245A1 (en) * 2022-08-17 2024-02-22 广东美的环境科技有限公司 Scroll compressor and refrigeration apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294584A (en) * 1989-05-02 1990-12-05 Matsushita Electric Ind Co Ltd Scroll compressor
CN102022323A (en) * 2009-09-21 2011-04-20 丹佛斯涡旋技术有限责任公司 Oil return valve for a scroll compressor
CN106468260A (en) * 2015-08-18 2017-03-01 珠海格力节能环保制冷技术研究中心有限公司 Screw compressor and air conditioning system
CN105840520A (en) * 2016-05-24 2016-08-10 广东美的暖通设备有限公司 Oil supply adjusting device, compressor, scroll compressor and air conditioner system
WO2024037245A1 (en) * 2022-08-17 2024-02-22 广东美的环境科技有限公司 Scroll compressor and refrigeration apparatus

Also Published As

Publication number Publication date
JPH073229B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
US4545747A (en) Scroll-type compressor
KR950013892B1 (en) Scroll type compressor
JP2956509B2 (en) Scroll gas compressor
JP2010106780A (en) Scroll compressor
JPH0239630B2 (en)
JP2011027076A (en) Scroll compressor
JP5022291B2 (en) Scroll compressor
KR20180091577A (en) Scroll compressor
JPS63150489A (en) Scroll gas compressor
JP3028054B2 (en) Scroll gas compressor
JPS63150490A (en) Scroll gas compressor
JP5428522B2 (en) Scroll compressor
JPH029973A (en) Scroll type fluid device
JPH01177482A (en) Scroll compressor
JPH02294584A (en) Scroll compressor
JP5209279B2 (en) Scroll compressor
JP4529118B2 (en) Scroll compressor for helium
JP2790126B2 (en) Scroll gas compressor
JPS62168986A (en) Scroll gaseous body compressor
JPH01177481A (en) Scroll compressor
JP2674562B2 (en) Scroll refrigerant compressor with refueling control means
JPS63150491A (en) Scroll gas compressor
JPS63176689A (en) Scroll gas compressor
JP3189644B2 (en) Scroll type fluid machine
JP2692097B2 (en) Scroll gas compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term