JP2692097B2 - Scroll gas compressor - Google Patents

Scroll gas compressor

Info

Publication number
JP2692097B2
JP2692097B2 JP62332004A JP33200487A JP2692097B2 JP 2692097 B2 JP2692097 B2 JP 2692097B2 JP 62332004 A JP62332004 A JP 62332004A JP 33200487 A JP33200487 A JP 33200487A JP 2692097 B2 JP2692097 B2 JP 2692097B2
Authority
JP
Japan
Prior art keywords
chamber
compression
scroll
oil
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62332004A
Other languages
Japanese (ja)
Other versions
JPH01177483A (en
Inventor
勝晴 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62332004A priority Critical patent/JP2692097B2/en
Publication of JPH01177483A publication Critical patent/JPH01177483A/en
Application granted granted Critical
Publication of JP2692097B2 publication Critical patent/JP2692097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスクロール気体圧縮機の油インジェクション
通路に関する。 従来の技術 スクロール圧縮機は、吸入室がうず巻状の圧縮室の外
周部に有り、吐出ポートがうず巻状の圧縮室の中心部に
設けられ、圧縮流体の流れが一方向で往復動圧縮機や回
転式圧縮機のような流体を圧縮するための吐出弁を必要
とせず圧縮比が一定の場合には吐出脈動も比較的小さく
て大きな吐出空間を必要としないことが一般に知られて
いる。 しかし、特に気体を圧縮する場合などは圧縮部の洩れ
隙間を小さくするためにうず巻部の寸法精度を極めて高
くする必要があるが、部品形状の複雑さ、寸法精度のバ
ラツキなどにより、スクロール気体圧縮機のコストが高
く、性能のバラツキも大きいという問題があった。 そこで、この種の問題解決のための方策として、圧縮
途中の気体洩れ防止のために潤滑油膜を利用したシール
効果により、うず巻部寸法精度の適正化と圧縮機性能の
安定化を期待することが大きく、第14図に示すように吐
出室底部の潤滑油を圧縮途中の圧縮室に直接流入させる
構成が考えられている。 同図は密閉ケース701内の上部にモータ703を配置し、
下部に圧縮部を配置して密閉ケース内空間702を吐出室
とした構造で、吐出室底部の油溜710の潤滑油を固定ス
クロールに配設した各油吸い込み管722を介して対称配
置された圧縮途中の各油圧室723に直接流入させる構成
である(特開昭57−8386号公報)。 また、第15図に示す別の構成も考えられており、旋回
スクロール801の反圧縮室側に設けた背圧室817と圧縮室
809とを直接連通する絞り効果を有した導通孔818を旋回
スクロール801に設け、吐出室812に通じるモータ816下
部の油溜899の潤滑油をクランク軸807内に設けた主軸方
向の油孔719、920、921、クランク軸807と摺動する各軸
受の微小隙間を介して減圧し、中間圧力状態で背圧室81
7に供給の後、導通孔818を介して圧縮室809に流入さ
せ、圧縮室隙間の油膜密封に供させる。 一方、駆動軸807の上端部に導かれた吐出圧力相当の
潤滑油と背圧室817に供給された中間圧力状態の潤滑油
とで旋回スクロール801を固定スクロール802の側に押圧
し、圧縮室809の軸方向微小隙間を保持する。 また、背圧室817の潤滑油は、旋回スクロール801と固
定スクロール802との摺接面を潤滑しながら圧縮室809の
外側に配設された吸入室にも流入し、吸入気体と共に圧
縮室809に搬送されて圧縮室隙間の油膜密封に供される
構成である(特開昭59−110884号公報)。 発明が解決しょうとする問題点 しかしながら上記の第14図のような吐出圧力に等しい
密閉ケース内空間702の底部の油溜710の潤滑油を、圧縮
途中の圧縮室723に短い絞り通路を介して直接的に差圧
流入させる構成では、圧縮室723と油溜710とが常時直接
連通する構成のため、スクロール圧縮方式が吐出弁を要
することなく流体圧縮できる構成のために、閉サイクル
配管系に接続して運転するスクロール圧縮機の冷時起動
後しばらくの間は、圧縮室723よりも密閉ケース内空間7
02の油溜710の方が低圧力状態となり、圧縮室723の圧縮
途中気体が油溜710に逆流する。その結果、油溜710の潤
滑油が圧縮室723からの逆流気体によって拡散され、吐
出気体と共に圧縮機外部配管系に流出し、油溜710の潤
滑油不足が生じる。このため、圧縮機起動後しばらくし
て密閉ケース内空間702の圧力が上昇して圧縮室723の圧
力よりも高い状態になった場合でも、潤滑油が再び油溜
710に収集されるまでは圧縮室723への潤滑油供給による
圧縮室隙間の油膜密封効果も無く、逆に、密閉ケース内
空間702の気体が圧縮室723に流入して著しい圧縮効率の
低下や異常温度上昇、圧縮室異常圧力上昇などによる軸
受摺動部耐久性の低下を招くという問題があった。 また、上記の第15図のような圧縮室809と背圧室817と
を直接連通する構成では、上記の場合と同様に圧縮機冷
時起動直後しばらくの間は、圧縮機外部配管系に通じる
吐出室812の圧力が圧縮室809および圧縮室809に通じる
背圧室817よりも低圧状態となり、圧縮途中気体が導通
孔818、背圧室817、駆動軸807の軸受部隙間、主軸方向
の油孔719、720、721を経由して油溜に逆流し、上記の
場合と同様に油溜の潤滑油が拡散され、場合によっては
吐出気体と共に潤滑油が圧縮機外に流出する。また、背
圧室817と駆動軸807の軸受部に貯溜していた潤滑油も流
出し、冷時起動初期の背圧室817における摺動部潤滑と
駆動軸807の軸受部潤滑が不十分で耐久性低下の主要因
でもあった。 また、圧縮室809で液圧縮などが生じて異常圧力上昇
し圧縮負荷が急増した場合も、上記同様の潤滑油の流出
が生じると共に、導通孔818を介して圧縮室809に通じる
背圧室817も異常圧力上昇するので、旋回スクロール801
が固定スクロール802に強く押し付けられ、摺動面の摩
擦や摩耗による入力損失や潤滑油不足に基づく耐久性低
下を招くなどの問題があった。 なお、圧縮機を暖房運転冷凍サイクル配管系に組み込
み、一時的に暖房運転から除霜運転に切り替えた際に
も、圧縮機の吸入側が高圧状態に、吐出側が低圧状態に
なる場合もあり、吸入側または圧縮室809から背圧室817
に冷媒ガスが逆流して上記同様の潤滑油不足と耐久性低
下を招く。 そこで、本発明は、吐出室油溜から圧縮空間への給油
通路の一部に逆流防止手段を設けて圧縮空間からの逆流
を防止する一方、逆流気体の圧力によって軸方向に移動
が可能なスラスト軸受の軸方向コンプライアンス機構に
よる過負荷軽減作動を支援すべく構成することにより、
耐久性の向上を図ることを目的とするものである。 問題点を解決するための手段 上記問題を解決するために本発明のスクロール気体圧
縮機は、駆動軸を支承する主軸受を有する本体フレーム
と固定スクロールとの間に旋回スクロールが配置され、
旋回スクロールのラップ支持円板は、ラップ支持円板の
反圧縮室側を支持すべく本体フレームに設けられたスラ
スト軸受と固定スクロールの鏡板との間に油膜形成が可
能な微小隙間で配置され、スラスト軸受の隣接外周部に
はラップ支持円板を収納すべく鏡板と本体フレームとで
形成して吐出圧力が作用する吐出室油溜から圧力的に隔
離した外周部空間を配置すると共に、ラップ支持円板の
反圧縮室側で且つスラスト軸受から区画された内側に旋
回スクロールの背圧室を主軸受に隣接して設け、吐出室
油溜と圧縮空間とは背圧室と外周部空間を順次経由する
差圧給油通路で連通し、背圧室と外周部空間との間の油
路の途中に背圧室から外周部空間へのみの流入を許容す
る逆止弁装置を配置した構成において、軸方向に移動が
可能な前記スラスト軸受と本体フレームとの間に、スラ
スト軸受を固定スクロールの方向に付勢する付勢手段を
設け、旋回スクロールが固定スクロールとスラスト軸受
との間で、少なくとも油膜形成が可能な軸方向微小隙間
を有して配置されるべく、スラスト軸受が旋回スクロー
ルの側へ移動する範囲を規制する手段を設けたスラスト
軸受の軸方向コンプライアンス機構を備え、外周部空間
の圧力がスラスト軸受を反圧縮室側に付勢すべく、スラ
スト軸受に外周部空間の壁面の一部を構成させたもので
ある。 作用 本発明は上記構成によって、吐出室油溜の潤滑油は外
周部空間を経由して圧縮空間に差圧給油され、その経路
途中の外周部空間内のスラスト軸受と鏡板の摺接面の潤
滑および圧縮室隙間の油膜密閉に供され、摩擦抵抗と圧
縮途中気体洩れを少なくすることができる。 また、圧縮空間が異常圧力上昇して、圧縮空間の気体
が背圧室と吐出室油溜に向かって逆流しょうとする時、
背圧室への気体逆流が阻止されると共に、外周部空間の
圧力上昇によってスラスト軸受が反圧縮室側に後退する
のを支援される。その結果、旋回スクロールが固定スク
ロールから軸方向に離反し易くなり、過圧縮軽減作用が
できる。 実施例 以下、本発明の実施例のスクロール圧縮機について、
図面を参照しながら説明する。 第1図において、1は鉄製の密閉ケースで、その内部
全体は吐出室2に連通する高圧雰囲気となり、上部にモ
ータ3、下部に圧縮部を配置し、モータ3の回転子3aに
固定された駆動軸4を支承する圧縮部の本体フレーム5
により密閉ケース1の内部がモータ室6と吐出室2とに
仕切られている。本体フレーム5は軽量化と軸受部の熱
発散を主目的とした熱伝導特性に優れたアルミニウム合
金製で、その外周部に溶接性に優れた鉄製ライナー8が
焼ばめ固定され、ライナー8の外周部が密閉ケース1に
全周内接し部分的に溶接固定されている。 モータ3の固定子3bの両端外周部は、密閉ケース1に
内接固定された軸受フレーム9と本体フレーム5によっ
て支持固定されている。駆動軸4は、軸受フレーム9に
設けられた上部軸受10、本体フレーム5の上端部に設け
られた下部軸受11、本体フレーム5の中央部に設けられ
た主軸受12、本体フレーム5の上端面とモータ3の回転
子3aの下部端面との間に設けられたスラスト玉軸受13と
で支持され、その下端部には駆動軸4の主軸から偏心し
た偏心軸受14(以下、旋回軸受と称する)が設けられて
いる。 本体フレーム5の下端面には、アルミニウム合金製の
固定スクロール15が固定され、固定スクロール15は渦巻
き状の固定スクロールラップ15aと鏡板15bから成り、鏡
板15bの中央部には固定スクロールラップ15aの巻き始め
部に開口する吐出ポート16が吐出室2にも開口して設け
られ、固定スクロールラップ15aの外周部には吸入室17
が設けられている。 固定スクロールラップ15aに噛み合って圧縮室を形成
する渦巻き状の旋回スクロールラップ18aと、駆動軸4
の旋回軸受14に支持された旋回軸18bとを直立させラッ
プ支持円板18cとから成るアルミニウム合金製の旋回ス
クロール18は、固定スクロール15と本体フレーム5と駆
動軸4とに囲まれて配置されており、旋回軸18bの外周
部に高張力鋼材料から成るスリーブ19が焼ばめ固定さ
れ、ラップ支持円板18cの表面は硬化処理されている。 本体フレーム5に固定された平行ピン19に拘束されて
軸方向にのみ移動が可能なスラスト軸受20と、固定スク
ロール15の鏡板15bとの間には、スペーサ21が設けら
れ、スペーサ21の軸方向寸法は油膜による摺動面のシー
ル性向上のためにラップ支持円板18cの厚さよりも約0.0
15〜0.020mm大きく設定されている。 駆動軸4の旋回軸受14の底部と旋回スクロール18の旋
回軸18bの端部との間の偏心軸受空間36とラップ支持円
板18cの外周部空間37とは旋回軸18bとラップ支持円板18
cに設けられた油穴A38aにより連通されている。 スラスト軸受20は第2図、第6図のように、その中央
部が2つの平行な直線部分22とそれに連なる2つの円弧
状曲線部分23から成る形状に貫通成形されている。 旋回スクロール自転阻止用のオルダムリング24は、焼
結成形や射出成形工法などに適した軽合金や樹脂材料か
ら成り、第4図のように両面が平行な薄い環状板24aと
その一面に設けられた一対の平行キー部分24bとから成
り、環状板24aの外輪郭は、2つの平行な直線部分25と
それに連なる2つの円弧状曲線部分26から成り、直線部
分25は第6図のようにスラスト軸受20の直線部分22に微
小隙間で係合し摺動可能であり、平行キー部分24bの側
面24cは直線部分25の中央部で直交し、第1図、第2図
のように旋回スクロール18のラップ支持円板18cに設け
られた一対のキー溝71に微少隙間で係合し、摺動可能な
形状に設定されている。なお、環状板24aの内輪郭は外
輪郭に類似した形状である。また、平行キー部分24bの
付け根に設けられたヘコミ部24dは潤滑油の通路にもな
る。 第1図、第3図のように、本体フレーム5とスラスト
軸受20との間には、約0.1mm前後のレリース隙間27が設
けられ、そのレリース隙間27に対向して本体フレーム5
にも環状溝28が設けられ、環状溝28を囲んだゴム製のシ
ールリング70が、本体フレーム5とスラスト軸受20との
間に装着されている。 モータ室6の上部と吐出室2とは、密閉ケース1の側
壁を貫通して接続されたバイパス吐出管29を介して連通
し、バイパス吐出管29のモータ室6への開口位置は、固
定子3bの上部コイルエンド30の側面に対向し、バイパス
吐出管29の上部開口端と密閉ケース1の上面に接続され
た吐出管31とは軸受フレーム5に設けられた抜き穴32、
密閉ケース1の上面と軸受フレーム9との間に配置さ
れ、かつ多数の小穴を有したパンチングメタル33を介し
て連通している。 モータ室6の下部に設けられた吐出室油溜34は、モー
タ室6の上部とモータ3の固定子3bの外周の一部をカッ
トして設けた冷却通路35により連通されている。また、
吐出室油溜34は、本体フレーム5に設けられた油穴B38b
を経由して環状溝28に通じると共に、オルダムリング24
が配置された旋回スクロール18の背圧室39にも主軸受12
の摺動部微少隙間を介して通じ、更に旋回軸受14に設け
られた油溝A40aを介して偏心軸受空間36へも連通してい
る。 また、本体フレーム5に設けられた油穴B38bは駆動軸
4の下部軸受11に対応する下部軸部4aの表面に設けられ
た螺旋状油溝41にも通じており、螺旋状油溝41の巻方向
は、駆動軸4が正回転する時に潤滑油の粘性を利用した
ネジポンプ作用の生じるように設けられ、その終端は下
部軸部4aの途中まで形成されている。 第6図,第7図のように、固定スクロール15は吸入室
17の両端を連通する円弧状の吸入通路42が設けられ、そ
れに直交する円形の吸入穴43が固定スクロールラップ15
aの側面に対しても直角方向に設けられ、吸入穴43の底
部は平面で吸入通路42の側面にまで到達している。第8
図のように、吸入穴43の中心は吸入通路42の底面44とず
れており、吸入通路42への開口部寸法W45は、吸入穴43
の直径寸法より小さく設けられている。また。吸入穴43
にはアキュームレータ46の吸入管47が接続されており、
吸入穴43の底面44と吸入管端面48との間には、吸入管47
の内径寸法および吸入管端面48と底面44との間の吸入穴
深さ寸法L49よりも大きく、且つ開口寸法W45よりも大き
い円形薄鋼板の逆止弁50が配置されている。逆止弁50の
表面は油濡れ特性が悪く弾力性に富んだテフロンまたは
ゴムなどがコーティングされている。 また、吸入室17にも吐出室2にも連通しない第2圧縮
室51と外周部空間37は、第2圧縮室51に開口して鏡板15
bに設けられた細径のインジェクション穴52、鏡板15bと
樹脂製の断熱カバー53とで形成されたインジェクション
溝54、外周部空間37に開口した段付き形状の油穴C38cと
から成るインジェクション通路55で連通され、油穴C38c
の大径部56には、第9図に示すような外周の一部に切欠
き57を有する薄鋼板製の逆止弁58とコイルスプリング59
とが配置せされて逆止弁装置58aを構成している。コイ
ルスプリング59は断熱カバー53に押えられて逆止弁58を
常時付勢する。外周部空間37への油穴C38cの開口位置
は、第10図、第11図に示す如く、吐出ポート16に連通す
る第3圧縮室60a,60bの容積減少行程が終了する(吐出
ポート16と第3圧縮室60a,60bが開通する直前)近傍に
まで旋回スクロール18が移動した(第10図参照)時に、
外周部空間37と油穴C38cとが連通し、それ以外の吐出ポ
ート16と連通した第3圧縮室60a,60bの容積が最も拡大
した時(第11図参照)にはラップ支持円板18cによって
遮断される位置に設けられている。 第12図において、横軸は駆動軸4の回転角度を示し、
縦軸は冷媒圧力を示し、吸入・圧縮・吐出過程における
冷媒ガスの圧力変化状態を示し、実線62は正常圧力で運
転時の圧力変化を示し、点線63は異常圧力上昇運転時の
圧力変化を表わす。 第13図において、横軸は駆動軸4の回転角度を示し、
縦軸は冷媒圧力を示し、実線64は吐出室2にも吸入室17
にも連通しない第2圧縮室51a,51bのインジェクション
穴52a,52bの開口位置における圧力変化を示し、点線65
は吸入室17に連通する第1圧縮室61a,61b(第6図参
照)の定点における圧力変化を示し、一点鎖線66は吐出
室2に連通する第3圧縮室60a,60bの定点における圧力
変化を示し、二点鎖線67は第1圧縮室61a,61bと第2圧
縮室51a,51bとの間の定点における圧力変化を示し、二
重点線68は背圧室39の圧力変化を示す。 以上のように構成されたスクロール冷媒圧縮機につい
て、その動作を説明する。 第1図〜第13図において、モータ3によって駆動軸4
が回転駆動すると、旋回スクロール18が旋回運動をし、
圧縮機に接続した冷凍サイクルから潤滑油を含んだ吸入
冷媒ガスが、アキュームレータ46に接続した吸入管47、
吸入穴43、吸入通路42を順次経て吸入室17に流入し、旋
回スクロール18と固定スクロール15との間に形成された
第1圧縮室61a,61bを経て圧縮室内に閉じ込められ、常
時密閉空間となる第2圧縮室51a,51b、第3圧縮室60a,6
0bへと順次移送圧縮され、中央部の吐出ポート16を経て
吐出室2へと吐出される。潤滑油を含んだ吐出冷媒ガス
は、圧縮機外部へ配管されたバイパス吐出管29を経て再
び圧縮機内のモータ室6に帰還した後、外部の冷凍サイ
クルへ吐出管31から排出されるが、モータ室6に流入す
る際に、モータ3の上部コイルエンド30の側面に衝突し
てモータ巻き線の表面に付着することにより、潤滑油の
一部を分離した後、軸受フレーム9に設けられた抜き穴
32を通過する際に、流れ方向を変えたりパンチングメタ
ル33の小穴を通過する際に潤滑油の慣性力や表面付着な
どにより潤滑油が効果的に分離される。 吐出ガスから分離された潤滑油の一部は、上部軸受の
摺動面を潤滑した後、残りの潤滑油と共に冷却通路35を
通り、モータ3を冷却しながら下部の吐出室油溜34に収
集される。 吐出室油溜34の潤滑油は、駆動軸4の下部軸部4aの表
面に設けられた螺旋状油溝41のネジポンプ作用により、
スラスト玉軸受13へ給油され、下部軸部4aの端部の微少
軸受隙間を潤滑油が通過する際に、その油膜のシール作
用により、モータ室6の吐出冷媒ガス雰囲気と主軸受12
の上流側空間とが遮断される。 吐出室油溜34の溶解吐出冷媒ガスを含んだ潤滑油は、
主軸受12の微少隙間を通過する際に、吐出圧力と吸入圧
力との中間圧力に減圧されて背圧室39に流入し、その
後、旋回軸受14の油溝A40a、偏心軸受空間36、旋回スク
ロール18を通る油穴A38を経て外周部空間37に流入す
る。更に、第3圧縮室60a,60bから吐出ポート16への冷
媒ガス排出開始時に、ラップ支持円板18cによって油穴C
38cが開口状態にあり、第13図のK点における駆動軸回
転角度で示す如く、各圧縮室では圧縮初期段階で、液圧
縮発生の可能性がなく、第2圧縮室64の圧力も低い状態
にある。したがって、外周部空間37から油穴C38c,イン
ジェクション溝54、インジェクション穴52a,52bを経て
第2圧縮室51a,51bに大きな差圧で円滑に流入し、その
通路途中の摺動面を潤滑する。 また、吐出室油溜34は、環状溝28やレリース隙間27と
も通じているので、スラスト軸受20はその背圧力により
付勢されてスペーサ21の端面に当接している。 また、旋回スクロール18のラップ支持円板18cは、ス
ラスト軸受20と固定スクロール15の鏡板15bとの間で微
小隙間を保持されて円滑に摺動すると共に、固定スクロ
ールラップ15aの端面とラップ支持円板18cとの間、なら
びに、旋回スクロールラップ18aの端面と鏡板15bとの間
の隙間も微少に保持されて隣接する圧縮室間の冷媒ガス
漏れを少なくする。 第2圧縮室51a,51bのインジェクション穴52a,52b開口
部は、第13図の如くの圧力変化64をし、吐出室2の圧力
に追従して変化する背圧室圧力68よりも瞬時的に高い。
しかし平均圧力が低いので、背圧室39からの潤滑油は間
欠的に第2圧縮室51a,51bに流入し、正常運転時の背圧
室圧力68よりも瞬時的に高い第2圧縮室51a,51b内の圧
縮冷媒ガスは、細径のインジェクション穴52a,52bで減
衰されて、瞬時的なインジェクション溝54への逆流が少
なく、また、第2圧縮室51a,51bの圧縮行程進行時には
油穴C38cがラップ支持円板18cによって閉塞されている
ので、第2圧縮室51a,51bから外周部空間37への逆流も
発生しない。 第2圧縮室51a,51bにインジェクションされた潤滑油
は、吸入冷媒ガスと共に圧縮室に流入した潤滑油と合流
し、隣接する圧縮室間の微小隙間を油膜により密封して
圧縮冷媒ガス漏れを防ぎ、圧縮室間の摺動面を潤滑しな
がら圧縮冷媒ガスと共に吐出室2に再び吐出される。 また、背圧室39に差圧給油された潤滑油は、シールリ
ング70の弾性力と共に、中間圧力の付勢力を旋回スクロ
ール18に作用させてラップ支持円板18cを鏡板15bとの摺
動面に押圧油膜シールして外周部空間37と吸入室17との
間の連通を遮断すると共に、スラスト軸受20とラップ支
持円板18cとの摺動面の隙間も潤滑シールする。 また、圧縮機の冷時始動後しばらくの間は、第12図、
第13図から理解できるように吐出室2の圧力が第2圧縮
室51a,51bの圧力よりも低く、圧縮途中の冷媒ガスは、
第2圧縮室51a,51bからインジェクション通路55を経て
背圧室39に逆流しょうとするが、逆止弁58の逆止作用に
ても外周部空間37への逆流が阻止され、吐出室油溜34の
潤滑油は吐出室2の圧力上昇と共に背圧室39、外周部空
間37にまで差圧給油される。 したがって、冷時始動初期のスラスト軸受20への背圧
付勢力は圧縮室圧力により生じ、旋回スクロール18を固
定スクロール15から離反させようとするスラスト荷重に
抗しながらスラスト軸受20が微少に後退して旋回スクロ
ール18と固定スクロール15との間の軸方向隙間を拡大す
る。 このようなスラスト軸受20の軸方向コンプライアンス
機構により、圧縮空間に洩れを生じて圧縮室圧力を下
げ、始動初期の圧縮負荷を軽減する。 その後、吐出室2の圧力上昇に伴い、外周部空間37の
潤滑油はコイルスプリング59の付勢力に抗して、インジ
ェクション穴52a,52bから第2圧縮室51a,51bへインジェ
クションされる。 また、冷時始動初期や定常運転時に、油インジェクシ
ョンやその他の原因で瞬時的な液圧縮が生じた場合の圧
縮室圧力は、第12図の点線63のように異常な圧力上昇と
過圧縮が生じるが、吐出室2とそれに連通する高圧空間
容積が大きいので吐出室圧力の上昇は極めて小さい。 また、液圧縮により第2圧縮室51a,51bに連通するイ
ンジェクション溝54なども異常圧力上昇するが、細径の
油穴C38cの絞り効果と逆止弁58の逆止作用により、外周
部空間37とインジェクション溝54との間は遮断される。 なお、逆止弁58の逆止作用には追従遅延が生じる場合
もあるが、ラップ支持円板18cによる油穴C38cの閉塞作
用がこれを支援する。また、逆に、油穴C38cをラップ支
持円板18cが閉塞しない状態では、逆止弁58の逆止作用
がこれを支援する如く、互いの短所を支援すべく機能
し、背圧室39への逆流を防止する。 その結果、背圧室39の圧力は変らず、スラスト軸受20
の背面に作用する背圧付勢力にも変動がない。したがっ
て、液圧縮時には、旋回スクロール18に作用する過大な
スラスト力によって、上述のようにスラスト軸受20が後
退し、圧縮室圧力が降下してその後は正常運転を継続す
る。 なお、液圧縮途中でスラスト軸受20が後退することに
より、圧縮室圧力は第12図の一点鎖線63aの如く途中で
降圧する。 圧縮機停止後は、圧縮室圧力により旋回スクロール18
に逆旋回トルクが生じ、旋回スクロール18が逆旋回して
吐出冷媒ガスが吸入側に逆流する。この吐出冷媒ガスの
逆流に追従して、逆止弁50が第6図の位置から第7図の
位置に移動し、逆止弁50の表面に施されたテフロン被膜
により、吸入管端面48を密封して吐出冷媒ガスの逆流を
制止し、旋回スクロール18の逆旋回が停止し、吸入通路
42と吐出ポート16との間の空間は吐出圧力を保持する。 また、インジェクション通路の逆止弁58を境にして、
圧縮室に連通する通路は吐出圧力になるが、外周部空間
37と背圧室39との間の空間はしばらくの間、中間圧力を
保持し、吐出室油溜34からの潤滑油微少流入により次第
に吐出圧力に近づく。圧縮機停止時、旋回スクロール18
は逆転し、第3圧縮室60a,60bが拡大した位置に停止
し、油穴C38cの外周部空間37への開口部は、ラップ支持
円板18cにより遮断される。圧縮機停止後はコイルスプ
リング59の付勢力によっても逆止弁58がインジェクショ
ン通路55を遮断するので、外周部空間37から圧縮室への
潤滑油流入がない。 なお、このスクロール冷媒圧縮機を冷凍サイクルに組
み込み、暖房運転から除霜運転へ切り替えた直後は吸入
側が高圧に、吐出側が低圧状態になる。しかしながら、
上述の圧縮機起動初期と同様に圧縮室から外周部空間37
への冷媒ガスの逆流を阻止することができる。 また、上記実施例では、吐出室油溜34の潤滑油を常時
密閉空間となる第2圧縮室51a,51bに油インジェクショ
ンしたが、常時密閉空間のない圧縮空間を有する場合も
同様である。 また、圧縮機運転速度や圧力などの運転条件により、
吸入室17に通じる第1圧縮室61a,61bまたは吸入室17に
油注入する場合でも逆止弁58の作用により、第1圧縮室
61a,61bまたは吸入室17から外周部空間37への冷媒ガス
の逆流を阻止することができる。 また、上記実施例では、細径部を有する段付き形状の
油穴C38cと逆止弁58とコイルスプリング59とを固定スク
ロール15の鏡板15bに設けたが、旋回スクロール18の旋
回軸18bやラップ支持円板18cに設けてもよい。 この構成では、圧縮空間が異常圧力上昇することによ
って冷媒ガスが圧縮空間から外周部空間37に逆流する
が、逆止弁作用によって背圧室39への逆流が阻止されて
背圧室39や吐出室油溜34の潤滑油流失を防ぐことができ
る。 更に、冷媒ガスが圧縮空間から外周部空間37に逆流す
ることによって、外周部空間37も圧力上昇し、スラスト
軸受20を反圧縮室側に後退させる。その結果、旋回スク
ロール18が固定スクロール15から軸方向に離反し易くな
り、圧縮室軸方向隙間が広がり圧縮室隙間の密封が解除
するので、スラスト軸受20の軸方向コンプライアンス機
構の迅速な作動を支援させることもできる。 また、上記実施例では、吐出室油溜34と背圧室39とを
主軸受12の微小隙間を介して連通し、吐出室油溜34から
の潤滑油を減圧して背圧室39を中間圧力に保持したが、
圧縮機使用条件(圧縮機負荷や運転速度範囲の変動が大
きい場合など)によっては、本体フレーム5に設けた油
穴B38bから分岐した通路で、吐出室油溜34と背圧室39と
を直接連通して背圧室39を吐出圧力相当にもできる。 また、上記実施例では、駆動軸4の先端部に偏心軸受
空間36を設ける形態の旋回軸受14を設けたが、第14図、
第15図に示す如く、旋回スクロールに偏心軸受空間を設
けて駆動軸との間に旋回軸受を構成する軸受形態の場合
も上述同様の作用・効果を発揮する。 また、上記実施例では冷媒圧縮機について説明した
が、潤滑油を使用する酸素、窒素、ヘリウムなどの他の
気体圧縮機の場合も同様の作用効果を期待できる。 発明の効果 以上のように本発明は、駆動軸4を支承する主軸受12
を有する本体フレーム5と固定スクロール15との間に旋
回スクロール18が配置され、旋回スクロール18のラップ
支持円板18cは、ラップ支持円板18cの反圧縮室側を支持
すべく本体フレーム5に設けられたスラスト軸受20と固
定スクロール15の鏡板15bとの間に油膜形成が可能な微
小隙間で配置され、スラスト軸受20の隣接外周部にはラ
ップ支持円板18cを収納すべく鏡板15bと本体フレーム5
とで形成して吐出圧力が作用する吐出室油溜34から圧力
的に隔離した外周部空間37を配置すると共に、ラップ支
持円板18cの反圧縮室側で且つスラスト軸受20から区画
された内側に旋回スクロール18の背圧室19を主軸受12に
隣接して設け、吐出室油溜34と圧縮空間とは背圧室39と
外周部空間37を順次経由する差圧給油通路で連通し、背
圧室39と外周部空間37との間の油路の途中に背圧室39か
ら外周部空間37へのみの流入を許容する逆止弁装置58a
を配置した構成において、軸方向に移動が可能なスラス
ト軸受20と本体フレーム5との間に、スラスト軸受20を
固定スクロール15の方向に付勢する付勢手段を設け、旋
回スクロール18が固定スクロール15とスラスト軸受20と
の間で、少なくとも油膜形成が可能な軸方向微小隙間を
有して配置されるべく、スラスト軸受20が旋回スクロー
ル18の側へ移動する範囲を規制する手段21を設けたスラ
スト軸受20の軸方向コンプライアンス機構を備え、外周
部空間37の圧力がスラスト軸受20を反圧縮室側に付勢す
べく、スラスト軸受20に外周部空間37の壁面の一部を構
成させたことにより、吐出室油溜34の潤滑油が外周部空
間37を経由して吸入室17と圧縮室とから成る圧縮空間に
供給されるので、その経路途中の外周部空間37内のスラ
スト軸受20と鏡板15bの摺接面の潤滑および圧縮室隙間
を油膜密封することができる。それによって、摩擦抵抗
と圧縮途中気体洩れを少なくし、入力低減と耐久性向上
および圧縮効率を向上することができる。 また、圧縮空気が異常圧力上昇して、圧縮空間の気体
が背圧室39と吐出室油溜34に向かって逆流しょうとする
時、逆止弁装置58aが作用して背圧室39への気体逆流を
阻止し、それによって、背圧室39と主軸受12および吐出
室油溜34の潤滑油流失を防ぎ、主軸受12の耐久性向上お
よび上述の圧縮空間への差圧給油による効果を得ること
ができる。 また、特に、外周部空間12の圧力上昇によってスラス
ト軸受20の反圧縮室側への後退を促進させると共に背圧
室39の圧力上昇を阻止できるので、圧縮空間の異常圧力
上昇によって固定スクロール15から軸方向に離反しょう
とする旋回スクロール18の移動を迅速化させ、圧縮室隙
間密封の早期解除による早期過圧縮軽減ができる。 また、本発明は、背圧室39と外周部空間37との間を連
通する油路を、ラップ支持円板18c内に設けた中心側か
ら外周側に至る絞り通路を有する油穴18aを経由させ、
その油穴18aの途中の絞り通路よりも外周部空間37の側
に逆止弁装置58aを配置したことにより、絞り通路長さ
を長く配置できる。 それによって、通路抵抗の安定化による圧縮空間への
過不足給油の防止を図ることができる。また、逆止弁作
用の迅速化と信頼性向上を図ることができる。
Description: FIELD OF THE INVENTION The present invention relates to oil injection in scroll gas compressors.
Regarding the passage. 2. Description of the Related Art A scroll compressor has a suction chamber outside the spirally wound compression chamber.
There is a discharge port at the center of the spirally wound compression chamber.
It is provided with a reciprocating compressor or rotary
Needs a discharge valve to compress fluid such as a rotary compressor
If the compression ratio is constant, the discharge pulsation is relatively small.
It is generally known that it does not require a large discharge space
I have. However, especially when compressing gas, the leakage of the compression part
The dimensional accuracy of the spiral part is extremely high in order to reduce the gap.
However, the complexity of the shape of the part and the dimensional accuracy
The cost of the scroll gas compressor is high due to rattling.
However, there was a problem that there was a large variation in performance. Therefore, as a measure to solve this kind of problem, compression
A seal that uses a lubricating oil film to prevent gas leakage on the way
Due to the effect, the dimensional accuracy of the spiral part is optimized and the compressor performance is improved.
It is expected that stabilization will occur, and as shown in Fig. 14,
Lubricating oil at the bottom of the exit chamber directly flows into the compression chamber during compression
A configuration is being considered. In the figure, the motor 703 is arranged in the upper part in the closed case 701,
The compression part is placed in the lower part, and the space 702 in the closed case is the discharge chamber.
With this structure, the lubricating oil in the oil sump 710 at the bottom of the discharge chamber is fixed.
Symmetrical arrangement via each oil suction pipe 722 arranged on the crawl
Directly flow into each hydraulic chamber 723 under compression
(JP-A-57-8386). In addition, another configuration shown in Fig. 15 is also conceivable.
Back pressure chamber 817 and compression chamber provided on the side opposite to the compression chamber of scroll 801
Swirl through a through hole 818 that has a throttling effect that directly communicates with 809
Below the motor 816 installed on the scroll 801 and communicating with the discharge chamber 812
Of the main shaft where the lubricating oil of the oil sump 899 of the section is provided in the crankshaft 807.
Oil holes 719, 920, 921 facing each other, each shaft that slides with the crank shaft 807
Back pressure chamber 81
7 and then flowed into the compression chamber 809 through the through hole 818.
And seal the oil film in the compression chamber. On the other hand, the discharge pressure equivalent to the discharge pressure guided to the upper end of the drive shaft 807
Lubricating oil and lubricating oil in the intermediate pressure state supplied to the back pressure chamber 817
Press the orbiting scroll 801 against the fixed scroll 802 side with
Then, the axial minute gap of the compression chamber 809 is maintained. The lubricating oil in the back pressure chamber 817 is fixed to the orbiting scroll 801.
While lubricating the sliding contact surface with the constant scroll 802, the compression chamber 809
It also flows into the suction chamber located outside and is compressed with the suction gas.
Transferred to the compression chamber 809 and used to seal the oil film in the compression chamber gap
The configuration (Japanese Patent Laid-Open No. 59-110884). Problems to be Solved by the Invention However, it is equal to the discharge pressure as shown in FIG. 14 above.
Compress the lubricating oil in the oil sump 710 at the bottom of the space 702 in the closed case.
Direct differential pressure to the compression chamber 723 on the way via a short throttle passage.
In the case of the inflow configuration, the compression chamber 723 and the oil sump 710 are always directly
Because of the communication structure, the scroll compression method requires a discharge valve.
Closed cycle due to fluid compression without
Cold start of a scroll compressor connected to the piping system for operation
For a while afterwards, the space inside the sealed case 7 rather than the compression chamber 723
The oil sump 710 of 02 is in a lower pressure state and the compression of the compression chamber 723 is compressed.
On the way, the gas flows back into the oil sump 710. As a result, the oil in the oil reservoir 710
The lubricating oil is diffused by the backflow gas from the compression chamber 723 and is discharged.
Along with the discharged gas, it flows out to the compressor external piping system, and the oil sump 710 is moistened.
Lack of lubricating oil occurs. Therefore, wait a while after the compressor starts.
The pressure in the space 702 in the closed case rises and the pressure in the compression chamber 723 rises.
Even if the pressure is higher than the force, the lubricating oil will
Until the oil is supplied to the compression chamber 723 until it is collected in 710
There is no oil film sealing effect in the compression chamber gap, conversely, in the sealed case
The gas in the space 702 flows into the compression chamber 723, resulting in remarkable compression efficiency.
Axis due to decrease, abnormal temperature rise, abnormal pressure rise in compression chamber, etc.
There is a problem in that durability of the sliding receiving portion is deteriorated. In addition, the compression chamber 809 and the back pressure chamber 817 as shown in FIG.
In the configuration that directly communicates with the
Immediately after starting, for a while, it leads to the compressor external piping system
Pressure in discharge chamber 812 leads to compression chamber 809 and compression chamber 809
The pressure is lower than that of the back pressure chamber 817, and gas is conducting during compression.
Hole 818, back pressure chamber 817, bearing gap of drive shaft 807, main shaft direction
Back into the sump via oil holes 719, 720, 721 of the
As in the case, the lubricating oil in the oil reservoir is diffused, and in some cases
The lubricating oil flows out of the compressor together with the discharged gas. Also, the back
The lubricating oil stored in the bearings of the pressure chamber 817 and the drive shaft 807 also flows.
Lubrication of the back pressure chamber 817 at the start of cold start
Main cause of deterioration of durability due to insufficient lubrication of the bearing of drive shaft 807
It was also. Also, abnormal pressure rise due to liquid compression etc. in the compression chamber 809.
However, even if the compression load increases suddenly, the lubricating oil will flow out in the same manner as above.
Occurs, and leads to the compression chamber 809 through the conduction hole 818.
Since the back pressure chamber 817 also has an abnormal pressure rise, the orbiting scroll 801
Is strongly pressed against the fixed scroll 802, and the sliding surface wears.
Low durability due to input loss due to rubbing and abrasion and lack of lubricating oil
There were problems such as inviting the bottom. The compressor is installed in the heating operation refrigeration cycle piping system.
When temporarily switching from heating operation to defrosting operation,
The suction side of the compressor is at high pressure and the discharge side is at low pressure.
In some cases, suction side or compression chamber 809 to back pressure chamber 817
Refrigerant gas flows backward to
Invite below. Therefore, the present invention is to supply oil from the discharge chamber oil reservoir to the compression space.
Backflow from the compression space by providing backflow prevention means in part of the passage
While moving, it moves axially due to the pressure of the backflow gas
Axial compliance mechanism of thrust bearing
By configuring to support overload reduction operation by
The purpose is to improve durability. Means for Solving Problems In order to solve the above problems, scroll gas pressure of the present invention
The compressor is a main frame with a main bearing that supports the drive shaft.
The orbiting scroll is placed between the fixed scroll and
The orbiting scroll lap support disc is
The slides installed on the body frame to support the anti-compression chamber side.
An oil film can be formed between the strike bearing and the end plate of the fixed scroll.
It is arranged with a very small gap and is located on the outer periphery adjacent to the thrust bearing.
Is a mirror plate and a body frame to store the lap support disk.
Is formed and discharge pressure acts on the discharge chamber oil reservoir.
Place the outer peripheral space away from each other and
Rotate inward from the compression chamber side and separated from the thrust bearing.
A back pressure chamber for the orbiting scroll is provided adjacent to the main bearing, and the discharge chamber
The oil reservoir and the compression space pass through the back pressure chamber and the outer peripheral space in order.
The oil between the back pressure chamber and the outer peripheral space communicates with the differential pressure oil supply passage.
Allows only the back pressure chamber to flow into the outer space in the middle of the road
With the check valve device installed,
Between the thrust bearing and the body frame
The biasing means that biases the strike bearing in the direction of the fixed scroll
Provided, orbiting scroll is fixed scroll and thrust bearing
A small gap in the axial direction that allows at least an oil film to be formed between
The thrust bearing is swivel scroll
The thrust provided with means for restricting the range of movement toward the side
Outer space with bearing axial compliance mechanism
Pressure is applied to the thrust bearing toward the anti-compression chamber side,
A part of the wall surface of the outer peripheral space is configured in the strike bearing.
is there. Effect The present invention has the above-described configuration so that the lubricating oil in the discharge chamber oil reservoir is not
Differential pressure oil is supplied to the compression space via the peripheral space, and its path
Moisture of the sliding contact surface between the thrust bearing and the end plate in the outer peripheral space on the way
Used to seal the oil film in the sliding and compression chamber gaps, and
Gas leakage during contraction can be reduced. In addition, the pressure in the compression space rises abnormally and the gas in the compression space
Tries to flow backwards toward the back pressure chamber and discharge chamber oil sump,
Backflow of gas to the back pressure chamber is prevented, and
Thrust bearing retracts to the side opposite the compression chamber due to pressure increase
Be supported. As a result, the orbiting scroll is
It becomes easy to separate from the roll in the axial direction, reducing overcompression.
it can. Example Hereinafter, with respect to the scroll compressor of the example of the present invention,
This will be described with reference to the drawings. In FIG. 1, 1 is an iron-made sealed case, inside of which
The whole becomes a high-pressure atmosphere that communicates with the discharge chamber 2, and the upper part
The rotor 3a of the motor 3 has a compressor 3 arranged at the bottom thereof.
The body frame 5 of the compression part which supports the fixed drive shaft 4.
Makes the interior of the closed case 1 into a motor chamber 6 and a discharge chamber 2.
It is partitioned. The body frame 5 is made lighter and the heat of the bearing is reduced.
Aluminum alloy with excellent heat conduction characteristics mainly for divergence
The iron liner 8 is made of gold and has excellent weldability on the outer periphery.
It is shrink-fitted and fixed, and the outer peripheral part of the liner 8 is sealed in the closed case 1.
It is inscribed all around and welded and partially fixed. The outer peripheral portions of both ends of the stator 3b of the motor 3 are attached to the sealed case 1.
By the inwardly fixed bearing frame 9 and body frame 5,
Supported and fixed. The drive shaft 4 is attached to the bearing frame 9.
Provided on the upper bearing 10 and the upper end of the body frame 5 provided
The lower bearing 11 is installed in the center of the body frame 5.
Rotation of the main bearing 12, the upper end surface of the body frame 5 and the motor 3
The thrust ball bearing 13 provided between the lower end surface of the child 3a and
Is supported by the main shaft of the drive shaft 4 at its lower end.
Eccentric bearing 14 (hereinafter referred to as slewing bearing) is provided
I have. The lower end surface of the body frame 5 is made of aluminum alloy.
Fixed scroll 15 is fixed, fixed scroll 15 is spiral
It consists of a fixed scroll wrap 15a and a mirror plate 15b.
At the center of the plate 15b, start winding the fixed scroll wrap 15a.
The discharge port 16 opening to the section is also opened to the discharge chamber 2.
The suction chamber 17 is provided on the outer periphery of the fixed scroll wrap 15a.
Is provided. Form a compression chamber by meshing with the fixed scroll wrap 15a
Swirling orbiting scroll wrap 18a and drive shaft 4
Of the swivel shaft 14b supported by the swivel bearing 14 of the
Aluminum alloy swivel strip consisting of
Crawl 18 is driven by fixed scroll 15 and body frame 5.
It is placed so as to be surrounded by the moving shaft 4 and the outer circumference of the turning shaft 18b.
A sleeve 19 made of high tensile steel material is
The surface of the lap support disk 18c is hardened. Being restrained by the parallel pin 19 fixed to the body frame 5
The thrust bearing 20 that can move only in the axial direction and the fixed
A spacer 21 is provided between the roll 15 and the end plate 15b.
The axial dimension of the spacer 21 depends on the oil film surface of the sliding surface.
The thickness of the lap support disk 18c is about 0.0
It is set large by 15 to 0.020 mm. The bottom of the orbiting bearing 14 of the drive shaft 4 and the orbiting scroll 18 are rotated.
Eccentric bearing space 36 between the end of the rotating shaft 18b and the lap support circle
The outer peripheral space 37 of the plate 18c is the turning shaft 18b and the lap support disc 18
It is communicated by an oil hole A38a provided in c. The thrust bearing 20 has a central portion as shown in FIGS. 2 and 6.
The part is two parallel straight parts 22 and two arcs connected to it
It is pierced into a shape formed by the curved portion 23. The Oldham ring 24 for preventing the orbiting scroll from rotating
Is it a light alloy or resin material suitable for consolidation and injection molding?
And a thin annular plate 24a whose both surfaces are parallel to each other as shown in FIG.
It consists of a pair of parallel key parts 24b provided on one surface of the
The outer contour of the annular plate 24a is composed of two parallel straight line portions 25.
It is composed of two arcuate curved line parts 26 connected to it, and a straight line part
As shown in Fig. 6, the minute 25 is minute in the linear portion 22 of the thrust bearing 20.
It can be engaged and slid in a small gap, and the side of the parallel key portion 24b
The surface 24c is orthogonal to the center of the straight line portion 25, and is shown in FIGS.
Provided on the lap support disk 18c of the orbiting scroll 18 as shown in
Sliding by engaging a pair of key grooves 71 with a minute gap
The shape is set. The inner contour of the annular plate 24a is the outer
It has a shape similar to the contour. Also, the parallel key portion 24b
The dented portion 24d provided at the base also serves as a passage for lubricating oil.
You. As shown in FIGS. 1 and 3, the main body frame 5 and the thrust
A release gap 27 of about 0.1 mm is provided between the bearing 20 and
And the main body frame 5 facing the release gap 27.
An annular groove 28 is also provided in the ring groove, and a rubber sheath surrounding the annular groove 28 is used.
The rule ring 70 connects the body frame 5 and the thrust bearing 20.
It is installed in between. The upper part of the motor chamber 6 and the discharge chamber 2 are on the side of the closed case 1.
Communication via bypass discharge pipe 29 connected through the wall
However, the opening position of the bypass discharge pipe 29 to the motor chamber 6 is fixed.
Bypasses the side of the upper coil end 30 of the determinator 3b and bypasses
Connected to the upper open end of the discharge pipe 29 and the upper surface of the closed case 1.
The discharge pipe 31 is a hole 32 provided in the bearing frame 5,
It is arranged between the upper surface of the closed case 1 and the bearing frame 9.
And punching metal 33 with many small holes
Communicate with each other. The discharge chamber oil sump 34 provided under the motor chamber 6 is
The upper part of the motor chamber 6 and a part of the outer periphery of the stator 3b of the motor 3 are covered
They are communicated by a cooling passage 35 provided as a stack. Also,
The discharge chamber oil sump 34 is an oil hole B38b provided in the body frame 5.
Via the annular groove 28 and the Oldham ring 24
In the back pressure chamber 39 of the orbiting scroll 18 in which the main bearing 12
It is installed in the slewing bearing 14 through the minute gap of the sliding part of
It also communicates with the eccentric bearing space 36 via the oil groove A40a.
You. In addition, the oil hole B38b provided in the body frame 5 is a drive shaft.
4 is provided on the surface of the lower shaft portion 4a corresponding to the lower bearing 11.
The spiral oil groove 41 also leads to the spiral oil groove 41 winding direction.
Uses the viscosity of the lubricating oil when the drive shaft 4 rotates forward.
Provided for screw pump action, the end of which is
The shaft portion 4a is formed partway. As shown in FIGS. 6 and 7, the fixed scroll 15 is a suction chamber.
An arc-shaped suction passage 42 that connects both ends of 17 is provided.
Circular suction hole 43 orthogonal to this is fixed scroll wrap 15
It is also provided at a right angle to the side surface of a and is located at the bottom of the suction hole 43.
The portion reaches the side surface of the suction passage 42 in a plane. 8th
As shown in the figure, the center of the suction hole 43 should be aligned with the bottom surface 44 of the suction passage 42.
The size W45 of the opening to the suction passage 42 is defined by the suction hole 43
Is smaller than the diameter dimension of. Also. Suction hole 43
The suction pipe 47 of the accumulator 46 is connected to the
A suction pipe 47 is provided between the bottom surface 44 of the suction hole 43 and the suction pipe end surface 48.
Inner diameter dimension and suction hole between suction pipe end face 48 and bottom face 44
Larger than depth dimension L49 and larger than opening dimension W45
A check valve 50 made of a circular thin steel plate is arranged. 50 check valve
The surface has poor oil wetting characteristics and Teflon with high elasticity or
It is coated with rubber. In addition, the second compression that does not communicate with the suction chamber 17 or the discharge chamber 2
The chamber 51 and the outer peripheral space 37 are opened to the second compression chamber 51 and the end plate 15 is opened.
The small diameter injection hole 52 provided in b and the end plate 15b
Injection formed with resin heat insulating cover 53
Groove 54, a stepped oil hole C38c opened to the outer peripheral space 37
Oil passage C38c
The large-diameter portion 56 has a notch in a part of the outer circumference as shown in FIG.
Check valve 58 and coil spring 59 made of sheet steel with a slot 57
And are arranged to form a check valve device 58a. Koi
The le spring 59 is pressed against the heat insulating cover 53 and the check valve 58 is
Always energize. Opening position of oil hole C38c to outer peripheral space 37
Communicates with the discharge port 16 as shown in FIGS. 10 and 11.
The volume reduction process of the third compression chambers 60a, 60b is completed (discharge
Near the port 16 and immediately before the third compression chamber 60a, 60b opens)
When the orbiting scroll 18 has moved to (see Fig. 10),
The outer peripheral space 37 communicates with the oil hole C38c, and the other discharge ports
The volume of the third compression chamber 60a, 60b communicating with the port 16 is the largest
When the lap support disk 18c
It is provided at a position where it is blocked. In FIG. 12, the horizontal axis represents the rotation angle of the drive shaft 4,
The vertical axis shows the refrigerant pressure, which is used in the intake, compression, and discharge processes.
The pressure change state of the refrigerant gas is shown, and the solid line 62 indicates normal pressure.
The change in pressure during rotation is indicated by the dotted line 63 during abnormal pressure increase operation.
Indicates pressure change. In FIG. 13, the horizontal axis represents the rotation angle of the drive shaft 4,
The vertical axis indicates the refrigerant pressure, and the solid line 64 indicates the discharge chamber 2 as well as the suction chamber 17.
Injection into the second compression chambers 51a, 51b that do not communicate with
The change in pressure at the opening positions of holes 52a and 52b is shown by the dotted line 65
Is the first compression chamber 61a, 61b communicating with the suction chamber 17 (see FIG. 6).
Shows the pressure change at a fixed point, and the alternate long and short dash line 66 indicates discharge.
Pressure at a fixed point of the third compression chamber 60a, 60b communicating with chamber 2
The two-dot chain line 67 indicates the change and the first compression chambers 61a, 61b and the second pressure
It shows the pressure change at a fixed point between the compression chambers 51a and 51b.
The emphasis line 68 shows the pressure change in the back pressure chamber 39. Regarding the scroll refrigerant compressor configured as described above,
The operation will be described. 1 to 13, the drive shaft 4 is driven by the motor 3
When is driven to rotate, the orbiting scroll 18 makes an orbiting motion,
Suction containing lubricating oil from the refrigeration cycle connected to the compressor
The refrigerant gas is a suction pipe 47 connected to the accumulator 46,
It flows into the suction chamber 17 through the suction hole 43 and the suction passage 42 in order, and
Formed between the scroll 18 and the fixed scroll 15
The first compression chambers 61a and 61b are used to confine them inside the compression chambers.
The second compression chambers 51a, 51b and the third compression chambers 60a, 6 which are time-closed spaces
It is sequentially transferred to 0b, compressed and passed through the discharge port 16 in the center.
It is discharged into the discharge chamber 2. Discharged refrigerant gas containing lubricating oil
Through the bypass discharge pipe 29 connected to the outside of the compressor.
After returning to the motor room 6 in the compressor and the compressor,
Is discharged from the discharge pipe 31 into the motor but flows into the motor chamber 6.
The side surface of the upper coil end 30 of the motor 3
Of the lubricating oil by attaching to the surface of the motor winding.
A hole made in the bearing frame 9 after partly separated
When passing 32, change the flow direction or punching metal
When the oil passes through the small hole of
The throat effectively separates the lubricating oil. Part of the lubricating oil separated from the discharge gas is
After lubricating the sliding surface, cool the cooling passage 35 with the remaining lubricating oil.
As shown in the figure, while cooling the motor 3, the oil is collected in the oil reservoir 34 in the lower discharge chamber.
Gathered. The lubricating oil in the discharge chamber oil sump 34 is the surface of the lower shaft portion 4a of the drive shaft 4.
By the screw pump action of the spiral oil groove 41 provided on the surface,
Oil is supplied to the thrust ball bearing 13 and the end of the lower shaft 4a is
When lubricating oil passes through the bearing gap, the oil film seals
Depending on the application, the discharge refrigerant gas atmosphere of the motor chamber 6 and the main bearing 12
The upstream space of is cut off. Lubricating oil containing the dissolved discharge refrigerant gas of the discharge chamber oil sump 34,
When passing through the minute gap of the main bearing 12, discharge pressure and suction pressure
The pressure is reduced to an intermediate pressure and flows into the back pressure chamber 39.
After that, the oil groove A40a of the slewing bearing 14, the eccentric bearing space 36, the slewing disc
It flows into the outer peripheral space 37 through the oil hole A38 passing through the roll 18.
You. Furthermore, the cooling from the third compression chamber 60a, 60b to the discharge port 16
At the start of the medium gas discharge, the oil hole C is
38c is in the open state, and drive shaft rotation at point K in Fig. 13
As shown by the rolling angle, in each compression chamber, the hydraulic pressure is
There is no possibility of contraction and the pressure in the second compression chamber 64 is low
It is in. Therefore, the oil hole C38c,
After passing through the injection groove 54 and the injection holes 52a and 52b
It smoothly flows into the second compression chambers 51a, 51b with a large pressure difference,
Lubricate the sliding surface in the middle of the passage. In addition, the discharge chamber oil sump 34 is connected to the annular groove 28 and the release gap 27.
Since the thrust bearing 20 is
It is urged and is in contact with the end surface of the spacer 21. Also, the lap support disk 18c of the orbiting scroll 18 is
There is a slight gap between the last bearing 20 and the end plate 15b of the fixed scroll 15.
Holds a small gap and slides smoothly, and the fixed scroll
Between the end face of the roll wrap 15a and the lap support disc 18c,
Between the end face of the orbiting scroll wrap 18a and the end plate 15b.
The gap between the two is also kept small and the refrigerant gas between the adjacent compression chambers
Reduce leaks. Injection holes 52a, 52b opening of the second compression chambers 51a, 51b
Pressure changes 64 as shown in Fig. 13, and the pressure in the discharge chamber 2
It is instantaneously higher than the back pressure chamber pressure 68 which changes following the.
However, since the average pressure is low, the lubricating oil from the back pressure chamber 39
It will flow into the second compression chambers 51a, 51b intermittently and back pressure during normal operation
The pressure in the second compression chambers 51a, 51b, which is instantaneously higher than the chamber pressure 68,
The condensed refrigerant gas is reduced by the small diameter injection holes 52a, 52b.
Declined and instantaneous backflow to the injection groove 54 was small.
None, and when the compression stroke of the second compression chambers 51a, 51b progresses
Oil hole C38c is closed by lap support disc 18c
Therefore, backflow from the second compression chambers 51a, 51b to the outer peripheral space 37 is also possible.
Does not occur. Lubricating oil injected into the second compression chambers 51a, 51b
Joins the lubricating oil that has flowed into the compression chamber together with the suction refrigerant gas.
Then, seal the minute gap between the adjacent compression chambers with an oil film.
Prevents compressed refrigerant gas leakage and does not lubricate sliding surfaces between compression chambers.
The compressed refrigerant gas is discharged again into the discharge chamber 2. The lubricating oil differentially supplied to the back pressure chamber 39 is
The urging force of the intermediate pressure is swiveled with the elastic force of the ring 70.
Of the lap support disk 18c and the end plate 15b by acting on the mirror 18
The pressure oil film is sealed on the moving surface to create a space between the outer peripheral space 37 and the suction chamber 17.
Between the thrust bearing 20 and the lap support.
The gap between the sliding surface with the holding disk 18c is also lubricated and sealed. For a while after the cold start of the compressor,
As can be understood from FIG. 13, the pressure in the discharge chamber 2 is the second compression.
The pressure of the refrigerant gas, which is lower than the pressure in the chambers 51a and 51b and is being compressed,
From the second compression chamber 51a, 51b through the injection passage 55
It tries to flow back into the back pressure chamber 39, but the check valve 58
However, backflow to the outer peripheral space 37 is prevented, and the discharge chamber oil sump 34
As the lubricating oil rises in pressure in the discharge chamber 2, the back pressure chamber 39 and the outer peripheral space become empty.
Differential pressure is replenished up to 37. Therefore, the back pressure on the thrust bearing 20 at the initial stage of cold start is
The urging force is generated by the pressure in the compression chamber, and
The thrust load that tries to separate from the constant scroll 15
While thrusting, the thrust bearing 20 retreats slightly and swivels.
The axial clearance between the scroll 18 and the fixed scroll 15
You. Such axial bearing 20 axial compliance
The mechanism causes leakage in the compression space and reduces the pressure in the compression chamber.
And reduce the compression load in the initial stage of starting. Then, as the pressure in the discharge chamber 2 increases, the outer peripheral space 37
The lubricating oil resists the urging force of the coil spring 59 and
Injection holes 52a, 52b into the second compression chambers 51a, 51b.
Be cut. In addition, the oil injection
Pressure in case of instantaneous liquid compression due to
The pressure in the constriction chamber is an abnormal pressure rise as shown by the dotted line 63 in Fig. 12.
Overcompression occurs, but the discharge chamber 2 and high-pressure space communicating with it
Since the volume is large, the rise in discharge chamber pressure is extremely small. In addition, the liquid communication is used to communicate with the second compression chambers 51a and 51b.
The abnormal pressure rises in the injection groove 54, etc.
Due to the throttling effect of the oil hole C38c and the check valve 58
The space 37 and the injection groove 54 are shut off from each other. If there is a tracking delay in the check function of the check valve 58,
There is also a wrap support disk 18c that closes the oil hole C38c.
Help with this. On the contrary, wrap the oil hole C38c
The non-return action of the check valve 58 when the holding disk 18c is not blocked.
Function to help each other's weaknesses
To prevent backflow to the back pressure chamber 39. As a result, the pressure in the back pressure chamber 39 does not change, and the thrust bearing 20
There is no change in the back pressure urging force that acts on the back of the. Accordingly
During liquid compression, the excessive amount of force acting on the orbiting scroll 18
The thrust force causes the thrust bearing 20 to
Withdrawal, the pressure in the compression chamber drops, and then normal operation continues
You. It should be noted that the thrust bearing 20 retracts during liquid compression.
Therefore, the pressure in the compression chamber is halfway as shown by the alternate long and short dash line 63a in FIG.
Step down. After the compressor is stopped, the orbiting scroll 18
Reverse swing torque is generated in the
The discharged refrigerant gas flows back to the suction side. Of this discharged refrigerant gas
Following the reverse flow, the check valve 50 moves from the position shown in FIG. 6 to the position shown in FIG.
Position, Teflon coating applied to the surface of the check valve 50
Seals the end face 48 of the suction pipe to prevent the reverse flow of the discharge refrigerant gas.
It stops, the reverse rotation of the orbiting scroll 18 stops, and the intake passage
The space between 42 and the discharge port 16 holds the discharge pressure. Also, with the check valve 58 in the injection passage as the boundary,
The passage communicating with the compression chamber has the discharge pressure, but the outer space
The space between 37 and the back pressure chamber 39 is kept at an intermediate pressure for a while.
Hold and gradually increase due to a slight inflow of lubricating oil from the oil reservoir 34 in the discharge chamber.
Approaches the discharge pressure. Orbiting scroll when the compressor is stopped 18
Reverses and stops at the expanded position of the third compression chamber 60a, 60b
However, the opening of the oil hole C38c to the outer peripheral space 37 is lap supported.
It is blocked by the disc 18c. After the compressor is stopped, the coil sp
The check valve 58 is also injected by the urging force of the ring 59.
Since it shuts off the passage 55, the space from the outer peripheral space 37 to the compression chamber
There is no inflow of lubricating oil. In addition, this scroll refrigerant compressor is installed in the refrigeration cycle.
Intake immediately after switching from heating operation to defrosting operation
Side becomes high pressure and discharge side becomes low pressure. However,
From the compression chamber to the outer space 37
It is possible to prevent the reverse flow of the refrigerant gas to the. Further, in the above embodiment, the lubricating oil in the discharge chamber oil sump 34 is constantly maintained.
Oil injection into the second compression chambers 51a and 51b, which are closed spaces.
However, if there is always a compressed space without a closed space,
The same is true. Also, depending on operating conditions such as compressor operating speed and pressure,
In the first compression chamber 61a, 61b leading to the suction chamber 17 or the suction chamber 17
Even when oil is injected, the action of the check valve 58 causes the first compression chamber to operate.
Refrigerant gas from 61a, 61b or suction chamber 17 to outer peripheral space 37
Backflow can be prevented. In the above embodiment, the stepped shape having the small diameter portion is used.
Secure the oil hole C38c, check valve 58 and coil spring 59
Although it was installed on the end plate 15b of the roll 15,
It may be provided on the rotating shaft 18b or the lap supporting disk 18c. In this configuration, due to the abnormal pressure rise in the compression space,
Therefore, the refrigerant gas flows backward from the compression space to the outer peripheral space 37.
However, the check valve action prevents the backflow to the back pressure chamber 39.
It is possible to prevent the lubricating oil from flowing out of the back pressure chamber 39 and the discharge chamber oil sump 34.
You. Further, the refrigerant gas flows backward from the compression space to the outer peripheral space 37.
As a result, the pressure in the outer peripheral space 37 also rises and thrust
The bearing 20 is retracted to the side opposite to the compression chamber. As a result,
Roll 18 is easily separated from fixed scroll 15 in the axial direction
The axial clearance in the compression chamber expands and the compression chamber clearance is released.
So the thrust bearing 20 axial compliance machine
It can also assist the quick operation of the structure. Further, in the above embodiment, the discharge chamber oil sump 34 and the back pressure chamber 39 are
From the discharge chamber oil sump 34, communicating through a minute gap in the main bearing 12
The lubricating oil was depressurized to keep the back pressure chamber 39 at an intermediate pressure.
Compressor usage conditions (compressor load and operating speed range vary greatly)
Depending on the threshold, etc., the oil provided on the body frame 5
In the passage branched from the hole B38b, the discharge chamber oil sump 34 and the back pressure chamber 39
The back pressure chamber 39 can be made to correspond to the discharge pressure by directly communicating with. Further, in the above embodiment, the eccentric bearing is provided at the tip of the drive shaft 4.
Although the slewing bearing 14 in the form of providing the space 36 is provided, FIG.
As shown in Fig. 15, the eccentric bearing space is installed in the orbiting scroll.
In the case of bearings that form a swivel bearing with the drive shaft
Also exhibits the same actions and effects as described above. Further, in the above embodiment, the refrigerant compressor has been described.
But use other lubricants such as oxygen, nitrogen, helium and other
Similar effects can be expected in the case of a gas compressor. As described above, according to the present invention, the main bearing 12 that supports the drive shaft 4 is used.
Between the body frame 5 and the fixed scroll 15
18 times scroll 18 is placed, orbiting scroll 18 wrap
The support disc 18c supports the wrap support disc 18c on the side opposite to the compression chamber.
In order to do so, the thrust bearing 20 provided on the main body frame 5 and the
A fine film that can form an oil film between the fixed scroll 15 and the end plate 15b.
It is arranged with a small gap, and the thrust bearing 20
End plate 15b and body frame 5 to accommodate the support disc 18c.
The pressure from the discharge chamber oil sump 34 which is formed by
The outer space 37, which is physically isolated, is placed and the wrap support is
Partitioned from thrust bearing 20 on the side opposite to the compression chamber of holding disk 18c
The back pressure chamber 19 of the orbiting scroll 18 to the main bearing 12
Adjacent to each other, the discharge chamber oil sump 34 and the compression space are the back pressure chamber 39 and
The differential pressure oil supply passage that sequentially passes through the outer peripheral space 37
A back pressure chamber 39 is provided in the middle of the oil passage between the pressure chamber 39 and the outer peripheral space 37.
Non-return valve device 58a that allows only inflow from the outer peripheral space 37
In the configuration where the
Install the thrust bearing 20 between the bearing 20 and the body frame 5.
A biasing means for biasing the fixed scroll 15 is provided to rotate the scroll.
The orbiting scroll 18 has a fixed scroll 15 and a thrust bearing 20.
Between them, there should be at least an axial minute gap where an oil film can be formed.
The thrust bearing 20 has a swivel scroll to be arranged.
Ruler 21 that regulates the range of movement to the side of
Axial compliance mechanism of the strike bearing 20
The pressure in the partial space 37 biases the thrust bearing 20 toward the side opposite to the compression chamber.
Therefore, part of the wall surface of the outer peripheral space 37 is installed in the thrust bearing 20.
As a result, the lubricating oil in the discharge chamber oil sump 34 is
Via the space 37 into the compression space consisting of the suction chamber 17 and the compression chamber
As it is supplied, the slurry in the outer peripheral space 37 on the way
Lubrication and compression chamber clearance on the sliding contact surface between the strike bearing 20 and the end plate 15b
Can be oil film sealed. Thereby the frictional resistance
Reduces gas leakage during compression, reduces input and improves durability
And the compression efficiency can be improved. In addition, the compressed air rises abnormally and the gas in the compression space
Tries to flow backward toward the back pressure chamber 39 and the discharge chamber oil sump 34.
At this time, the check valve device 58a acts to prevent gas backflow to the back pressure chamber 39.
Block, thereby back pressure chamber 39 and main bearing 12 and discharge
Prevents the lubricating oil from flowing out of the chamber oil sump 34 and improves the durability of the main bearing 12.
And obtaining the effect of differential pressure lubrication to the compression space described above
Can be. Moreover, in particular, the thrust increases due to the pressure increase in the outer peripheral space 12.
The back pressure of the bearing 20 is promoted to promote the backward movement to the side opposite to the compression chamber.
Since the pressure rise in the chamber 39 can be prevented, abnormal pressure in the compression space
Ascend to move axially away from the fixed scroll 15
The swivel scroll 18 moves quickly,
Early overcompression can be reduced by early release of intersealing. Further, according to the present invention, the back pressure chamber 39 and the outer peripheral space 37 are connected to each other.
Pass the oil passage through the center of the lap support disc 18c.
Through the oil hole 18a having a throttle passage extending from
The outer peripheral space 37 side from the throttle passage in the middle of the oil hole 18a
By arranging the check valve device 58a in the
Can be placed long. This stabilizes the passage resistance to the compression space.
It is possible to prevent excessive or insufficient refueling. Also, check valve
It is possible to speed up usage and improve reliability.

【図面の簡単な説明】 第1図は本発明の一実施例におけるスクロール冷媒圧縮
機の縦断面図、第2図は同圧縮機における主要部品の分
解図、第3図は第1図におけるスラスト軸受のシール部
の詳細部分断面図、第4図は同圧縮機におけるオルダム
リングの外観図、第5図は第1図に関するオルダム機構
部の組立外観図、第6図は第1図のA−A線による断面
図、第7図は第6図における吸入管接続部における逆止
弁の位置説明図、第8図は第7図におけるB−B線によ
る部分断面図、第9図は同圧縮機の油インジェクション
通路に用いる逆止弁の外観図、第10図、第11図はそれぞ
れ同圧縮機の吐出ポート付近における圧縮室の移動説明
図、第12図は同圧縮機の吸入行程から吐出行程までの冷
媒ガスの圧力変化を示す特性図、第13図は各圧縮室にお
ける定点の圧力変化を示す特性図、第14図、第15図はそ
れぞれ異なる従来のスクロール圧縮機の縦断面図であ
る。 2……吐出室、3……モータ、4……駆動軸、5……本
体フレーム、12……主軸受、15……固定スクロール、15
a……固定スクロールラップ、15b……鏡板、16……吐出
ポート、17……吸入室、18……旋回スクロール、18a…
…旋回スクロールラップ、18c……ラップ支持円板、34
……吐出室油溜、39……背圧室、52a,52b……インジェ
クション穴、54……インジェクション溝、55……油イン
ジェクション通路、58……逆止弁、58a……逆止弁装
置、59……コイルスプリング。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical cross-sectional view of a scroll refrigerant compressor according to an embodiment of the present invention, FIG. 2 is an exploded view of main parts of the compressor, and FIG. 3 is thrust in FIG. FIG. 4 is a detailed partial cross-sectional view of the seal portion of the bearing, FIG. 4 is an external view of an Oldham ring in the compressor, FIG. 5 is an external view of the Oldham mechanism assembly relating to FIG. 1, and FIG. FIG. 7 is a sectional view taken along line A, FIG. 7 is an explanatory view of the position of the check valve in the suction pipe connecting portion in FIG. 6, FIG. 8 is a partial sectional view taken along line BB in FIG. 7, and FIG. Fig. 10 is an external view of the check valve used in the oil injection passage of the compressor, Fig. 10 and Fig. 11 are explanatory views of the movement of the compression chamber near the discharge port of the compressor, and Fig. 12 is the discharge from the suction stroke of the compressor. Characteristic diagram showing the pressure change of the refrigerant gas up to the stroke, Fig. 13 shows each compression chamber Kicking characteristic diagram showing a pressure change in the fixed point, FIG. 14, FIG. 15 is a longitudinal sectional view of a different conventional scroll compressor. 2 ... Discharge chamber, 3 ... Motor, 4 ... Drive shaft, 5 ... Main frame, 12 ... Main bearing, 15 ... Fixed scroll, 15
a: Fixed scroll wrap, 15b: End plate, 16 ... Discharge port, 17 ... Suction chamber, 18 ... Orbiting scroll, 18a ...
… Orbiting scroll wrap, 18c …… Wrap support disc, 34
…… Discharge chamber oil sump, 39 …… Back pressure chamber, 52a, 52b …… Injection hole, 54 …… Injection groove, 55 …… Oil injection passage, 58 …… Check valve, 58a …… Check valve device, 59 …… Coil spring.

Claims (1)

(57)【特許請求の範囲】 1.固定スクロール15の一部をなす鏡板15bの一面に形
成されたうず巻状の固定スクロールラップ15aに対して
旋回スクロール18の一部をなすラップ支持円板18c上の
旋回スクロールラップ18aを揺動回転自在にかみあわ
せ、両スクロール間に吸入室17と圧縮室とから成る渦巻
き形の圧縮空間を形成し、前記固定スクロールラップ15
aの中心部には吐出ポート16を設け、前記固定スクロー
ルラップ15aの外側には前記吸入室17を設け、前記圧縮
空間は吸入側より吐出側に向けて連続移行する複数個の
前記圧縮室を備えて流体を圧縮するスクロール圧縮機構
を形成し、前記スクロール圧縮機構とモータ3を密閉ケ
ース1内に収納し、前記旋回スクロール18を旋回駆動さ
せるべく前記モータ3に連結した駆動軸4を支承する主
軸受12を有する本体フレーム5と前記固定スクロール15
との間に前記旋回スクロール18が配置され、前記ラップ
支持円板18cは、前記ラップ支持円板18cの反圧縮室側を
支持すべく前記本体フレーム5に設けられたスラスト軸
受20と前記鏡板15bとの間に油膜形成が可能な微小隙間
で配置され、前記スラスト軸受20の隣接外周部には前記
ラップ支持円板18cを収納すべく前記鏡板15bと前記本体
フレーム5とで形成して吐出圧力が作用する吐出室油溜
34から圧力的に隔離した外周部空間37を配置すると共
に、前記ラップ支持円板18cの反圧縮室側で且つ前記ス
ラスト軸受20と区画された内側に前記旋回スクロール18
の背圧室39を前記主軸受12に隣接して設け、前記吐出室
油溜34と前記圧縮空間とは前記背圧室39と前記外周部空
間37を順次経由する差圧給油通路で連通し、前記背圧室
39と前記外周部空間37との間の油路の途中に前記背圧室
39から前記外周部空間37へのみの流入を許容する逆止弁
装置58aを配置した構成において、軸方向に移動が可能
な前記スラスト軸受20と前記本体フレーム5との間に、
前記スラスト軸受20を前記固定スクロール15の方向に付
勢する付勢手段を設け、前記旋回スクロール18が前記固
定スクロール15と前記スラスト軸受20との間で、少なく
とも油膜形成が可能な軸方向微小隙間を有して配置され
るべく、前記スラスト軸受20が前記旋回スクロール18の
側へ移動する範囲を規制する手段21を設けた前記スラス
ト軸受20の軸方向コンプライアンス機構を備え、前記外
周部空間37の圧力が前記スラスト軸受20を反圧縮室側に
付勢すべく、前記スラスト軸受20に前記外周部空間37の
壁面の一部を構成させたスクロール気体圧縮機。 2.背圧室39と外周部空間37との間を連通する油路を、
ラップ支持円板18c内に設けた中心側から外周側に至る
絞り通路を有する油穴18aを経由させ、前記油穴18aの途
中の前記絞り通路よりも前記外周部空間37の側に逆止弁
装置58aを配置した特許請求の範囲第1項記載のスクロ
ール気体圧縮機。
(57) [Claims] The orbiting scroll wrap 18a on the lap support disc 18c forming a part of the orbiting scroll 18 is rockingly rotated with respect to the spiral scroll-shaped fixed scroll wrap 15a formed on one surface of the end plate 15b forming a part of the fixed scroll 15. The fixed scroll wrap 15 can be freely engaged with each other to form a spiral compression space composed of a suction chamber 17 and a compression chamber between the scrolls.
A discharge port 16 is provided at the center of a, the suction chamber 17 is provided outside the fixed scroll wrap 15a, and the compression space is formed by a plurality of the compression chambers that continuously move from the suction side toward the discharge side. A scroll compression mechanism for compressing a fluid is formed, the scroll compression mechanism and the motor 3 are housed in the closed case 1, and the drive shaft 4 connected to the motor 3 is supported to drive the orbiting scroll 18 to orbit. Main body frame 5 having main bearing 12 and said fixed scroll 15
The orbiting scroll 18 is disposed between the wrap support disc 18c and the lap support disc 18c, and the lap support disc 18c is provided with the thrust bearing 20 and the end plate 15b provided on the main body frame 5 to support the wrap support disc 18c on the side opposite to the compression chamber. Is formed with a minute gap capable of forming an oil film between the end plate 15b and the main body frame 5 to accommodate the lap support disk 18c at the outer peripheral portion adjacent to the thrust bearing 20. Discharge chamber oil reservoir
An outer peripheral space 37 that is pressure-isolated from 34 is arranged, and the orbiting scroll 18 is provided on the side opposite to the compression chamber of the lap support disk 18c and inside the thrust bearing 20.
A back pressure chamber 39 is provided adjacent to the main bearing 12, and the discharge chamber oil reservoir 34 and the compression space communicate with each other through a differential pressure oil supply passage that sequentially passes through the back pressure chamber 39 and the outer peripheral space 37. , The back pressure chamber
The back pressure chamber is provided in the middle of the oil passage between the outer peripheral space 37 and the outer peripheral space 37.
In the structure in which the check valve device 58a that allows only the inflow from 39 to the outer peripheral space 37 is arranged, between the thrust bearing 20 and the main body frame 5 that are movable in the axial direction,
An urging means for urging the thrust bearing 20 in the direction of the fixed scroll 15 is provided, and the orbiting scroll 18 is provided between the fixed scroll 15 and the thrust bearing 20 so that at least an axial minute gap capable of forming an oil film. The thrust bearing 20 is provided with an axial compliance mechanism of the thrust bearing 20 provided with means 21 for restricting the range in which the thrust bearing 20 moves toward the orbiting scroll 18, so that the outer peripheral space 37 A scroll gas compressor in which the thrust bearing 20 constitutes a part of the wall surface of the outer peripheral space 37 so that the pressure urges the thrust bearing 20 toward the side opposite to the compression chamber. 2. An oil passage communicating between the back pressure chamber 39 and the outer peripheral space 37,
A check valve is provided in the lap support disk 18c via an oil hole 18a having a throttle passage extending from the center side to the outer peripheral side, and is located closer to the outer peripheral space 37 than the throttle passage in the middle of the oil hole 18a. The scroll gas compressor according to claim 1, further comprising a device 58a.
JP62332004A 1987-12-28 1987-12-28 Scroll gas compressor Expired - Fee Related JP2692097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62332004A JP2692097B2 (en) 1987-12-28 1987-12-28 Scroll gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62332004A JP2692097B2 (en) 1987-12-28 1987-12-28 Scroll gas compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9003456A Division JP2980045B2 (en) 1997-01-13 1997-01-13 Scroll gas compressor

Publications (2)

Publication Number Publication Date
JPH01177483A JPH01177483A (en) 1989-07-13
JP2692097B2 true JP2692097B2 (en) 1997-12-17

Family

ID=18250061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62332004A Expired - Fee Related JP2692097B2 (en) 1987-12-28 1987-12-28 Scroll gas compressor

Country Status (1)

Country Link
JP (1) JP2692097B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447185A (en) * 1990-06-15 1992-02-17 Hitachi Ltd Scroll compressor
US6171088B1 (en) * 1999-10-13 2001-01-09 Scroll Technologies Scroll compressor with slanted back pressure seal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778391B2 (en) * 1985-07-05 1995-08-23 松下電器産業株式会社 Scroll gas compressor

Also Published As

Publication number Publication date
JPH01177483A (en) 1989-07-13

Similar Documents

Publication Publication Date Title
JP2782858B2 (en) Scroll gas compressor
JPH08193583A (en) Scroll gas compressor
JPH07117049B2 (en) Scroll compressor
JP3045961B2 (en) Scroll gas compression
JP2692097B2 (en) Scroll gas compressor
JP3019770B2 (en) Scroll gas compressor
JP2790126B2 (en) Scroll gas compressor
JPH09310687A (en) Scroll type compressor
JP2820137B2 (en) Scroll gas compressor
JP2785807B2 (en) Scroll gas compressor
JPH0739836B2 (en) Scroll gas compressor
JPH01177481A (en) Scroll compressor
JP2870489B2 (en) Scroll gas compressor
JP2785805B2 (en) Scroll gas compressor
JP2870490B2 (en) Scroll gas compressor
JP2870488B2 (en) Scroll gas compressor
JP2980045B2 (en) Scroll gas compressor
JP2615527B2 (en) Scroll gas compressor
JPH0826862B2 (en) Scroll gas compressor
JP2785819B2 (en) Scroll compressor
JPH08303368A (en) Scroll gas compressor
JPH073229B2 (en) Scroll gas compressor
JP2870509B2 (en) Scroll gas compressor
JPH0733830B2 (en) Scroll gas compressor
JPH0819911B2 (en) Rotation prevention device for scroll compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees