JPH01177483A - Scroll gas compressor - Google Patents

Scroll gas compressor

Info

Publication number
JPH01177483A
JPH01177483A JP33200487A JP33200487A JPH01177483A JP H01177483 A JPH01177483 A JP H01177483A JP 33200487 A JP33200487 A JP 33200487A JP 33200487 A JP33200487 A JP 33200487A JP H01177483 A JPH01177483 A JP H01177483A
Authority
JP
Japan
Prior art keywords
chamber
compression
oil
back pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33200487A
Other languages
Japanese (ja)
Other versions
JP2692097B2 (en
Inventor
Katsuharu Fujio
藤尾 勝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62332004A priority Critical patent/JP2692097B2/en
Publication of JPH01177483A publication Critical patent/JPH01177483A/en
Application granted granted Critical
Publication of JP2692097B2 publication Critical patent/JP2692097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To reduce a starting load and to improve compression efficiency, by a method wherein a back pressure chamber and the oil reservoir of a delivery chamber are intercommunicated through a throttle passage, and a check valve device is located in the middle of an oil injection passage through which the back pressure chamber and a compression space are intercommunicated. CONSTITUTION:A revolving scroll 18 is situated between a body frame 5 and a stationary scroll 15. A back pressure chamber 39 is formed on the counter- compression space side of the revolving scroll 18. The back pressure chamber 39 is communicated to an oil reservoir 34 of a delivery chamber through the fine gap of a main bearing 12. The back pressure chamber is communicated to second compression chambers 51a and 51b, having a pressure lower than that of the back pressure chamber 39, through an oil injection passage 55 formed in an end plate 15b of the stationary scroll 15. A check valve 58 is situated in the middle of the oil injection passage 55. This constitution enables reduction of a starting load and improvement of compression efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスクロール気体圧縮機の油インジェクションに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to oil injection for scroll gas compressors.

従来の技術 スクロール圧縮機は、吸入室が外周部に有り、吐出ポー
トが渦巻きの中心部に設けられ、圧縮流体の流れが一方
向で往復動式圧縮機や回転式圧縮機のような流体を圧縮
するための吐出弁を必要とせず圧縮比が一定で、吐出脈
動も比較的小さ(て大きな吐出空間を必要としないこと
が一般に知られている。
Conventional technology Scroll compressors have a suction chamber on the outer periphery, a discharge port in the center of the spiral, and compressed fluid flows in one direction, unlike in reciprocating compressors and rotary compressors. It is generally known that a discharge valve for compression is not required, the compression ratio is constant, the discharge pulsation is relatively small (and a large discharge space is not required).

しかし、特に気体を圧縮する場合などは圧縮部の漏れ隙
間を小さくするために渦巻き部の寸法精度を極めて高く
する必要があるが、部品形状の複雑さ、寸法精度のバラ
ツキなどにより、スクロール気体圧縮機のコストが高く
性能のバラツキも大きいという問題があった。
However, especially when compressing gas, it is necessary to make the dimensional accuracy of the scroll part extremely high in order to reduce the leakage gap in the compression part. The problem was that the machine cost was high and performance varied widely.

そこで、この種の問題解決のための方策として、圧縮途
中の気体漏れ防止のために潤滑油膜を利用したシール効
果により、渦巻き部寸法精度の適性化と圧縮機性能の安
定化を期待することが大きく、第14図に示すように吐
出室底部の潤滑油を圧縮途中の圧縮室に直接流入させる
構成が考えられる。
Therefore, as a measure to solve this type of problem, it is expected that the dimensional accuracy of the spiral part will be optimized and the compressor performance will be stabilized by using a sealing effect using a lubricating oil film to prevent gas leakage during compression. Broadly speaking, as shown in FIG. 14, a configuration can be considered in which lubricating oil at the bottom of the discharge chamber is directly flowed into the compression chamber during compression.

同図は密閉容器701内の上部にモータ703を配置し
、下部に圧縮部を配置して密閉容器内空間702を吐出
室とした構造で、吐出室底部の油溜710の潤滑油を油
吸い込み管722を介して圧縮途中の圧縮室723に直
接流入させる構成がある(特開昭57−8386号公報
)。
The figure shows a structure in which a motor 703 is placed in the upper part of an airtight container 701, and a compression part is placed in the lower part, and a space 702 inside the airtight container is used as a discharge chamber. There is a configuration in which the air is directly introduced into a compression chamber 723 during compression via a pipe 722 (Japanese Patent Laid-Open No. 57-8386).

また、第15図の構成も考えられ、旋回スクロール80
1には密閉空間809と背圧室817を連通ずる絞り効
果を有した導通孔818が設けられ、背圧室817が吸
入圧力と吐出圧力の中間圧力状態で旋回スクロール80
1を固定スクロール802に押し付ける構造で、吐出室
812に通じるモータ816の下部の油溜899の潤滑
油は、クランク軸807に設けられた長手方向の溝71
9.720.721、クランク軸807を支持する各軸
受の摺動部隙間を介して背圧室817に流入し、さらに
導通孔818を介して密閉空間809に流入させる構成
がある(特開昭59−110884号公報)。
Further, the configuration shown in FIG. 15 is also considered, and the orbiting scroll 80
1 is provided with a through hole 818 having a throttling effect that communicates the sealed space 809 and the back pressure chamber 817.
1 is pressed against the fixed scroll 802, and the lubricating oil in the oil reservoir 899 at the bottom of the motor 816, which communicates with the discharge chamber 812, flows through the longitudinal groove 71 provided in the crankshaft 807.
9.720.721, there is a configuration in which the flow flows into the back pressure chamber 817 through the sliding part gap of each bearing that supports the crankshaft 807, and further flows into the closed space 809 through the conduction hole 818 (Japanese Patent Application Laid-Open No. 59-110884).

発明が解決しようとする問題点 しかしながら上記の第14図のような吐出圧力に等しい
密閉容器内空間702の底部の油纒710の潤滑油を、
圧縮途中の圧縮室723に差圧により流入させる構成で
は、冷媒圧縮機などのように閉循環系で使用する際に、
圧縮機停止中にその自重や差圧等により圧縮機外部の冷
凍サイクルから圧縮機内に帰還した多量の冷媒が液化状
態で油溜710ノ上部のモータ703下面にまで溜まり
、冷媒液や潤滑油が油吸い込み管722などを通じて圧
縮室723に流入し充満する場合もある。このような状
態では、圧縮負荷が過大のため再起動運転不能であり、
例えモータ703の起動トルクが大きくて再起動できる
とも圧縮機破損を招く。
Problems to be Solved by the Invention However, if the lubricating oil in the oil outlet 710 at the bottom of the closed container internal space 702 is equal to the discharge pressure as shown in FIG.
In a configuration where differential pressure is used to flow into the compression chamber 723 during compression, when used in a closed circulation system such as a refrigerant compressor,
While the compressor is stopped, a large amount of refrigerant that returns to the compressor from the refrigeration cycle outside the compressor due to its own weight and differential pressure accumulates in a liquefied state on the underside of the motor 703 above the oil sump 710, causing refrigerant liquid and lubricating oil to evaporate. In some cases, the oil may flow into the compression chamber 723 through the oil suction pipe 722 and fill it. In this situation, the compression load is too high and restart operation is not possible.
Even if the motor 703 has a large starting torque and can be restarted, the compressor will be damaged.

また、圧縮室723と油溜710とが常時連通する構成
のため、スクロール圧縮機構において流体圧縮のための
吐出弁を必要とせず、圧縮比が一定なために、閉サイク
ル配管系に接続して運転する圧縮機の冷時起動後しばら
くの間は圧縮室723よりも密閉容器内空間702の油
溜710の方が低圧力の状態が続き、圧縮室723の圧
縮途上気体が油溜710に逆流し、油溜710の潤滑油
が逆流気体によって拡散され、吐出気体と共に圧縮機の
外部配管系に流出して無(なる。このため、圧縮機起動
後しばらくして密閉容器内空間702の圧力が上昇して
圧縮室723の圧力よりも高い状態になった場合でも、
潤滑油が再び油溜710に収集されるまでは圧縮室72
3への潤滑油流入による圧縮室間隙間の密封効果もなく
、逆に密閉容器内空間702の圧縮気体が圧縮室723
に流入して圧縮効率の著しい低下や異常温度上昇、圧縮
室異常圧力上昇などによる摺動部耐久性の低下を招くと
いう問題があった。
In addition, because the compression chamber 723 and the oil reservoir 710 are configured to constantly communicate with each other, there is no need for a discharge valve for fluid compression in the scroll compression mechanism, and the compression ratio is constant, so it can be connected to a closed cycle piping system. For a while after the operating compressor is started when the compressor is cold, the pressure in the oil sump 710 in the closed container interior space 702 continues to be lower than that in the compression chamber 723, and the gas in the process of being compressed in the compression chamber 723 flows back into the oil sump 710. However, the lubricating oil in the oil sump 710 is diffused by the backflow gas and flows out into the external piping system of the compressor together with the discharged gas, becoming empty.As a result, the pressure in the closed container space 702 decreases shortly after the compressor is started. Even if the pressure rises and becomes higher than the pressure in the compression chamber 723,
compression chamber 72 until the lubricating oil is collected again in sump 710.
There is no effect of sealing the gap between the compression chambers due to the inflow of lubricating oil into
There is a problem in that the durability of the sliding part is reduced due to a significant decrease in compression efficiency, an abnormal increase in temperature, and an abnormal increase in pressure in the compression chamber.

また、上記の第15図のような密閉空間809と背圧室
817とを直接連通ずる構成では、上記の場合と同様に
圧縮機の冷時起動後しばらくの間は、密閉空間809お
よび背圧室817よりも吐出室812の方が低圧力の状
態が続き、圧縮途中気体が導通孔81日、背圧室817
、クランク軸807の軸受部隙間、長手方向の溝719
.720.721を経由して油溜に逆流し、上記の場合
と同様に油溜の潤滑油が拡散され、場合によっては吐出
気体と共に潤滑油が圧縮機外に流出する。また、背圧室
817とクランク軸807の軸受部に貯溜していた潤滑
油が流出する。このため、冷時起動初期の摺動部潤滑が
不十分で耐久性低下の主要因でもあった。
In addition, in the configuration in which the sealed space 809 and the back pressure chamber 817 are directly communicated as shown in FIG. 15 above, the sealed space 809 and the back pressure The pressure in the discharge chamber 812 continues to be lower than that in the chamber 817, and during compression the gas flows through the communication hole 81 and back pressure chamber 817.
, bearing gap of crankshaft 807, longitudinal groove 719
.. The lubricating oil flows back into the oil sump via 720 and 721, and the lubricating oil in the oil sump is diffused in the same way as in the above case, and in some cases, the lubricating oil flows out of the compressor together with the discharged gas. Furthermore, the lubricating oil stored in the back pressure chamber 817 and the bearing portion of the crankshaft 807 flows out. This resulted in insufficient lubrication of the sliding parts at the initial stage of cold start-up, which was the main cause of reduced durability.

また、密閉空間809で液圧縮などが生じて異常圧力上
昇し圧縮負荷が急増した場合も、上記同様の潤滑油の流
出が生じると共に密閉空間が正常な圧力状態に復帰した
直後も背圧室817の圧力は異常上昇しており、その背
圧力によって旋回スクロール801が固定スクロール8
02に強く押し付けられ、摺動面の摩擦や摩耗による入
力損失や耐久性低下を招くなどの問題があった。
In addition, even if liquid compression occurs in the sealed space 809 and the compression load increases rapidly due to an abnormal pressure rise, lubricating oil will leak as described above, and immediately after the sealed space returns to the normal pressure state, the back pressure chamber 817 The pressure has increased abnormally, and the back pressure causes the orbiting scroll 801 to
02, which caused problems such as friction and wear on the sliding surface, resulting in input loss and decreased durability.

そこで、本発明は背圧室から圧縮室への給油通路の途中
に逆止弁装置を設けて、圧縮゛気体の逆流を防止し、潤
滑油の有効利用による圧縮効率や耐久性に優れたスクロ
ール気体圧縮機を提供するものである。
Therefore, the present invention provides a check valve device in the middle of the oil supply passage from the back pressure chamber to the compression chamber to prevent the backflow of compressed gas and improve the compression efficiency and durability of the scroll by effectively utilizing lubricating oil. The present invention provides a gas compressor.

問題点を解決するための手段 上記問題を解決するために本発明のスクロール気体圧縮
機は、旋回スクロールの背圧室が吐出ポートに通じる吐
出室の油溜または吐出室に通じる油溜と絞り通路を介し
て連通ずると共に、背圧室よりも圧力の低い圧縮空間と
は固定スクロールの鏡板または旋回スクロールのラップ
支持円板を介して設けた油インジェクション通路で連通
し、インジェクション通路の途中に逆止弁装置を備えた
構成である。
Means for Solving the Problems In order to solve the above problems, the scroll gas compressor of the present invention provides an oil sump in a discharge chamber where the back pressure chamber of the orbiting scroll communicates with the discharge port, or an oil sump and a throttle passage that communicate with the discharge chamber. It also communicates with the compression space, which has a lower pressure than the back pressure chamber, through an oil injection passage provided through the end plate of the fixed scroll or the lap support disk of the orbiting scroll, and there is a back check in the middle of the injection passage. This configuration includes a valve device.

作  用 本発明は上記構成によって、圧縮機が冷時始動し、吸入
気体は圧縮空間を経て吐出室に吐出され、吐出室圧力を
次第に上昇させる。
Operation According to the above configuration, the compressor is started when cold, the intake gas is discharged into the discharge chamber through the compression space, and the pressure in the discharge chamber is gradually increased.

一方、油インジェクション通路の開口する圧縮空間の圧
力が吐出室圧力よりも高い間は、逆止弁装置の作動によ
って油インジェクション通路が遮断され、圧縮途中気体
が背圧室や絞り通路を介して吐出室の油溜(または吐出
室に通じる油溜)へ逆流せず、背圧室や絞り通路途中の
潤滑油は維持され、摺動面の給油に供される。
On the other hand, while the pressure in the compression space where the oil injection passage opens is higher than the discharge chamber pressure, the oil injection passage is shut off by the operation of the check valve device, and the gas during compression is discharged through the back pressure chamber and the throttle passage. The lubricating oil does not flow back into the oil sump in the chamber (or the oil sump leading to the discharge chamber), and the lubricating oil in the back pressure chamber and the throttle passage is maintained and used to lubricate the sliding surfaces.

その後、油溜の潤滑油は吐出室圧力の上昇と共に差圧に
より絞り通路を通じて背圧室に供給され、背圧室圧力の
上昇と共に油インジェクション通路を通じて圧縮空間に
給油され、圧縮室間の微少隙間を油膜で密封して圧縮気
体漏れを防ぎ、圧縮効率の向上と起動初期の摺動部耐久
性の向上を図る。
Thereafter, the lubricating oil in the oil sump is supplied to the back pressure chamber through the throttle passage as the pressure in the discharge chamber increases, and is supplied to the compression space through the oil injection passage as the pressure in the back pressure chamber increases, creating a minute gap between the compression chambers. The compressor is sealed with an oil film to prevent compressed gas from leaking, improving compression efficiency and improving the durability of the sliding parts during the initial startup stage.

また、油インジェクション通路の開口する圧縮空間で液
圧縮が生じ、異常圧力上昇した場合も、逆止弁装置の作
動によって圧縮途中気体が背圧室に逆流せず、背圧室圧
力も上昇しない。その結果、圧縮空間圧力によって旋回
スクロールが背圧室の側へ後退して圧縮空間の隙間を拡
大し、圧縮室圧力を降下させて過負荷軽減も図るもので
ある。
Further, even if liquid compression occurs in the compression space where the oil injection passage opens and the pressure rises abnormally, the check valve device operates so that the gas during compression does not flow back into the back pressure chamber, and the pressure in the back pressure chamber does not rise. As a result, the orbiting scroll retreats toward the back pressure chamber due to the compression space pressure, expanding the gap in the compression space, lowering the compression chamber pressure, and reducing overload.

実施例 以下本発明の実施例のスクロール圧縮機について、図面
を参照しながら説明する。
Embodiments Below, scroll compressors according to embodiments of the present invention will be described with reference to the drawings.

第1図において、1は鉄製の密閉ケースで、その内部全
体は吐出室2に連通ずる高圧雰囲気となり、上部にモー
タ3、下部に圧縮部を配置し、モータ3の回転子3mに
固定された駆動軸4を支承する圧縮部の本体フレーム5
により密閉ケース1の内部がモータ室6と吐出室とに仕
切られている。
In Fig. 1, 1 is a sealed iron case, the entire inside of which is in a high-pressure atmosphere communicating with the discharge chamber 2, with a motor 3 in the upper part and a compression part in the lower part, which is fixed to the 3 m rotor of the motor 3. Main body frame 5 of the compression part that supports the drive shaft 4
The interior of the sealed case 1 is partitioned into a motor chamber 6 and a discharge chamber.

本体フレーム5は軽量化と軸受部の熱発散を主目的とし
た熱伝導特性に優れたアルミニウム合金製で、その外周
部に溶接性に優れた鉄製のライナー8が焼はめ固定され
、ライナー8の外周面が密閉ケース1に全周内接し、部
分的に溶接固定されている。
The main body frame 5 is made of an aluminum alloy with excellent heat conduction properties, with the main purpose of reducing weight and dissipating heat in the bearing section.A liner 8 made of iron with excellent weldability is fixed to the outer periphery by shrink fitting. The outer peripheral surface is inscribed in the sealed case 1 all around and is partially fixed by welding.

モータ3の固定子3bの両端外周部は、密閉ケース1に
内接固定された軸受フレーム9と本体フレーム5によっ
て支持固定されている。駆動軸4は、軸受フレーム9に
設けられた上部軸受10゜本体フレーム5の上端部に設
けられた下部軸受11、本体フレーム5の中央部に設け
られた主軸受12、本体フレーム5のt端面とモータ3
の回転子3aの下部端面との間に設けられたスラスト玉
軸受13とで支持され、その下端部には駆動軸4の主軸
から偏心した偏心軸受14が設けられている。
The outer peripheral portions of both ends of the stator 3b of the motor 3 are supported and fixed by a bearing frame 9 and a main body frame 5 which are internally fixed to the sealed case 1. The drive shaft 4 includes an upper bearing 10° provided on a bearing frame 9, a lower bearing 11 provided on the upper end of the main body frame 5, a main bearing 12 provided in the center of the main body frame 5, and a t end face of the main body frame 5. and motor 3
The drive shaft 4 is supported by a thrust ball bearing 13 provided between the rotor 3a and the lower end surface of the rotor 3a, and an eccentric bearing 14 eccentric from the main axis of the drive shaft 4 is provided at its lower end.

本体フレーム5の下端面には、アルミニウム合金製の固
定スクロール15が固定され、固定スクロール15は渦
巻き状の固定スクロールラップ151と鏡板15bから
成り、鏡板15bの中央部には固定スクロールラップ1
5mの巻き・始め部に開口する吐出ポート16が吐出室
2にも開口して設けられ、固定スクロールラップ15m
の外周部には吸入室17が設けられている。
A fixed scroll 15 made of aluminum alloy is fixed to the lower end surface of the main body frame 5, and the fixed scroll 15 consists of a spiral fixed scroll wrap 151 and an end plate 15b.
A discharge port 16 that opens at the beginning of a 5 m winding is also opened to the discharge chamber 2, and a fixed scroll wrap of 15 m is provided.
A suction chamber 17 is provided on the outer periphery of the suction chamber 17 .

固定スクロールラップ15mに噛み合って圧縮室を形成
する渦巻き状の旋回スクロールラップ18mと、駆動軸
4の偏心軸受14に支持された旋回軸18bとを直立さ
せたラップ支持円板18aとから成るアルミニウム合金
製の旋回スクロール18は、固定スクロール15と本体
フレーム5と駆動軸4とに囲まれて配置されており、旋
回軸tabの外周部に高張力鋼材料から成るスリーブ1
9が焼ばめ固定され、ラップ支持円板18cの表面は硬
化処理されている。
An aluminum alloy consisting of a spiral orbiting scroll wrap 18m that meshes with a fixed scroll wrap 15m to form a compression chamber, and a wrap support disk 18a that stands upright with a rotation shaft 18b supported by an eccentric bearing 14 of a drive shaft 4. The orbiting scroll 18 made of manufactured by Nippon Steel is disposed surrounded by the fixed scroll 15, the main body frame 5, and the drive shaft 4, and has a sleeve 1 made of high-strength steel material on the outer periphery of the orbiting shaft tab.
9 is fixed by shrink fit, and the surface of the lap support disk 18c is hardened.

本体フレーム5に固定された平行ビン19に拘束されて
軸方向にのみ移動が可能なスラスト軸受20と、固定ス
クロール15の鏡板15bとの間には、スペーサ21が
設けられ、スペーサ21の軸方向寸法は油膜による摺動
面のシール性向上のためにラップ支持円板18cの厚さ
よりも約0.015〜0.020 mm大きく設定され
ている。
A spacer 21 is provided between a thrust bearing 20 that is restrained by a parallel bin 19 fixed to the main body frame 5 and can only move in the axial direction, and the end plate 15b of the fixed scroll 15. The dimensions are set approximately 0.015 to 0.020 mm larger than the thickness of the lap support disk 18c in order to improve the sealability of the sliding surface by an oil film.

駆動軸4の偏心軸受14の底部と旋回スクロール18の
旋回軸18bの端部との間の偏心軸受空間36とラップ
支持円板18aの外周部空間37とは旋回軸18bとラ
ップ支持円板18cに設けられた油水A38aにより連
通されている。
The eccentric bearing space 36 between the bottom of the eccentric bearing 14 of the drive shaft 4 and the end of the orbiting shaft 18b of the orbiting scroll 18 and the outer peripheral space 37 of the lap support disc 18a are defined by the orbiting shaft 18b and the lap support disc 18c. They are communicated by an oil/water A38a provided in the.

スラスト軸受20は第2図、第6図のように、その中央
部が2つの平行な直線部分22とそれに連なる2つの円
弧状曲線部分23から成る形状に貫通成形されている。
As shown in FIGS. 2 and 6, the thrust bearing 20 is formed through a central portion into a shape consisting of two parallel straight portions 22 and two arcuate curved portions 23 connected thereto.

旋回スクロール自転阻止用のオルダムリング24は、焼
結成形やインジェクション成形工法などに適した軽合金
や樹脂材料から成り、第4図のように両面が平行な薄い
環状板24mとその一面に設けられた一対の平行キ一部
分24bとから成り、環状板24mの外輪郭は、2つの
平行な直線部分25とそれに連なる2つの円弧状曲線部
分26から成り、直線部分25が第6図のようにスラス
ト軸受20の直線部分22に微少隙間で係合し摺動可能
であり、平行キ一部分24bの側面24oは直線部分2
5の中央部で直交し、第1図、第2図のように旋回スク
ロール18のラップ支持円板18aに設けられた一対の
キー溝71に微少隙間で係合し、摺動可能な形状に設定
されている。
The Oldham ring 24 for preventing rotation of the orbiting scroll is made of a light alloy or resin material suitable for sinter molding, injection molding, etc., and is provided on one side of a thin annular plate 24m with parallel surfaces as shown in Fig. 4. The outer contour of the annular plate 24m consists of two parallel straight parts 25 and two arcuate curved parts 26 connected thereto, with the straight parts 25 being thrust as shown in FIG. It is able to engage and slide on the straight portion 22 of the bearing 20 with a small gap, and the side surface 24o of the parallel key portion 24b is connected to the straight portion 22 of the bearing 20.
5, and engage with a pair of key grooves 71 provided in the lap support disk 18a of the orbiting scroll 18 with a small gap as shown in FIGS. It is set.

なお、環状板24mの内輪郭は外輪郭に類似した形状で
ある。また、平行キ一部分24bの付は根に設けられた
ヘコミ部24dは潤滑油の通路にもなる。
Note that the inner contour of the annular plate 24m has a shape similar to the outer contour. Further, a recessed portion 24d provided at the root of the parallel key portion 24b also serves as a passage for lubricating oil.

第1図、餉3図のように、本体フレーム5とスラスト軸
受20との間には、約0.1mm前後のレリース隙間z
7が設けられ、そのレリース隙間27に対向して本体フ
レーム5にも環状溝28が設けられ、環状溝28を囲ん
だゴム製のシールリング70が、本体フレーム5とスラ
スト軸受20との間に装着されている。
As shown in Fig. 1 and Fig. 3, there is a release gap z of approximately 0.1 mm between the main body frame 5 and the thrust bearing 20.
7 is provided, and an annular groove 28 is also provided in the main body frame 5 opposite to the release gap 27, and a rubber seal ring 70 surrounding the annular groove 28 is provided between the main body frame 5 and the thrust bearing 20. It is installed.

モータ室6の上部と吐出室2とは、密閉ケース1の側壁
を貫通して接続されたバイパス吐出管29を介して連通
し、バイパス吐出管29のモータ室6への開口位置は、
固定子3bの上部コイルエンド30の側面に対向し、バ
イパス吐出管29の上部開口端と密閉ケース1の上面に
接続された吐出管31とは軸受フレーム5に設けられた
抜き穴32、密閉ケース1の上面と軸受フレーム9との
間に配置され、かつ多数の小穴を有したパンチングメタ
ル33を介して連通している。
The upper part of the motor chamber 6 and the discharge chamber 2 communicate with each other via a bypass discharge pipe 29 that passes through the side wall of the sealed case 1 and is connected to the upper part of the motor chamber 6. The opening position of the bypass discharge pipe 29 to the motor chamber 6 is as follows.
A discharge pipe 31 facing the side surface of the upper coil end 30 of the stator 3b and connected to the upper open end of the bypass discharge pipe 29 and the upper surface of the sealed case 1 is connected to a pull-out hole 32 provided in the bearing frame 5 and the closed case 1. 1 and the bearing frame 9, and communicate with each other via a punched metal 33 having a large number of small holes.

モータ室6の下部に設けられた吐出室油溜34は、モー
タ室6の上部とモータ3の固定子3bの外周の一部をカ
ットして設けた冷却通路35により連通されている。ま
た、吐出室油溜34は、本体フレーム5に設けられた油
水B58bを経由して環状m28に通じると共に、オル
ダムリング24が配置された旋回スクロール18の背圧
室39にも主軸受12の摺動部微少隙間を介して通じ、
更に偏心軸受14に設けられた油溝A40gを介して偏
心軸受空間36へも連通している。
A discharge chamber oil reservoir 34 provided in the lower part of the motor chamber 6 is communicated with the upper part of the motor chamber 6 by a cooling passage 35 provided by cutting a part of the outer periphery of the stator 3b of the motor 3. The discharge chamber oil sump 34 also communicates with the annular m28 via an oil water B58b provided in the main body frame 5, and also communicates with the back pressure chamber 39 of the orbiting scroll 18 in which the Oldham ring 24 is disposed. It communicates through the small gap between the moving parts,
Furthermore, it also communicates with the eccentric bearing space 36 via an oil groove A40g provided in the eccentric bearing 14.

また、本体フレーム5に設けられた油水B58bは、駆
動軸4の下部軸受11に対応する下部軸部4aの表面に
設けられた螺線状油溝41にも通じており、螺線状油m
41の巻方向は、駆動軸4が正回転する時に潤滑油の粘
性を利用したネジポンプ作用の生じるように設けられ、
その終端は下部軸受4aの途中まで形成されている。
Further, the oil water B58b provided in the main body frame 5 also communicates with the spiral oil groove 41 provided on the surface of the lower shaft portion 4a corresponding to the lower bearing 11 of the drive shaft 4,
The winding direction of 41 is set so that a screw pump action using the viscosity of the lubricating oil occurs when the drive shaft 4 rotates in the forward direction.
Its terminal end is formed halfway to the lower bearing 4a.

第6図、第7図のように、固定スクロール15は吸入室
17の両端を連通ずる円弧状の吸入通路42が設けられ
、それに直交する円形の吸入穴43が固定スクロールラ
ップ15mの側面に対しても直角方向に設けられ、吸入
穴43の底部は平面で吸入通路42の側面にまで到達し
ている。第8図のように、吸入穴43の中心は吸入通路
42の底面44とずれており、吸入通路42への開口部
寸法W45は、吸入穴43の直径寸法より小さく設けら
れている。また、吸入穴43にはアキュームレータ46
の吸入管47が接続されており、吸入穴43の底面44
と吸入管端面48との間には、吸入管47の内径寸法詔
よび吸入管端面48と底面44との間の吸入穴深さ寸法
L49よりも大きく、且つ開口寸法W45よりも大きい
円形薄鋼板の逆止弁50が配置されている。逆止弁50
の表面は油濡れ特性が悪く弾力性に富んだテフロンある
いはゴムなどがコーティングされている。
As shown in FIGS. 6 and 7, the fixed scroll 15 is provided with an arc-shaped suction passage 42 that communicates both ends of the suction chamber 17, and a circular suction hole 43 perpendicular to the arc-shaped suction passage 42 is formed on the side surface of the fixed scroll wrap 15m. The bottom of the suction hole 43 is flat and reaches the side surface of the suction passage 42 . As shown in FIG. 8, the center of the suction hole 43 is offset from the bottom surface 44 of the suction passage 42, and the opening dimension W45 to the suction passage 42 is set smaller than the diameter dimension of the suction hole 43. In addition, an accumulator 46 is provided in the suction hole 43.
A suction pipe 47 is connected to the bottom surface 44 of the suction hole 43.
A circular thin steel plate is provided between the suction pipe end face 48 and the inner diameter dimension of the suction pipe 47 and the suction hole depth L49 between the suction pipe end face 48 and the bottom face 44, and is larger than the opening dimension W45. A check valve 50 is arranged. Check valve 50
The surface is coated with Teflon or rubber, which has poor oil wettability and is highly elastic.

また、吸入室17にも吐出室2にも連通しない第2圧縮
室51と外周部空間37は、第2圧縮室51に開口して
鏡板15bに設けられた細径のインジェクション穴52
、鏡板15bと樹脂製の断熱カバー53とで形成された
インジェクション溝54、外周部空間37に開口した段
付き形状の油室C3E3cとから成るインジェクション
通路55で連通され、油水〇38cの大径部56には、
第9図に示すような外周の一部に切欠き57を有する薄
鋼板製の逆止弁58と、コイルスプリング59とが配置
せられ、コイルスプリング59は断熱カバー53に押え
られて逆止弁58を常時付勢する。外周部空間37への
油室C38cの開口位置は、第10図、第11図に示す
如く、吐出ポート16に連通ずる第3圧縮室60の容積
減少行程が終了する近傍にまで旋回スクロール18が移
動した(第10図参照)時に、外周部空間37と油室C
38(!とが連通し、それ以外の時(第11図参照)に
はラップ支持円板teaによって遮断される位置に設け
られている。
Further, the second compression chamber 51 and the outer peripheral space 37, which do not communicate with either the suction chamber 17 or the discharge chamber 2, are connected to a small diameter injection hole 52 which opens into the second compression chamber 51 and is provided in the end plate 15b.
, an injection passage 55 consisting of an injection groove 54 formed by an end plate 15b and a resin heat insulating cover 53, and a stepped oil chamber C3E3c that opens into the outer peripheral space 37, and is connected to a large diameter part of the oil/water 38c. In 56,
As shown in FIG. 9, a check valve 58 made of a thin steel plate having a notch 57 in a part of its outer periphery and a coil spring 59 are arranged, and the coil spring 59 is pressed by a heat insulating cover 53 to form a check valve. 58 is always energized. As shown in FIGS. 10 and 11, the opening position of the oil chamber C38c to the outer peripheral space 37 is such that the orbiting scroll 18 is close to the end of the volume reduction stroke of the third compression chamber 60 communicating with the discharge port 16. When moved (see Fig. 10), the outer peripheral space 37 and oil chamber C
38 (!) is in communication with each other, and at other times (see FIG. 11), it is provided at a position where it is blocked by the wrap support disc tea.

第12図において、横軸は駆動軸4の回転角度を示し、
縦軸は冷媒圧力を示し、吸入・圧縮・吐出過程における
冷媒ガスの圧力変化状態を示し、実線62は正常圧力で
運転時の圧力変化を示し、゛点線63は異常圧力上昇運
転時の圧力変化を表わす。
In FIG. 12, the horizontal axis indicates the rotation angle of the drive shaft 4,
The vertical axis shows the refrigerant pressure, and shows the pressure change state of the refrigerant gas during the suction, compression, and discharge processes.The solid line 62 shows the pressure change during normal pressure operation, and the dotted line 63 shows the pressure change during abnormal pressure rise operation. represents.

第13図において、横軸は駆動軸4の回転角度を示し、
縦軸は冷媒圧力を示し、実線64は吐出室2にも吸入室
17にも連通しない第2圧縮室51m、51bのインジ
ェクション穴52a。
In FIG. 13, the horizontal axis indicates the rotation angle of the drive shaft 4,
The vertical axis indicates the refrigerant pressure, and the solid line 64 indicates the injection hole 52a of the second compression chamber 51m, 51b that does not communicate with either the discharge chamber 2 or the suction chamber 17.

52、bの開口位置における圧力変化を示し、点線65
は吸入室17に連通ずる第1圧縮室61a。
52, shows the pressure change at the opening position of b, and the dotted line 65
is a first compression chamber 61a communicating with the suction chamber 17;

61b(第6図参照)の定点における圧力変化を示1へ
−点鎖線66は吐出室2に連通ずる第3圧縮室Boa、
60bの定点に詔ける圧力変化を示し、二点鎖線67は
第1圧縮室61m、81bと第2圧縮室51m、51b
との間の定点に詔ける圧力変化を示し、2重点線68は
背圧室39の圧力変化を示す。
61b (see FIG. 6) shows the pressure change at a fixed point to 1--The dashed line 66 indicates the third compression chamber Boa communicating with the discharge chamber 2;
The two-dot chain line 67 shows the pressure change at a fixed point of 60b, and the two-dot chain line 67 indicates the first compression chamber 61m, 81b and the second compression chamber 51m, 51b.
The double dotted line 68 shows the pressure change in the back pressure chamber 39.

以上のように構成されたスクロール気体圧縮機について
、その動作を説明する。
The operation of the scroll gas compressor configured as above will be explained.

第1図〜第13図において、モータ3によって駆動軸4
が回転駆動すると、旋回スクロール18が旋回運動をし
、圧縮機に接続した冷凍サイクルから潤滑油を含んだ吸
入冷媒ガスが、アキニームレータ46に接続した吸入管
47、吸入穴43、吸入通路4?を順次経て吸入室17
に流入し、旋回スクロール18と固定スクロール15と
の間に形成された第1圧縮室etm、61bを経て圧縮
室内に閉じ込められ、常時密閉空間となる第2圧縮室5
1 m +  51 b s第3圧縮室60a、Bob
へと順次移送圧縮され、中央部の吐出ポート16を経て
吐出室2へと吐出される。潤滑油を含んだ吐出冷媒ガス
は、圧縮機外部へ配管されたバイパス吐出管29を経て
再び圧縮機内のモータ室6に帰還した後、外部の冷凍サ
イクルへ吐出管31から排出されるが、モータ室6に流
入する際に、モータ3の上部コイルエンド30の側面に
衝突してモータ巻き線の表面に付着することにより、潤
滑油の一部を分離した後、軸受フレーム9に設けられた
抜き穴32を通過する際に、流れ方向を変えたりパンチ
ングメタル33の小穴を通過する際に潤滑油の慣性力や
表面付着などにより潤滑油が効果的に分離される。
1 to 13, the drive shaft 4 is driven by the motor 3.
When driven to rotate, the orbiting scroll 18 makes an orbiting motion, and the suction refrigerant gas containing lubricating oil from the refrigeration cycle connected to the compressor flows through the suction pipe 47, suction hole 43, and suction passage 4 connected to the akinimulator 46. ? After passing through the suction chamber 17
flows into the compression chamber etm, 61b formed between the orbiting scroll 18 and the fixed scroll 15, and is confined within the compression chamber, and the second compression chamber 5 is always a closed space.
1 m + 51 b s Third compression chamber 60a, Bob
It is sequentially transferred and compressed, and is discharged into the discharge chamber 2 through the discharge port 16 in the center. The discharged refrigerant gas containing lubricating oil returns to the motor chamber 6 inside the compressor via the bypass discharge pipe 29 piped to the outside of the compressor, and then is discharged from the discharge pipe 31 to the external refrigeration cycle. When flowing into the chamber 6, it collides with the side surface of the upper coil end 30 of the motor 3 and adheres to the surface of the motor winding, and after separating a part of the lubricating oil, When passing through the hole 32, the lubricating oil is effectively separated due to its inertial force, surface adhesion, etc. when changing the flow direction or passing through the small hole of the punched metal 33.

吐出ガスから分離された潤滑油の一部は、上部軸受の摺
動面を潤滑した後、残りの潤滑油と共に冷却通路35を
通り、モータ3を冷却しながら下部の吐出室油溜34に
収集される。
A part of the lubricating oil separated from the discharge gas lubricates the sliding surface of the upper bearing, and then passes through the cooling passage 35 along with the remaining lubricating oil, and is collected in the lower discharge chamber oil sump 34 while cooling the motor 3. be done.

吐出室油溜34の潤滑油は、駆動軸4の下部軸部4mの
表面に設けられた螺線状油溝41のネジポンプ作用によ
り、スラスト玉軸受13へ給油され、下部軸部4暑の端
部の微少軸受隙間を潤滑油が通過する際に、その油膜の
シール作用によりモータ室6の吐出冷媒ガス雰囲気と主
軸受12の上流側空間とが遮断される。
The lubricating oil in the discharge chamber oil sump 34 is supplied to the thrust ball bearing 13 by the screw pump action of the spiral oil groove 41 provided on the surface of the lower shaft portion 4m of the drive shaft 4, and the lubricating oil is supplied to the thrust ball bearing 13 at the lower end of the lower shaft portion 4m. When the lubricating oil passes through the small bearing gap in the main bearing 12, the sealing action of the oil film blocks the discharged refrigerant gas atmosphere of the motor chamber 6 from the upstream space of the main bearing 12.

吐出室油溜34の溶解吐出〜冷媒ガスを含んだ潤滑油は
主軸受12の微少隙間を通過する際に、吐出圧力と吸入
圧力との中間圧力に減圧されて背圧室39に流入し、そ
の後、偏心軸受14の油溝A40m、偏心軸受空間36
、旋回スクロール18を通る油膜A38を経て外周部空
間37に流入し、更に間欠的に開口する油膜C38o、
インジェクション溝54、インジェクション穴52m。
When the lubricating oil containing melted discharge from the discharge chamber oil sump 34 and refrigerant gas passes through the minute gap of the main bearing 12, it is reduced to an intermediate pressure between the discharge pressure and the suction pressure and flows into the back pressure chamber 39. After that, the oil groove A40m of the eccentric bearing 14, the eccentric bearing space 36
, an oil film C38o that flows into the outer peripheral space 37 via an oil film A38 that passes through the orbiting scroll 18, and further opens intermittently;
Injection groove 54, injection hole 52m.

52bを経て第2圧縮室51m、51bに流入し、その
通路途中の摺動面を潤滑する。
It flows into the second compression chambers 51m and 51b via 52b, and lubricates the sliding surfaces in the middle of the passage.

また、吐出室油溜34は、環状溝28やレリース隙間2
7とも通じているので、スラスト軸受20はその背圧力
により付勢されてスペーサ21の端面に当接している。
In addition, the discharge chamber oil reservoir 34 is connected to the annular groove 28 and the release gap 2.
7, the thrust bearing 20 is urged by the back pressure and comes into contact with the end surface of the spacer 21.

また旋回スクロール18のラップ支持円板18cは、ス
ラスト軸受20と固定スクロール15の鏡板15bとの
間で微少隙間を保持されて円滑に摺動すると共に、固定
スクロールラップ15aの端面とラップ支持円板18c
との間、ならびに、旋回スクロールラップ18mの端面
と鏡板15bとの間の隙間も微少に保持されて、隣接す
る圧縮室間の気体漏れを少なくする。
Furthermore, the lap support disk 18c of the orbiting scroll 18 slides smoothly with a slight gap maintained between the thrust bearing 20 and the end plate 15b of the fixed scroll 15. 18c
The gap between the end face of the orbiting scroll wrap 18m and the end plate 15b is also kept small to reduce gas leakage between adjacent compression chambers.

第2圧縮室51m、51bのインジェクション穴52m
、52b開口部は、第13図の如くの圧力変化64をし
、吐出室2の圧力に追従して変化する背圧室圧力68よ
りも瞬時的に高い。しかし平均圧力が低いので、背圧室
39からの潤滑油は間欠的に第2圧縮室51m、51b
に流入し、正常運転時の背圧室圧力68よりも瞬時的に
高い第2圧縮室51m、5Ib内の圧縮冷媒ガスは、細
径のインジェクション穴52g、52bで減衰されて、
瞬時的なインジェクション溝54への逆流が少なく、イ
ンジェクション溝54内の圧力が背圧室圧力68よりも
高くならない。
Injection hole 52m of second compression chamber 51m, 51b
, 52b openings undergo a pressure change 64 as shown in FIG. 13, which is instantaneously higher than the back pressure chamber pressure 68 which changes following the pressure in the discharge chamber 2. However, since the average pressure is low, the lubricating oil from the back pressure chamber 39 is intermittently supplied to the second compression chambers 51m and 51b.
The compressed refrigerant gas in the second compression chambers 51m and 5Ib that flows into the second compression chambers 51m and 5Ib and which is instantaneously higher than the back pressure chamber pressure 68 during normal operation is attenuated by the small diameter injection holes 52g and 52b.
There is little instantaneous backflow to the injection groove 54, and the pressure within the injection groove 54 does not become higher than the back pressure chamber pressure 68.

第2圧縮室51m、51bにインジェクションされた潤
滑油は、吸入冷媒ガスと共に圧縮室に流入した潤滑油と
合流し、隣接する圧縮室間の微少隙間を油膜により密封
して圧縮気体漏れを防ぎ、圧縮室間の摺動面を潤滑しな
がら圧縮気体と共に吐出室2に再び吐出される。
The lubricating oil injected into the second compression chambers 51m and 51b joins with the lubricating oil that has flowed into the compression chambers together with the suction refrigerant gas, and the minute gaps between adjacent compression chambers are sealed with an oil film to prevent compressed gas leakage. The compressed gas is again discharged into the discharge chamber 2 while lubricating the sliding surfaces between the compression chambers.

また、背圧室39に差圧給油された潤滑油は、シールリ
ング70の弾性力と共に、中間圧力の付勢力を旋回スク
ロール18に作用させてラップ支持円板18oを鏡板1
5bとの摺動面に押圧油膜シールして外周空間37と吸
入室17との間の連通を遮断すると共に、スラスト軸受
20とラップ支持円板18cとの摺動面の隙間も潤滑シ
ールする。
In addition, the lubricating oil supplied to the back pressure chamber 39 at a differential pressure acts on the orbiting scroll 18 with an intermediate pressure biasing force together with the elastic force of the seal ring 70 to move the lap support disk 18o onto the end plate 1.
A pressure oil film is sealed on the sliding surface of the thrust bearing 20 and the suction chamber 17 to block communication between the outer peripheral space 37 and the suction chamber 17, and a gap between the sliding surface of the thrust bearing 20 and the lap support disk 18c is also lubricated and sealed.

また、圧縮機の冷時始動後しばら′くの間は、第12図
、第13図から理解できるように吐出室2の圧力が第2
圧縮室51a、51bの圧力よりも低(、圧縮途中の冷
媒ガスは、第2圧縮室51蟲。
In addition, for a while after the cold start of the compressor, the pressure in the discharge chamber 2 remains at the second level, as can be understood from FIGS.
The pressure of the refrigerant gas in the middle of compression is lower than that of the compression chambers 51a and 51b.

51bからインジェクション通路55を経て背圧室39
に逆流しようとするが、逆止弁58の逆止作用にて外周
部空間37への逆流が阻止され、吐出室油溜34の潤滑
油は吐出室2の圧力上昇と共に背圧室39、外周部空間
37にまで差圧給油される。
51b to the back pressure chamber 39 via the injection passage 55.
However, the backflow to the outer circumferential space 37 is prevented by the non-return action of the check valve 58, and as the pressure in the discharge chamber 2 increases, the lubricating oil in the discharge chamber 2 flows into the back pressure chamber 39 and the outer circumference. Differential pressure oil is supplied to the inner space 37.

したがって、冷時始動初期のスラスト軸受20への背圧
付勢力は圧縮室圧力により生じ、旋回スクロール18を
固定スクロール15から離反させようとするスラスト荷
重に抗しながらスラスト軸受20が微少に後退して旋回
スクロール18と固定スクロール15との間の軸方向隙
間を拡大する。
Therefore, the back pressure urging force on the thrust bearing 20 at the initial stage of cold start is generated by the pressure in the compression chamber, and the thrust bearing 20 moves back slightly while resisting the thrust load that tends to separate the orbiting scroll 18 from the fixed scroll 15. The axial clearance between the orbiting scroll 18 and the fixed scroll 15 is enlarged.

これにより、圧縮空間に漏れを生じて圧縮室圧力を下げ
、始動初期の圧縮負荷を@滅する。
This causes leakage in the compression space, lowers the compression chamber pressure, and eliminates the compression load at the initial stage of startup.

その後、吐出室2の圧力上昇に伴い、外周部空間37の
潤滑油はコイルスプリング59の付勢力に抗して、イン
ジェクション穴52a、52bから第2圧縮室51a、
51bヘインジエクシヨンされる。
Thereafter, as the pressure in the discharge chamber 2 increases, the lubricating oil in the outer peripheral space 37 flows from the injection holes 52a and 52b to the second compression chamber 51a, against the biasing force of the coil spring 59.
51b Hinge Extraction.

また、冷時始動初期や定常運転時に、油インジェクショ
ンやその他の原因で瞬時的な液圧縮が生じた場合の圧縮
室圧力は、第12図の点線63のように異常な圧力上昇
と過圧縮が生じるが、吐出室2とそれに連通ずる高圧空
間容積が大きいので吐出室圧力の上昇が極めて小さい。
In addition, when instantaneous liquid compression occurs due to oil injection or other causes during initial cold start or steady operation, the compression chamber pressure will be affected by an abnormal pressure rise and overcompression, as shown by dotted line 63 in Figure 12. However, since the discharge chamber 2 and the volume of the high-pressure space communicating therewith are large, the increase in the discharge chamber pressure is extremely small.

また、液圧縮により第2圧縮室sta、stbに連通す
るインジェクション溝54なども異常圧力上昇するが、
細径の油室C38aの絞り効果と逆止弁58の逆止作用
により、外周部空間37とインジェクション溝54との
間は遮断される。その結果、背圧室39の圧力は変らず
、スラスト軸受20の背面に作用する背圧付勢力にも変
動がない。したがって、液圧縮時には、旋回スクロール
18に作用する過大なスラスト力によって、上述のよう
にスラスト軸受20が後退し、圧縮室圧力が降下してそ
の後は正常運転を継続する。
Furthermore, due to liquid compression, the pressure in the injection groove 54 communicating with the second compression chambers sta and stb also increases abnormally.
Due to the throttling effect of the small-diameter oil chamber C38a and the check action of the check valve 58, the outer peripheral space 37 and the injection groove 54 are cut off. As a result, the pressure in the back pressure chamber 39 does not change, and the back pressure urging force acting on the back surface of the thrust bearing 20 also does not change. Therefore, during liquid compression, the excessive thrust force acting on the orbiting scroll 18 causes the thrust bearing 20 to retreat as described above, the pressure in the compression chamber decreases, and normal operation continues thereafter.

なお、液圧縮途中でスラスト軸受20が後退することに
より、圧縮室圧力は第12図の一点鎖線63mの如く途
中で降圧する。
In addition, as the thrust bearing 20 retreats during liquid compression, the pressure in the compression chamber drops midway as shown by the dashed line 63m in FIG.

圧縮機停止後は、圧縮室内圧力により旋回スクロール1
8に逆旋回トルクが生じ、旋回スクロール18が逆旋回
して吐出冷媒ガスが吸入側に逆流する。この吐出冷媒ガ
スの逆流に追従して、逆止弁50が第6図の位置から第
7図の位置に移動し、逆止弁5oの表面に施されたテフ
ロン被膜により、吸入管端面48を密封して吐出冷媒ガ
スの逆流を制止し、旋回スクロール18の逆旋回が停止
し、吸入通路42と吐出ボード16との間の空間は吐出
圧力を保持する。
After the compressor stops, the orbiting scroll 1
A reverse rotation torque is generated at 8, the orbiting scroll 18 rotates in the reverse direction, and the discharged refrigerant gas flows back to the suction side. Following this backflow of the discharged refrigerant gas, the check valve 50 moves from the position shown in FIG. 6 to the position shown in FIG. The airtight seal prevents the reverse flow of the discharged refrigerant gas, the reverse rotation of the orbiting scroll 18 is stopped, and the space between the suction passage 42 and the discharge board 16 maintains the discharge pressure.

また、インジェクション通路の逆止弁58を境にして、
圧縮室に連通ずる通路は吐出圧力になるが、外周部空間
37と背圧室39との間の空間はしばらくの間、中間圧
力を保持し、吐出室油溜34からの潤滑油微少流入によ
り次第に吐出圧力に近づく、圧縮機停止時、旋回スクロ
ール18は逆転し、第3圧縮室Boa、Sobが拡大し
た位置に停止し、油室C38cの外周部空間37への開
口部はラップ支持円板18cにより遮断される。
Moreover, with the check valve 58 of the injection passage as a border,
Although the passage communicating with the compression chamber has a discharge pressure, the space between the outer peripheral space 37 and the back pressure chamber 39 maintains an intermediate pressure for a while, and due to the slight inflow of lubricating oil from the discharge chamber oil sump 34. When the compressor stops and gradually approaches the discharge pressure, the orbiting scroll 18 reverses and stops at a position where the third compression chambers Boa and Sob are enlarged, and the opening to the outer peripheral space 37 of the oil chamber C38c is formed by a lap support disk. 18c.

圧縮機停止後はコイルスプリング59の付勢力によって
も逆止弁58がインジェクション通路55を遮断するの
で、外周部空間37から圧縮室への潤滑油流入がない。
After the compressor is stopped, the check valve 58 blocks the injection passage 55 due to the biasing force of the coil spring 59, so no lubricant oil flows into the compression chamber from the outer peripheral space 37.

また、上記実施例では、吐出室油溜34の潤滑油を第2
圧縮室51a、51bに油インジェクションしたが、圧
縮機使用条件などにより、吸入室17に通じる第1圧縮
室61暑、61bに油インジェクションしてもよい。
Further, in the above embodiment, the lubricating oil in the discharge chamber oil reservoir 34 is
Although oil is injected into the compression chambers 51a and 51b, oil may be injected into the first compression chambers 61 and 61b communicating with the suction chamber 17 depending on the compressor usage conditions.

また、上記実施例では、吐出室油溜34と背圧室39と
を主軸受12の微少隙間を介して連通したが、絞り通路
で直接連通してもよい。
Further, in the above embodiment, the discharge chamber oil sump 34 and the back pressure chamber 39 are communicated through a small gap in the main bearing 12, but they may be directly communicated through a throttle passage.

また、上記実施例では、逆止弁58を固定スクロール1
5の鏡板15bに設けたが、旋回スクロール18の旋回
軸tabやラップ支持円板18cに設けてもよい。
Further, in the above embodiment, the check valve 58 is connected to the fixed scroll 1.
Although it is provided on the end plate 15b of No. 5, it may be provided on the orbiting shaft tab of the orbiting scroll 18 or the lap support disk 18c.

また、上記実施例では冷媒圧縮機について説明したが、
潤滑油を使用する酸素、窒素、ヘリウムなどの他の気体
圧縮機の場合も同様の作用効果を期待できる。
Furthermore, in the above embodiment, the refrigerant compressor was explained, but
Similar effects can be expected with other gas compressors such as oxygen, nitrogen, and helium that use lubricating oil.

以上のように上記実施例によれば、旋回スクロール18
が駆動軸4を支承する本体フレーム5と固定スクロール
15との間に配置され、旋回スクロール18の反圧縮空
間の側に旋回スクロールの背圧室39を形成し、背圧室
39は吐出ポート16に通じる吐出室油溜34とは主軸
受12の微少隙間を介して連通ずると共に、背圧室39
よりも圧力の低い第2圧縮室51m、51bとは固定ス
クロール15の鏡板15bに設けた油インジェクション
通路55を介して連通し、油インジェクション通路55
の途中に逆止弁58を備えることにより、油インジェク
シコン通路55の開口する第2圧縮室51m、51bの
圧力が吐出室圧力よりも高い間は、逆止弁5Bの作動に
よって油インジェクション通路が遮断され、圧縮途中気
体が背圧室39や主軸受12の微少隙間を介して逆流し
ない給油構成となる。そのため、圧縮比が一定で始動時
のように吸入圧力が比較的高く、圧縮室圧力が安定運転
時よりも極めて高くなる場合でも、背圧室圧力が低く、
旋回スクロール18への背圧付勢力が小さいので、旋回
スクロール18が固定スクロール15から軸方向に離反
して圧縮室間隙間を広げ、圧縮室圧力を降下させ始動負
荷を軽減できる。
As described above, according to the above embodiment, the orbiting scroll 18
is arranged between the main body frame 5 supporting the drive shaft 4 and the fixed scroll 15, and forms a back pressure chamber 39 of the orbiting scroll on the anti-compression space side of the orbiting scroll 18, and the back pressure chamber 39 is connected to the discharge port 16. It communicates with the discharge chamber oil sump 34 through a small gap in the main bearing 12, and also communicates with the back pressure chamber 39.
The second compression chambers 51m and 51b, which have a lower pressure, communicate with each other via an oil injection passage 55 provided in the end plate 15b of the fixed scroll 15.
By providing the check valve 58 in the middle of the oil injection passage 55, the oil injection passage is closed by the operation of the check valve 5B while the pressure in the second compression chambers 51m and 51b, which the oil injector passage 55 opens, is higher than the discharge chamber pressure. This provides an oil supply configuration in which the gas during compression does not flow back through the back pressure chamber 39 or the small gap in the main bearing 12. Therefore, even when the compression ratio is constant and the suction pressure is relatively high, such as during startup, and the compression chamber pressure is much higher than during stable operation, the back pressure chamber pressure is low.
Since the back pressure urging force on the orbiting scroll 18 is small, the orbiting scroll 18 separates from the fixed scroll 15 in the axial direction, widening the gap between the compression chambers, lowering the compression chamber pressure, and reducing the starting load.

また、圧縮途中気体逆流による背圧室39や主軸受12
の摺動部やそれ以外の摺動部、さらには吐出室油溜34
の潤滑油流失もないので、吐出室2の圧力が低く、吐出
室油溜34からの給油が不十分な始動初期の潤滑に供す
ることができ、始動時負荷軽減と合わせて摺動部焼付を
防止できる。
In addition, the back pressure chamber 39 and the main bearing 12 due to gas backflow during compression
sliding parts, other sliding parts, and even the discharge chamber oil sump 34.
Since there is no loss of lubricating oil, it can be used for lubrication at the initial stage of startup when the pressure in the discharge chamber 2 is low and the supply of oil from the discharge chamber oil reservoir 34 is insufficient.This reduces the load at startup and prevents seizure of the sliding parts. It can be prevented.

吐出室2の圧力上昇後は充分な給油により、摩擦損失を
少なくし、圧縮室への油インジエクシ町ンにより圧縮効
率を向上できる。
After the pressure in the discharge chamber 2 has increased, sufficient oil supply can reduce friction loss and improve compression efficiency by supplying oil to the compression chamber.

また、第2圧縮室51m、51bに液圧縮が生じて異常
圧力上昇した場合もと記と同様に圧縮気体の逆流がなく
、背圧室39の圧力も変らないので、旋回スクロール1
8が固定スクロール15から軸方向に離反しやすく過負
荷軽減作動の応答性が早くて主軸受12などの摺動部や
圧縮機構部品の耐久性を向上できる。また、旋回スクロ
ール1Bに作用する背圧力も大きな変化がないので、圧
縮室が正常圧力に復帰した時も過度な背圧付勢による摺
動部摩耗や動力損失も生じない。
In addition, even if liquid compression occurs in the second compression chambers 51m and 51b and the pressure rises abnormally, there is no backflow of compressed gas and the pressure in the back pressure chamber 39 does not change, as in the case described above, so the orbiting scroll 1
8 is easily separated from the fixed scroll 15 in the axial direction, the response of the overload reduction operation is quick, and the durability of sliding parts such as the main bearing 12 and compression mechanism parts can be improved. Furthermore, since the back pressure acting on the orbiting scroll 1B does not change significantly, even when the compression chamber returns to normal pressure, there will be no sliding part wear or power loss due to excessive back pressure.

また、圧縮機停止直後は、吐出室油溜34と背圧室39
との間の差圧により、主軸受12の微少隙間を介して潤
滑油が背圧室39に少しずつ流入するが、圧縮機内圧カ
バランス後は、主軸受12の微少隙間に介在する油膜に
より密封されるので、第2圧縮室51a、51bへの吐
出室油溜34からの潤滑油や液冷媒の流入がなく、再始
動時の円滑な運転が可能である。
In addition, immediately after the compressor is stopped, the discharge chamber oil sump 34 and the back pressure chamber 39
Due to the differential pressure between the Since it is sealed, there is no inflow of lubricating oil or liquid refrigerant from the discharge chamber oil sump 34 into the second compression chambers 51a, 51b, allowing smooth operation upon restart.

発明の効果 以とのように本発明は、旋回スクロールが駆動軸を支承
する本体フレームと固定スクロールとの間に配置され、
旋回スクロールの反圧縮空間の側に旋回スクロールの背
圧室を形成し、背圧室は吐出ポートに通じる吐出室の油
溜または吐出室に通じる油溜とは絞り通路を介して連通
ずると共に、背圧室よりも圧力の低い圧縮空間とは固定
スクロールの鏡板または旋回スクロールのラップ支持円
板に設けた油インジェクション通路を介して連通し、油
インジェクション通路の途中に逆止弁装置を備えること
により、油インジェクション通路の開口する圧縮空間の
圧力が吐出室圧力よりも高い間は、逆止弁装置の作動に
よって油インジェクション通路が速断され、圧縮途中気
体が背圧室や絞り通路を介して吐出室の油溜(または吐
出室に通じる油溜)に逆流しない給油構成のため、閉配
管系で圧縮機が使用され、圧縮比が一定で始動時のよう
に吸入圧力が比較的高く、圧縮室圧力が安定運転時より
も極めて高くなる場合でも、背圧室圧力が低く、旋回ス
クロールへの背圧付勢力が小さいので、旋回スクロール
が固定スクロールから軸方向に離反して圧縮室間隙間を
広げ圧縮室圧力を降下させ、始動負荷を軽減できる。
Effects of the Invention According to the present invention, an orbiting scroll is disposed between a main body frame supporting a drive shaft and a fixed scroll,
A back pressure chamber of the orbiting scroll is formed on the side of the anti-compression space of the orbiting scroll, and the back pressure chamber communicates with the oil reservoir of the discharge chamber communicating with the discharge port or the oil reservoir communicating with the discharge chamber via a throttle passage, and The compression space, which has a lower pressure than the back pressure chamber, communicates with the oil injection passage provided on the end plate of the fixed scroll or the lap support disk of the orbiting scroll, and by providing a check valve device in the middle of the oil injection passage. While the pressure in the compression space where the oil injection passage opens is higher than the discharge chamber pressure, the oil injection passage is quickly cut off by the operation of the check valve device, and the gas during compression flows into the discharge chamber through the back pressure chamber and the throttle passage. Because of the oil supply structure that does not flow back into the oil sump (or the oil sump leading to the discharge chamber), the compressor is used in a closed piping system, and the compression ratio is constant and the suction pressure is relatively high as at startup, and the compression chamber pressure is Even when the pressure is much higher than during stable operation, the back pressure chamber pressure is low and the back pressure urging force on the orbiting scroll is small, so the orbiting scroll separates from the fixed scroll in the axial direction, widening the gap between the compression chambers and compressing. It can lower the chamber pressure and reduce the starting load.

また、圧縮途中気体逆流による背圧室や吐出室の油溜(
または吐出室に通じる油溜)の潤滑油流失もないので、
吐出室の圧力が低く吐出室の油溜(または吐出室に通じ
る油溜)からの給油が不十分な始動初期における絞り通
路部や背圧室周辺および背圧室よりも下流側の給油通路
の摺動部の潤滑;こ供することができ、始動時負荷軽減
と合わせて摺動部焼付を防止できる。吐出室の圧力上昇
に伴なう早期からの充分な給油により摺動部の摩擦損失
を少なくシ、圧縮空間への油インジェクションによる圧
縮室間隙を油膜密封して圧縮効率を向上できる。
In addition, oil accumulation in the back pressure chamber and discharge chamber due to gas backflow during compression (
Also, there is no loss of lubricating oil from the oil sump leading to the discharge chamber.
In the early stages of startup, when the pressure in the discharge chamber is low and the oil supply from the oil sump in the discharge chamber (or the oil sump leading to the discharge chamber) is insufficient, the oil supply passage around the throttle passage, back pressure chamber, and downstream of the back pressure chamber. Lubrication of the sliding parts can be provided, reducing the load at startup and preventing seizure of the sliding parts. By supplying sufficient oil from an early stage as the pressure in the discharge chamber increases, friction loss in the sliding parts can be reduced, and compression efficiency can be improved by sealing the compression chamber gap with an oil film by oil injection into the compression space.

また、圧縮空間が液圧縮などにより異常圧力上昇した場
合も上記と同様に圧縮気体の逆流がなく背圧室の圧力も
変らないので、旋回スクロールが固定スクロールから軸
方向に離反し易く、過負荷軽減作動の応答性が良く旋回
スクロール駆動系の摺動部の耐久性を向上できる。また
、旋回スクロールに作用する背圧力も大きな変化がない
ので、圧縮空間が正常圧力に復帰した時も、過度の背圧
付勢による固定スクロールと旋回スクロールとの間の摺
動面の摩耗や動力損失も生じない。
In addition, even if the pressure in the compression space increases abnormally due to liquid compression, etc., there is no backflow of compressed gas and the pressure in the back pressure chamber does not change as described above, so the orbiting scroll is likely to separate from the fixed scroll in the axial direction, causing overload. The response of the reduction operation is good and the durability of the sliding part of the orbiting scroll drive system can be improved. In addition, since the back pressure acting on the orbiting scroll does not change significantly, even when the compression space returns to normal pressure, there will be no wear on the sliding surface between the fixed scroll and the orbiting scroll due to excessive back pressure, There will be no loss.

また、圧縮機停止後も圧縮空間から背圧室への流体逆流
もなく、背圧室はしばらくの間、中間圧力を維持し、背
圧室と吐出室の油溜(または吐出室に通じる油溜)との
間の差圧によって油溜の潤滑油が背圧室に流入して再始
動時の摺動部潤滑に供して耐久性を高める。
In addition, even after the compressor is stopped, there is no backflow of fluid from the compression space to the back pressure chamber, and the back pressure chamber maintains an intermediate pressure for a while. The lubricating oil in the oil reservoir flows into the back pressure chamber due to the differential pressure between the oil reservoir and the oil reservoir, which lubricates the sliding parts during restart, thereby increasing durability.

また、圧縮機内圧力がバランスした後は、背圧室と吐出
室の油溜との間の絞り通路に介在する潤滑油膜により、
絞り通路が遮断され、油溜から圧縮空間への潤滑油流入
を防止して円滑な再始動運転を実現する。
In addition, after the pressure inside the compressor is balanced, the lubricating oil film interposed in the throttle passage between the back pressure chamber and the oil reservoir in the discharge chamber causes
The throttle passage is blocked and lubricant oil is prevented from flowing into the compression space from the oil sump, achieving smooth restart operation.

さらに、圧縮空間への給油により、始動初期から継続運
転中までの過負荷を迅速に軽減して耐久性を向上すると
ともに圧縮効率を高めるものである。
Furthermore, by supplying oil to the compression space, overload can be quickly reduced from the initial stage of startup to during continued operation, improving durability and increasing compression efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるスクロール冷媒圧縮
機の縦断面図、第2図は同圧縮機における主要部品の分
解図、第3図は第1図におけるスラスト軸受のシール部
の詳細部分断面図、第4図は同圧縮機におけるオルダム
リングの外観図、第5図は第1図に関するオルダム機構
部の組み立て外観図、第6図は第1図のA−A線による
断面図、第7図は第9図に聯ける吸入管接続部に$ける
逆止弁の位置説明図、第8図は第7図におけるB −B
線による部分断面図、第9図は同圧縮機の油インジェク
ション通路に用いる逆止弁の外観図、第10図、第11
図はそれぞれ同圧縮機の吐出ポート付近における圧縮室
の移動説明図、第12図は同圧縮機の吸入行程から吐出
行程までの冷媒ガスの圧力変化を示す特性図、第13図
は各圧縮室における定点の圧力変化を示す特性図、第1
4図、第15図はそれぞれ従来の異なるスクロール圧縮
機の縦断面図である。 2・・・・・・吐出室、3・・・・・・モータ、4・・
・・・駆動軸、5・・・・本体フレーム、12・・・・
主軸受、15・・・・・・固定スクロール、151・・
・・・・固定スクロールラップ、tab・・・・・・鏡
板、16・・・・吐出ポート、17、・・・・・吸入室
、18・・・・旋回スクロール、18a・・・・・・旋
回スクロールラップ、18c・・・・・・ラップ支持円
板、34・・・・・・吐出室油溜、39・・・・・・背
圧室、52m、52b・・・・・・インジェクション穴
、54−・・・・・インジェクション溝、55・・・・
油インジェクション通路、58・・・・・・逆止弁、5
9・・・・・・コイルスプリング。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図        3山−目社子 4− 層乙勤鮪 I5−一一面定スグロール 15a−−−−m ’Rスケロールラッグ16−  亡
エボート /’l−−・吸入室 18山一方廼回スクロールラッグ 、38cm−・5釘六C 42−IT及八へK SO−一一逆止升 10a、、 60b −−第3 産曝得鼠6/α、乙1
b −第1工緒鼠 ≧ ミ ー5し 寸カミ廷 勺 第7図 今を 第8図 付    lδb 16cm−一固定スクロー2レラップ 第10図        16−1rj−出ボートtk
−−−旋回スクロールラップ lδ山
Fig. 1 is a vertical cross-sectional view of a scroll refrigerant compressor in an embodiment of the present invention, Fig. 2 is an exploded view of the main components of the compressor, and Fig. 3 is a detailed portion of the seal portion of the thrust bearing in Fig. 1. 4 is an external view of the Oldham ring in the same compressor, FIG. 5 is an assembled external view of the Oldham mechanism related to FIG. Figure 7 is an explanatory diagram of the position of the check valve at the suction pipe connection part connected to Figure 9, and Figure 8 is B-B in Figure 7.
Figure 9 is a partial cross-sectional view drawn by a line, and Figure 9 is an external view of the check valve used in the oil injection passage of the same compressor. Figures 10 and 11 are
The figures are an explanatory diagram of the movement of the compression chamber near the discharge port of the same compressor, Figure 12 is a characteristic diagram showing the pressure change of refrigerant gas from the suction stroke to the discharge stroke of the compressor, and Figure 13 is a diagram of each compression chamber. Characteristic diagram showing the pressure change at a fixed point in
4 and 15 are longitudinal sectional views of different conventional scroll compressors, respectively. 2...Discharge chamber, 3...Motor, 4...
...Drive shaft, 5...Body frame, 12...
Main bearing, 15...Fixed scroll, 151...
... Fixed scroll wrap, tab ... End plate, 16 ... Discharge port, 17, ... Suction chamber, 18 ... Orbiting scroll, 18a ... Orbiting scroll wrap, 18c...Wrap support disk, 34...Discharge chamber oil sump, 39...Back pressure chamber, 52m, 52b...Injection hole , 54-... Injection groove, 55...
Oil injection passage, 58... Check valve, 5
9... Coil spring. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Mountain - Eye Shako 4 - Layer Otsukin Tuna I5 - 11-face fixed sgrol 15a----m 'R scale rug 16- Death Evoto/'l--・Inhalation chamber 18 mountain One side rotating scroll rug , 38cm-・5 nails 6C 42-IT and 8 to K SO-11 backstop 10a,, 60b --3rd production 6/α, Otsu 1
b - 1st craft mouse ≧ Me 5 Shimokami Takashi Fig. 7 Now with Fig. 8 lδb 16cm - Fixed scroll 2 Relap Fig. 10 16-1rj - Departing boat tk
---Orbiting scroll wrap lδ mountain

Claims (1)

【特許請求の範囲】[Claims]  固定スクロールの一部をなす鏡板の一面に形成された
うず巻状の固定スクロールラップに対して旋回スクロー
ルの一部をなすラップ支持円板上の旋回スクロールラッ
プを揺動回転自在にかみ合わせ、両スクロール間に渦巻
き形の圧縮空間を形成し、前記固定スクロールラップの
中心部には吐出ポートを設け、前記固定スクロールラッ
プの外側には吸入室を設け、前記圧縮空間は吸入側より
吐出側に向けて連続移行する複数個の圧縮室に区画され
て流体を圧縮するスクロール圧縮機構を形成し、前記旋
回スクロールは、駆動軸を支承する本体フレームと前記
固定スクロールとの間に配置され、前記旋回スクロール
の反圧縮空間の側に、前記旋回スクロールの背圧室を形
成し、前記背圧室は、前記吐出ポートに通じる吐出室の
油溜または前記吐出室に通じる油溜と絞り通路を介して
連通すると共に、前記背圧室よりも圧力の低い圧縮空間
とは前記鏡板または前記ラップ支持円板に設けた油イン
ジェクション通路を介して連通し、前記インジェクショ
ン通路の途中に逆止弁装置を備えたスクロール気体圧縮
機。
The orbiting scroll wrap on the wrap supporting disk, which is a part of the orbiting scroll, is engaged with the spiral fixed scroll wrap formed on one surface of the end plate, which is a part of the fixed scroll, so as to be able to swing and rotate. A spiral compression space is formed in between, a discharge port is provided in the center of the fixed scroll wrap, a suction chamber is provided on the outside of the fixed scroll wrap, and the compression space is directed from the suction side to the discharge side. A scroll compression mechanism that compresses fluid is formed by partitioning into a plurality of compression chambers that continuously move, and the orbiting scroll is disposed between a main body frame that supports a drive shaft and the fixed scroll, and the orbiting scroll is A back pressure chamber of the orbiting scroll is formed on the side of the anti-compression space, and the back pressure chamber communicates with an oil sump in a discharge chamber communicating with the discharge port or an oil sump communicating with the discharge chamber via a throttle passage. In addition, the compression space having a lower pressure than the back pressure chamber communicates with the oil injection passage provided in the head plate or the lap support disk, and the scroll gas is provided with a check valve device in the middle of the injection passage. compressor.
JP62332004A 1987-12-28 1987-12-28 Scroll gas compressor Expired - Fee Related JP2692097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62332004A JP2692097B2 (en) 1987-12-28 1987-12-28 Scroll gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62332004A JP2692097B2 (en) 1987-12-28 1987-12-28 Scroll gas compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9003456A Division JP2980045B2 (en) 1997-01-13 1997-01-13 Scroll gas compressor

Publications (2)

Publication Number Publication Date
JPH01177483A true JPH01177483A (en) 1989-07-13
JP2692097B2 JP2692097B2 (en) 1997-12-17

Family

ID=18250061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62332004A Expired - Fee Related JP2692097B2 (en) 1987-12-28 1987-12-28 Scroll gas compressor

Country Status (1)

Country Link
JP (1) JP2692097B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447185A (en) * 1990-06-15 1992-02-17 Hitachi Ltd Scroll compressor
US6171088B1 (en) * 1999-10-13 2001-01-09 Scroll Technologies Scroll compressor with slanted back pressure seal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210487A (en) * 1985-07-05 1987-01-19 Matsushita Electric Ind Co Ltd Scroll compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210487A (en) * 1985-07-05 1987-01-19 Matsushita Electric Ind Co Ltd Scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447185A (en) * 1990-06-15 1992-02-17 Hitachi Ltd Scroll compressor
US6171088B1 (en) * 1999-10-13 2001-01-09 Scroll Technologies Scroll compressor with slanted back pressure seal

Also Published As

Publication number Publication date
JP2692097B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP2782858B2 (en) Scroll gas compressor
JP2778585B2 (en) Scroll gas compressor
JPH01177482A (en) Scroll compressor
JPS63131889A (en) Scroll gas compressor
JP3045961B2 (en) Scroll gas compression
JPH0765580B2 (en) Scroll gas compressor
JP3019770B2 (en) Scroll gas compressor
JPS63150489A (en) Scroll gas compressor
JP2790126B2 (en) Scroll gas compressor
JP2511863B2 (en) Scroll gas compressor
JP2785807B2 (en) Scroll gas compressor
JPH01177483A (en) Scroll gas compressor
JPS6210487A (en) Scroll compressor
JP2785806B2 (en) Scroll gas compressor
JP2870488B2 (en) Scroll gas compressor
JP2870489B2 (en) Scroll gas compressor
JP2785805B2 (en) Scroll gas compressor
JP2870490B2 (en) Scroll gas compressor
JP2820137B2 (en) Scroll gas compressor
JP2980045B2 (en) Scroll gas compressor
JPH029978A (en) Scroll gas compressor
JPH01170780A (en) Scroll gas compressor
JPH01177484A (en) Scroll gas compressor
JP3039375B2 (en) Gas compressor
US20220154719A1 (en) Scroll compressor and refrigeration cycle apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees