JPH01170780A - Scroll gas compressor - Google Patents

Scroll gas compressor

Info

Publication number
JPH01170780A
JPH01170780A JP32854087A JP32854087A JPH01170780A JP H01170780 A JPH01170780 A JP H01170780A JP 32854087 A JP32854087 A JP 32854087A JP 32854087 A JP32854087 A JP 32854087A JP H01170780 A JPH01170780 A JP H01170780A
Authority
JP
Japan
Prior art keywords
compression
chamber
oil
scroll
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32854087A
Other languages
Japanese (ja)
Other versions
JPH0826862B2 (en
Inventor
Katsuharu Fujio
藤尾 勝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62328540A priority Critical patent/JPH0826862B2/en
Publication of JPH01170780A publication Critical patent/JPH01170780A/en
Publication of JPH0826862B2 publication Critical patent/JPH0826862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To improve oil feed performance and to improve durability by disposing a plurality of compression spaces formed between a rotary scroll and a fixed scroll and communicating a suction chamber and the compression spaces which do not communicate with a discharge port with a discharge chamber oil sump by an oil feed passage. CONSTITUTION:The interior of a sealed case 1 is partitioned into upper and lower motor room and discharge chamber by a main body frame 5 of a compression portion supporting a driving shaft 4 of a motor, and a fixed scroll 15 is fixed to the lower end surface of the main body frame 5. A rotary scroll 18 having a lap 18a engaged with a lap 15a of the fixed scroll 15 is accommodated in a space surrounded by the fixed scroll 15, the main body frame 5 and the driving shaft 4. A plurality of compression spaces 61a, 61b, 51a, 51b, 60a, 60b adapted to continuously move are formed between both laps 15a, 18a. In this case, the second compression spaces 51a, 51b and a discharge chamber oil sump 34 are communicated with one another through an eccentric hearing space 36, an outer peripheral portion space 37 and injection holes 52a, 52b.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスクロール気体圧縮機に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a scroll gas compressor.

従来の技術 低振動、低騒音特性を備えたスクロール圧縮機は、吸入
室が外周部に有り、吐出ポートが渦巻きの中心部に設け
られ、圧縮流体の流れが一方向で往復動圧縮機や回転式
圧縮機のような流体を圧縮するための吐出弁を必要とせ
ず圧縮比が一定で、吐出脈動も比較的小さくて大きな吐
出空間を必要としないことが一般に知られており、既に
、車両空調用圧縮機や事務所空調用圧縮機のように気体
排除容積が大きい分野で実用化されている。
Conventional technology Scroll compressors with low vibration and low noise characteristics have a suction chamber on the outer periphery and a discharge port in the center of the spiral. It is generally known that a compressor does not require a discharge valve to compress fluid, has a constant compression ratio, has relatively small discharge pulsation, and does not require a large discharge space. It has been put into practical use in fields with large gas displacement volumes, such as commercial compressors and office air conditioning compressors.

しかし、圧縮部の漏れ隙間を小さくするために渦巻き部
の寸法精度を極めて高くする必要があるが、部品形状の
複雑さ、寸法精度バラツキなどにより、スクロール気体
圧縮機のコストが高く性能のバラツキも大きいという問
題があった。
However, in order to reduce the leakage gap in the compression part, the dimensional accuracy of the spiral part needs to be extremely high, but due to the complexity of the parts shape and the variation in dimensional accuracy, the cost of scroll gas compressors is high and the performance varies. The problem was that it was big.

そこで、この種の問題解決のための方策として、圧縮途
中の気体漏れ防止のために潤滑油膜を利用したシール効
果により渦巻き部寸法精度の適性化途中の圧縮室に直接
流入させる構成が考えられ、同図は密閉容器701内の
上部に°モータ703を配置し、下部に圧縮部を配置し
て密閉容器内空間702を吐出室とした構成で、吐出室
底部の油溜710の潤滑油を油吸い込み管722を介し
て圧縮途中の圧縮室723にその底面部から直接流入さ
せる構成がある(特開昭57−8386号公報)。
Therefore, as a measure to solve this type of problem, a configuration has been considered in which the gas leaks during compression by using a sealing effect using a lubricating oil film to flow directly into the compression chamber while the dimensional accuracy of the spiral part is being optimized. The figure shows a configuration in which a motor 703 is placed in the upper part of a sealed container 701, a compression part is placed in the lower part, and the internal space 702 of the sealed container is used as a discharge chamber. There is a configuration in which the suction pipe 722 directly flows into the compression chamber 723 during compression from the bottom thereof (Japanese Patent Application Laid-Open No. 57-8386).

発明が解決しようとする問題点 しかし、家庭用空調圧縮機のような小容量気体排除容積
や圧縮機小型化を必要とする分野では、低騒音化を図る
ために圧縮するための吐出弁を用いないので所要の圧縮
比を確保するための渦巻き数が必要であり、吸入・圧縮
部が大きく、圧縮機小型化を図る際の大きな支障になっ
ていた。
Problems to be Solved by the Invention However, in fields such as household air conditioning compressors that require a small gas displacement volume and compressor downsizing, a discharge valve for compression is used to reduce noise. Since there is no compressor, a number of spirals is required to ensure the required compression ratio, and the suction/compression section is large, which has been a major hindrance in reducing the size of the compressor.

また、上記の第12図のような油吸い込み管の通路抵抗
が固定され、油溜710の潤滑油を圧縮途中の適当な圧
縮室723に適当な差圧により流入させるだけの構成で
は、モータ703の回転速度が変化して圧縮機運転され
る場合などは必ずしも圧縮室への潤滑油給油によって圧
縮効率を向上させ得るものではない。すなわち、圧縮室
間隙間からの吸入気体容積光たりの圧縮気体漏れ量は、
圧縮時間の長い時に多く圧縮時間の短い時に少ない。し
たがって、圧縮機高速度運転時にはより積極的な圧縮室
への潤滑油給油によって圧縮気体漏れを少なくし圧縮効
率を改善するものである。しかし、圧縮機高速度運転時
には圧縮効率の改善にはつながらず、むしろ、圧縮気体
漏れが少なく、潤滑油中に混入している冷媒ガスの流入
によって圧縮室圧力か高くなり圧縮トルクが大きくなる
Further, in the configuration shown in FIG. 12, in which the passage resistance of the oil suction pipe is fixed and the lubricating oil in the oil reservoir 710 is simply caused to flow into the appropriate compression chamber 723 during compression by an appropriate differential pressure, the motor 703 When the compressor is operated while the rotational speed of the compressor changes, the compression efficiency cannot necessarily be improved by supplying lubricating oil to the compression chamber. In other words, the amount of compressed gas leaking from the gap between compression chambers per intake gas volume is:
More when the compression time is long and less when the compression time is short. Therefore, when the compressor is operated at high speed, lubricating oil is more actively supplied to the compression chamber to reduce leakage of compressed gas and improve compression efficiency. However, when the compressor is operated at high speed, this does not lead to an improvement in compression efficiency; on the contrary, there is little compressed gas leakage, and the inflow of refrigerant gas mixed in the lubricating oil increases the compression chamber pressure and increases the compression torque.

また、圧縮機高速度運転時には吐出流体速度が速くて吐
出流体に含まれる潤滑油を効果的に分離することも困難
で、圧縮機外部への潤滑油吐出量が多く圧縮機内潤滑油
が不足し、摺動部焼き付を生じるという問題を有してい
る。
In addition, when the compressor is operated at high speed, the discharge fluid velocity is high and it is difficult to effectively separate the lubricating oil contained in the discharged fluid, resulting in a large amount of lubricating oil being discharged to the outside of the compressor, resulting in a shortage of lubricating oil inside the compressor. However, there is a problem in that the sliding part may seize.

このような理由により、圧縮機が低速度から高速度まで
の広範囲運転される場合には圧縮室への潤滑油流入量を
調整する必要がある。勿論、上図の構成でも油吸い込み
管722からの潤滑油流入開口部が旋回スクロールによ
って一時的に塞がれ、間欠的に開閉されて高速運転時の
給、油量が多少制限されるが、閉塞部長さが短いために
給油量調整範囲も少ないので可変速度運転に供される小
容量気体排除容積のスクロール圧縮機には積極的に圧縮
室へ給油することか困難であるという問題があった。
For these reasons, when the compressor is operated over a wide range from low speed to high speed, it is necessary to adjust the amount of lubricating oil flowing into the compression chamber. Of course, even with the configuration shown in the above diagram, the lubricating oil inflow opening from the oil suction pipe 722 is temporarily blocked by the orbiting scroll and is intermittently opened and closed, which somewhat limits the supply and oil amount during high-speed operation. Because the blockage section is short, the oil supply amount adjustment range is also small, so scroll compressors with small gas displacement volumes used for variable speed operation have had the problem that it is difficult to actively supply oil to the compression chamber. .

そこで、本発明は圧縮室を形成する渦巻き部の巻き数を
少な(し、圧縮室への給油量を圧縮機運転速度に応じて
制御し圧縮効率と耐久性に優れたスクロール気体圧縮機
を提供するものである。
Therefore, the present invention provides a scroll gas compressor that has excellent compression efficiency and durability by reducing the number of turns in the spiral portion that forms the compression chamber and by controlling the amount of oil supplied to the compression chamber according to the compressor operating speed. It is something to do.

問題点を解決するための手段 上記問題を解決するために本発明のスクロール気体圧縮
機は、旋回スクロールが駆動軸を支承する本体フレーム
と固定スクロールとの間に配置され、吸入室に通じる第
1圧縮室または吸入室にも吐出ポートにも通じない第2
圧縮室と吐出ポートに通じる吐出室の油溜または吐出室
に通じる油溜とは絞り部を有する給油通路で連通し、固
定スクロールノ固定スクロールラップと旋回スクロール
の旋回スクロールラップの渦巻き数が実質的に第2圧縮
室を形成できる最小の巻き数で構成され、更には給油通
路が旋回スクロールの旋回運動に連動してラップ支持円
板により間欠的に開閉される構成である。
Means for Solving the Problems In order to solve the above problems, the scroll gas compressor of the present invention has an orbiting scroll disposed between a main body frame supporting a drive shaft and a fixed scroll, and a first A second valve that does not communicate with either the compression chamber or suction chamber or the discharge port.
The compression chamber and the oil sump in the discharge chamber leading to the discharge port or the oil sump leading to the discharge chamber communicate with each other through an oil supply passage having a constriction part, and the number of turns of the fixed scroll wrap of the fixed scroll and the orbiting scroll wrap of the orbiting scroll is substantially the same. It is constructed with the minimum number of windings that can form the second compression chamber, and furthermore, the oil supply passage is intermittently opened and closed by a lap support disk in conjunction with the orbiting movement of the orbiting scroll.

作   用 本発明は上記構成によって、吸入・圧縮時の容積比を通
常より少なくして小形にした圧縮機が起動し、吸入気体
は圧縮空間を経て吐出室に吐出され、吐出室圧力を次第
に上昇させる。
According to the above-described structure, the compressor, which is made smaller by reducing the volume ratio during suction/compression compared to the usual one, is started, and the suction gas is discharged into the discharge chamber through the compression space, and the pressure in the discharge chamber is gradually increased. let

給油通路の開口する圧縮空間の圧力よりも吐出室圧力が
高くなると、吐出室の油溜(または吐出室に通じる油溜
)の潤滑油は旋回スクロールのラップ支持円板の旋回運
動の度にその通路が開閉され、給油通路を介して間欠的
に圧縮空間に給油され、その給油は旋回速度が遅い時に
は一旋回当たりの給油量が多く、旋回速度が速い時には
一旋回当たりの給油量が少なく調整されて、圧縮機高速
度運転時には吸入気体に対する給油量と加熱量を多くし
て圧縮室間隙間の油膜シール効果により圧縮気体漏れ量
の低減と圧縮室圧力を上昇させ、圧縮機高速度運転時に
は一旋回当たりの圧縮室への給油量と圧縮気体漏れを少
なくして圧縮室圧力の過上昇を抑制して圧縮動力損失の
低減を図るものである。
When the pressure in the discharge chamber becomes higher than the pressure in the compression space where the oil supply passage opens, the lubricating oil in the oil sump in the discharge chamber (or in the oil sump leading to the discharge chamber) leaks every time the orbiting scroll's lap support disk rotates. The passage is opened and closed, and the compression space is intermittently supplied with oil through the oil supply passage, and the oil supply is adjusted such that when the rotation speed is slow, the amount of oil supplied per revolution is large, and when the rotation speed is high, the amount of oil supplied per revolution is reduced. When the compressor is operating at high speed, the amount of oil supply and heating for the intake gas is increased, and the oil film sealing effect in the gap between the compression chambers reduces the amount of compressed gas leakage and increases the pressure in the compression chamber. The purpose is to reduce the amount of oil supplied to the compression chamber per revolution and the leakage of compressed gas, thereby suppressing excessive rise in pressure in the compression chamber and reducing compression power loss.

実施例 以下本発明の実施例のスクロール圧縮機について、図面
を参照しながら説明する。
Embodiments Below, scroll compressors according to embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例におけるスクロール冷媒
圧縮機の縦断面図を示し、第2図は主要部品の分解図を
示し、第3図は第1図におけるA−A線における断面図
を示し、第4図は第3図における吸入管接続部における
逆止弁の位置説明図を示し、第5図は第4図におけるB
−B線における縦断面図を示し第6図は給油通路に用い
る逆止弁の外観図を示し、第7図、第8図は吐出ポート
における圧縮室の移動説明図を示し、第9図は吸入行程
から吐出行程までの冷媒ガスの圧力変化を示す特性図を
示し、第10図は各圧縮室における定点の圧力変化を示
す特性図を示し、第11図は吐出ポートに連なる圧縮室
容積が最小状態の圧縮室配置説明図を示す。
FIG. 1 shows a longitudinal sectional view of a scroll refrigerant compressor according to a first embodiment of the present invention, FIG. 2 shows an exploded view of main parts, and FIG. 3 shows a cross section taken along line A-A in FIG. 1. 4 shows the position of the check valve at the suction pipe connection part in FIG. 3, and FIG.
6 shows an external view of the check valve used in the oil supply passage, FIGS. 7 and 8 show an explanatory diagram of movement of the compression chamber in the discharge port, and FIG. A characteristic diagram showing the pressure change of refrigerant gas from the suction stroke to the discharge stroke is shown, FIG. 10 is a characteristic diagram showing the pressure change at a fixed point in each compression chamber, and FIG. 11 is a characteristic diagram showing the pressure change at a fixed point in each compression chamber. An explanatory diagram of the compression chamber arrangement in the minimum state is shown.

第1図において、1は鉄製の密閉ケースでその内部全体
が吐出室2に連通ずる高圧雰囲気で、上部にモータ3、
下部に圧縮部を配置し、モータ3の回転子3mに固定さ
れた駆動軸4を支承する圧縮部の本体フレーム5により
密閉ケース1の内部がモータ室6と吐出室とに仕切られ
ている。本体フレーム5は軽量化と軸受部の熱発散を主
目的とした熱伝導特性1こ優れたアルミニウム合金製で
、その外周部に溶接性に優れた鉄製のライナー8が焼は
め固定され、ライナー8の外周面が密閉ケース1に全周
内接し部分的に溶接固定されている。
In Fig. 1, reference numeral 1 denotes a closed case made of iron, the entire inside of which communicates with a discharge chamber 2 in a high-pressure atmosphere, and a motor 3 on the top.
A compression section is disposed in the lower part, and the inside of the sealed case 1 is partitioned into a motor chamber 6 and a discharge chamber by a main body frame 5 of the compression section that supports a drive shaft 4 fixed to a rotor 3m of a motor 3. The main body frame 5 is made of an aluminum alloy with excellent heat conduction properties, with the main purpose of reducing weight and dissipating heat from the bearing part.A liner 8 made of iron with excellent weldability is fixed to the outer periphery by shrink fitting. The outer circumferential surface of the sealing case 1 is entirely inscribed in the sealed case 1 and partially fixed by welding.

モータ3の固定子3bの両端外周部が密閉ケース1に内
接固定された軸受フレーム9と本体フレーム5によって
支持固定されている。駆動軸4は軸受フレーム9に設け
られた上部軸受10、本体フレーム5の上端部に設けら
れた下部軸受11、本体フレーム5の中央部に設けられ
た主軸受12、本体フレーム5の上端面とモータ3の回
転子3−の下部端面との間に設けられたスラスト玉軸受
13とで支持され、その下端部には駆動軸4の主軸から
偏心した偏心軸受14が設けられている。
The outer peripheral portions of both ends of the stator 3b of the motor 3 are supported and fixed by a bearing frame 9 and a main body frame 5 which are internally fixed to the sealed case 1. The drive shaft 4 includes an upper bearing 10 provided on a bearing frame 9, a lower bearing 11 provided on the upper end of the main body frame 5, a main bearing 12 provided in the center of the main body frame 5, and an upper end surface of the main body frame 5. It is supported by a thrust ball bearing 13 provided between the lower end surface of the rotor 3- of the motor 3, and an eccentric bearing 14 eccentric from the main axis of the drive shaft 4 is provided at its lower end.

本体フレーム5の下端面にはアルミニウム合金製の固定
スクロール15が固定され、固定スクロール15は渦巻
き状の固定スクロールラップ15aと鏡板15bから成
り、鏡板15bの中央部には固定スクロールラップ15
mの巻き始め部に開口する吐出ボート16が吐出室2に
も開口して設けられ、固定スクロールラップ15aの外
周部には吸入室17が設けられている。
A fixed scroll 15 made of aluminum alloy is fixed to the lower end surface of the main body frame 5, and the fixed scroll 15 consists of a spiral fixed scroll wrap 15a and an end plate 15b.
A discharge boat 16 that opens at the beginning of winding of the scroll wrap 15a is also provided to open to the discharge chamber 2, and a suction chamber 17 is provided at the outer periphery of the fixed scroll wrap 15a.

固定スクロールラップ15aに噛み合って圧縮室を形成
する渦巻き状の旋回スクロールラップ1日暑と駆動軸4
の偏心軸受14に支持された旋回軸18bとを直立させ
たラップ支持円板18cとから成るアルミニウム合金製
の旋回スクロール18は固定スクロール15と本体フレ
ーム5と駆動軸4とに囲まれて配置されており、旋回軸
18bの外周部に高張力鋼材料から成るスリーブ19が
焼はめ固定され、ラップ支持円板18Cの表面は硬化処
理されている。
A spiral orbiting scroll wrap that meshes with the fixed scroll wrap 15a to form a compression chamber and a drive shaft 4
An orbiting scroll 18 made of aluminum alloy, which consists of a rotation shaft 18b supported by an eccentric bearing 14 and a lap support disk 18c standing upright, is surrounded by a fixed scroll 15, a main body frame 5, and a drive shaft 4. A sleeve 19 made of high-tensile steel material is shrink-fitted to the outer periphery of the pivot shaft 18b, and the surface of the lap support disk 18C is hardened.

なお、固定スクロールラップ15aと旋回スクロールラ
ップ18aの渦巻き曲線は、米国特許4441870号
公報にも記載されている如く、第11図の通りである。
The spiral curves of the fixed scroll wrap 15a and the orbiting scroll wrap 18a are as shown in FIG. 11, as also described in US Pat. No. 4,441,870.

すなわち、その巻き始めが隣り合うラップとラップとの
間の溝幅に等しい直径の円弧で始まり、それに続く渦巻
き曲線がインボリュート曲線から成っており、巻き始め
先端部が小さな円弧80になっている。したがって、吐
出ボート16に連通しない圧縮空間を形成する渦巻き曲
線の実質的な境界点はA点7となる。
That is, the beginning of the winding begins with a circular arc having a diameter equal to the groove width between adjacent wraps, the spiral curve that follows it is an involute curve, and the tip of the winding begins with a small circular arc 80. Therefore, the substantial boundary point of the spiral curve that forms the compression space that does not communicate with the discharge boat 16 is the point A 7.

本体フレーム5に固定された平行ピン19に拘束されて
軸方向にのみ移動が可能なスラスト軸受20と固定スク
ロール15の鏡板15bとの間にはスペーサ21が設け
られ、スペーサ21の軸方向寸法は油膜による摺動面の
シール性向上のためにラップ支持円板18cの厚さより
も約0.015〜0.020mm大きく設定されている
A spacer 21 is provided between the thrust bearing 20, which is restrained by a parallel pin 19 fixed to the main body frame 5 and can only move in the axial direction, and the end plate 15b of the fixed scroll 15, and the axial dimension of the spacer 21 is The thickness is set approximately 0.015 to 0.020 mm larger than the thickness of the lap support disk 18c in order to improve the sealing performance of the sliding surface by an oil film.

駆動軸4の偏心軸受14の底部と旋回スクロール1Bの
旋回軸18bの端部との間の偏心軸受空間36とラップ
支持円板18cの外周部空間37とは旋回軸18bとラ
ップ支持円板18cに設けられた油膜A38mにより連
通されている。
The eccentric bearing space 36 between the bottom of the eccentric bearing 14 of the drive shaft 4 and the end of the orbiting shaft 18b of the orbiting scroll 1B and the outer peripheral space 37 of the lap support disc 18c are defined by the orbiting shaft 18b and the lap support disc 18c. It is connected by an oil film A38m provided in the.

スラスト軸受2oは第2図のように、その中央部が2つ
の平行な直線部分とそれに連なる2つの円弧状曲線部分
から成る形状に貫通成形されている。
As shown in FIG. 2, the thrust bearing 2o is formed through a central portion into a shape consisting of two parallel straight sections and two arcuate curved sections connected thereto.

旋回スクロール自転阻止用のオルダムリング24は、焼
結成形や射出成形工法などに適した軽合金や樹脂材料か
ら成り、第2図のように両面が平行な薄い環状板とその
一面に設けられた一対の平行キ一部分とから成り、環状
板の外輪郭は2つの平行な直線部分とそれに連なる2つ
の円弧状曲線部分から成り、直線部分が第2図のように
スラスト軸受20の直線部分に微少隙間で係合し摺動可
能であり、平行キ一部分は第1図、第2図のように旋回
スクロール18のラップ支持円板18cに設けられた一
対のキー溝71に微少隙間で係合し摺動可能な形状に設
定されている。
The Oldham ring 24 for preventing rotation of the orbiting scroll is made of a light alloy or resin material suitable for sinter molding or injection molding, and as shown in Figure 2, it is made of a thin annular plate with parallel surfaces and provided on one side of the ring. The outer contour of the annular plate consists of two parallel straight parts and two arcuate curved parts connected to the two parallel straight parts, and the straight part is slightly attached to the straight part of the thrust bearing 20 as shown in FIG. The parallel key portion engages with a gap and can slide, and the parallel key portion engages with a pair of key grooves 71 provided in the lap support disk 18c of the orbiting scroll 18 with a small gap as shown in FIGS. 1 and 2. It is set in a slidable shape.

第1図のように、本体フレーム5とスラスト軸受20と
の間には約0.1mm前後のレリース隙間27が設けら
れ、そのレリース隙間27に対向して本体フレーム5に
も環状溝28が設けられ、環状溝2Bを囲んだゴム製の
シールリング7oが本体フレーム5とスラスト軸受20
との間に装着されている。
As shown in FIG. 1, a release gap 27 of approximately 0.1 mm is provided between the main body frame 5 and the thrust bearing 20, and an annular groove 28 is provided in the main body frame 5 opposite to the release gap 27. A rubber seal ring 7o surrounding the annular groove 2B connects the main body frame 5 and the thrust bearing 20.
It is installed between.

モータ室6の上部と、吐出室2とは密閉ケース1の側壁
を貫通して接続されたバイパス吐出管29を介して連通
し、バイパス吐出管29のモータ室6への開口位置は固
定子3bの上部コイルエンド30の側面に対向し、バイ
パス吐出管29の上部開口端と密閉ケース1の上面に接
続された吐出管31とは軸受フレーム5に設けられた抜
き穴32、密閉ケース1の上面と軸受フレーム9との間
に配置され多数の小穴を有したパンチングメタル33を
介して連通している。
The upper part of the motor chamber 6 and the discharge chamber 2 communicate with each other via a bypass discharge pipe 29 that passes through the side wall of the sealed case 1 and is connected to the upper part of the motor chamber 6. The opening position of the bypass discharge pipe 29 to the motor chamber 6 is located at the stator 3b. The discharge pipe 31, which faces the side surface of the upper coil end 30 of and the bearing frame 9, and communicate with each other via a punching metal 33 having a large number of small holes.

モータ室6の下部に設けられた吐出室油溜34はモータ
室6の上部とモータ3の固定子3bの外周の一部をカッ
トして設けた冷却通路35により連通されている。また
、吐出室油溜34は本体フレーム5に設けられた油膜B
58bを経由して環状溝28に通じると共に、オルダム
リング24が配置された旋回スクロール18の背圧室3
9にも主軸受12の摺動部微少隙間を介して通じ、更に
偏心軸受14に設けられた油溝A40aを介して偏心軸
受空間36へも連通している。
A discharge chamber oil reservoir 34 provided in the lower part of the motor chamber 6 is communicated with the upper part of the motor chamber 6 by a cooling passage 35 provided by cutting a part of the outer periphery of the stator 3b of the motor 3. In addition, the discharge chamber oil reservoir 34 is formed by an oil film B provided on the main body frame 5.
The back pressure chamber 3 of the orbiting scroll 18 communicates with the annular groove 28 via 58b and in which the Oldham ring 24 is arranged.
9 through a small gap in the sliding portion of the main bearing 12, and further communicates with the eccentric bearing space 36 through an oil groove A40a provided in the eccentric bearing 14.

また本体フレーム5に設けられた油膜B58bは駆動軸
4の下部軸受11に対向する下部軸部4aの表面に設け
られた螺線状油溝41にも通じており、螺線状油溝41
の巻方向は駆動軸4が正回転する時に潤滑油の粘性を利
用したネジポンプ作用の生じるように設けられ、その終
端は下部軸受4aの途中まで形成されている。
The oil film B58b provided on the main body frame 5 also communicates with the spiral oil groove 41 provided on the surface of the lower shaft portion 4a facing the lower bearing 11 of the drive shaft 4.
The winding direction is set so that a screw pump action using the viscosity of the lubricating oil occurs when the drive shaft 4 rotates forward, and the end thereof is formed halfway to the lower bearing 4a.

第3図、第4図のように、固定スクロール15は吸入室
17の両端を連通ずる円弧状の吸入通路42が設けられ
、それに直交する円形の吸入穴43が固定スクロールラ
ップ15aの側面に対しても直角方向に設けられ、吸入
穴43の底部は平面で吸入通路42の側面にまで到達し
ている。第5図のように、吸入穴43の中心は吸入通路
42の底面44とずれており、吸入通路42への開口部
寸法W45は吸入穴43の直径寸法より小さく設けられ
ている。また、吸入穴43にはアキュームレータ46の
吸入管47が接続されており、吸入穴43の底面44と
吸入管端面48との間には吸入管47の内径寸法および
吸入管端面4Bと底面44との間の吸入穴深さ寸法L4
9よりも大きく且つ開口寸法W45よりも大きい円形薄
鋼板の逆止弁50が配置されている。逆止弁50の表面
は油濡れ特性が悪く弾力性に富んだテフロンがコ−ティ
ングされている。
As shown in FIGS. 3 and 4, the fixed scroll 15 is provided with an arc-shaped suction passage 42 that communicates both ends of the suction chamber 17, and a circular suction hole 43 perpendicular to the arc-shaped suction passage 42 is formed on the side surface of the fixed scroll wrap 15a. The bottom of the suction hole 43 is flat and reaches the side surface of the suction passage 42 . As shown in FIG. 5, the center of the suction hole 43 is offset from the bottom surface 44 of the suction passage 42, and the opening dimension W45 to the suction passage 42 is set smaller than the diameter dimension of the suction hole 43. Further, a suction pipe 47 of an accumulator 46 is connected to the suction hole 43, and between the bottom surface 44 of the suction hole 43 and the suction pipe end surface 48, there are the inner diameter dimensions of the suction pipe 47, the suction pipe end surface 4B, and the bottom surface 44. Suction hole depth dimension L4 between
A check valve 50 made of a circular thin steel plate having a diameter larger than 9 and an opening size W45 is disposed. The surface of the check valve 50 is coated with Teflon, which has poor oil wettability and is highly elastic.

吸入室17にも吐出室2にも連通しない第2圧縮室51
と外周部空間とは、第2圧縮室51に開口して鏡板15
bに設けられた細径のインジェクション穴52、鏡板1
5bと樹脂製の断熱カバー53とで形成されたインジェ
クション溝54、外周部空間37に開口した段付き形状
の油入C38cとから成るインジェクション通路55で
連通され、油入C38cの大径部56には第6図に示す
ような外周の一部に切欠き57を有する薄鋼板製の逆止
弁58とコイルスプリング59とが配置され、コイルス
プリング59は断熱カバー53に押さえられて逆止弁を
常時付勢する。外周部空間37への油入C38cの開口
位置は、第7図、第8図に示す如く、吐出ボート16に
連通ずる第3圧縮室6oの容積減少行程が終了する近傍
にまで旋回スクロール1Bが移動した時(第7図参照)
に外周部空間37と油入C38cとが連通し、それ以外
の時(第8図参照)にはラップ支持円板18Cによって
遮断される位置に設けられている。
A second compression chamber 51 that does not communicate with either the suction chamber 17 or the discharge chamber 2
and the outer peripheral space are open to the second compression chamber 51 and have an end plate 15.
Small diameter injection hole 52 provided in b, mirror plate 1
5b and an injection groove 54 formed by a resin heat insulating cover 53, and an injection passage 55 consisting of a stepped oil filler C38c that opens into the outer peripheral space 37, and communicates with the large diameter portion 56 of the oil filler C38c. As shown in FIG. 6, a check valve 58 made of a thin steel plate having a notch 57 in a part of its outer periphery and a coil spring 59 are arranged, and the coil spring 59 is pressed by a heat insulating cover 53 to operate the check valve. Always energized. As shown in FIGS. 7 and 8, the opening position of the oil filling C38c into the outer peripheral space 37 is such that the orbiting scroll 1B is close to the end of the volume reduction stroke of the third compression chamber 6o communicating with the discharge boat 16. When moving (see Figure 7)
The outer circumferential space 37 and the oil filler C38c communicate with each other, and at other times (see FIG. 8), the outer circumferential space 37 and the oil filler C38c communicate with each other, and are blocked by the lap support disk 18C.

第9図において、横軸は駆動軸4の回転角度を表し、縦
軸は冷媒圧力を表し、吸入・圧縮・吐出行程における冷
媒ガスの圧力変化状態を表し、実線62は正常圧力運転
時の圧力変化を表し、62aは圧縮室への油インジェク
ションをせず圧縮不足運転時の圧力変化を表し、点線6
3は異常圧力上昇運転時の圧力変化を表す。
In FIG. 9, the horizontal axis represents the rotation angle of the drive shaft 4, the vertical axis represents the refrigerant pressure, and represents the pressure change state of the refrigerant gas in the suction, compression, and discharge strokes, and the solid line 62 represents the pressure during normal pressure operation. 62a represents the pressure change during under-compression operation without oil injection into the compression chamber, and dotted line 6
3 represents the pressure change during abnormal pressure increase operation.

第10図において、横軸は駆動軸4の回転角度を表し、
縦横は冷媒圧力を表し、実線64は吐出室2にも吸入室
17にも連通しない第2圧縮室51m、51bのインジ
ェクション穴52a。
In FIG. 10, the horizontal axis represents the rotation angle of the drive shaft 4,
The vertical and horizontal lines represent the refrigerant pressure, and the solid line 64 indicates the injection hole 52a of the second compression chamber 51m, 51b that does not communicate with either the discharge chamber 2 or the suction chamber 17.

52bの開口位置における圧力変化を表し、点線65は
吸入室17に連通ずる第1圧縮室61m、61b(第3
図参照)の定点における圧力変化を表し、−点鎖線66
は吐出室2に連通ずる第3圧縮室60a、Sobの定点
における圧力変化を表し、二点鎖線67は第1圧縮室1
3ia、61bと第2圧縮室51a、51bとの間の定
点における圧力変化を表し、二重点線68は背圧室39
の圧力変化を表す。
52b represents the pressure change at the opening position, and the dotted line 65 represents the pressure change at the opening position of the first compression chamber 61m, 61b (third
(see figure) represents the pressure change at a fixed point, - dotted chain line 66
represents pressure changes at fixed points in the third compression chamber 60a and Sob communicating with the discharge chamber 2, and the two-dot chain line 67 represents the pressure change at a fixed point in the third compression chamber 60a and Sob communicating with the discharge chamber 2.
3ia, 61b and the second compression chambers 51a, 51b, and the double dotted line 68 indicates the back pressure chamber 39.
represents the pressure change.

以上のように構成されたスクロール冷媒圧縮機について
、その動作を説明する。
The operation of the scroll refrigerant compressor configured as above will be explained.

第1図〜第10図において、モータ3によって駆動軸4
が回転駆動を開始し、旋回スクロール18が旋回運動を
し、圧縮機に接続した冷凍サイクルから潤滑油を含んだ
吸入冷媒ガスがアキュウムレータ46に接続した吸入管
47、吸入穴43、吸入通路42を順次経て吸入室17
に流入し、旋回スクロール18と固定スクロール15と
の間に形成された第1圧縮室61a、61bを経て圧縮
室内に閉じ込められ、常時密閉空間となる第2圧縮室5
1a、51b、第3圧縮室60 a、 60 bへと順
次移送圧縮され第9図の曲線62aのような圧縮比が小
さいことによる圧力未上昇の状態で中央部の吐出ポート
16を経て吐出室2へと吐出される。
1 to 10, the drive shaft 4 is driven by the motor 3.
starts rotating, the orbiting scroll 18 performs an orbiting motion, and suction refrigerant gas containing lubricating oil is supplied from the refrigeration cycle connected to the compressor to the suction pipe 47 connected to the accumulator 46, the suction hole 43, and the suction passage. 42 and then suction chamber 17
The second compression chamber 5 flows into the compression chamber, passes through the first compression chambers 61a and 61b formed between the orbiting scroll 18 and the fixed scroll 15, and is confined within the compression chamber, and becomes a closed space at all times.
1a, 51b, third compression chambers 60a, 60b, and the pressure is not increased due to the small compression ratio as shown by curve 62a in FIG. It is discharged to 2.

潤滑油を含んだ吐出冷媒ガスは圧縮機外部へ配管接続さ
れたバイパス吐出管29を経て再び圧縮機内のモータ室
6に帰還した後、外部の冷凍サイクルへ吐出管31から
搬出されるが、モータ室6に流入する際にモータ3の上
部コイルエンド30の側面に衝突してモータ巻き線の表
面に付着することにより潤滑油の一部を分離した後、軸
受フレーム9に設けられた抜き穴32を通過する際に流
れ方向を変えたりパンチングメタル33の小穴を通過す
る際に潤滑油の慣性力や表面付着などにより潤滑油が効
果的に分離される。
The discharged refrigerant gas containing lubricating oil returns to the motor chamber 6 inside the compressor through a bypass discharge pipe 29 connected to the outside of the compressor, and then is carried out to an external refrigeration cycle through a discharge pipe 31. After separating a part of the lubricating oil by colliding with the side surface of the upper coil end 30 of the motor 3 and adhering to the surface of the motor winding when flowing into the chamber 6, the lubricating oil is separated from a part of the lubricating oil by the extraction hole 32 provided in the bearing frame 9. The lubricating oil is effectively separated by the inertia of the lubricating oil and adhesion to the surface when the lubricating oil changes its flow direction or passes through the small holes of the punched metal 33.

吐出冷媒ガスから分離された潤滑油の一部は上部軸受の
摺動面を潤滑した後、残りの潤滑油と共に冷却通路35
を通りモータ3を冷却しながら下部の吐出室油溜34に
収集される。
A portion of the lubricating oil separated from the discharged refrigerant gas lubricates the sliding surface of the upper bearing, and then flows into the cooling passage 35 together with the remaining lubricating oil.
The oil passes through the motor 3 and is collected in the lower discharge chamber oil sump 34 while cooling the motor 3.

吐出室油溜34の潤滑油は駆動軸4の下部軸部4aの表
面に設けられた螺線状油溝41のネジポンプ作用により
スラスト玉軸受13へ給油され、下部軸受4aの端部の
微少軸受隙間を潤滑油が通過する際にその油膜のシール
作用によりモータ室6の吐出冷媒ガス雰囲気と主軸受1
2の上流側空間とが遮断される。モータ室6の圧力があ
る程度上昇した後、吐出室油溜34の溶解吐出冷媒ガス
を含んだ潤滑油は主軸受12の微少隙間を通過する際に
吐出圧力と吸入圧力との中間圧力に減圧されて背圧室3
9に流入し、その後、偏心軸受14の油溝A40a、偏
心軸受空間36、旋回スクロール18を通る穴A3Bを
経て外周部空間37に流入し、更に間欠的に開口する油
入C38c、インジェクション溝54、インジェクショ
ン穴52 m、52bを経て第2圧縮室51a、51b
に流入し、その通路途中の摺動面を潤滑する。
The lubricating oil in the discharge chamber oil sump 34 is supplied to the thrust ball bearing 13 by the screw pump action of the spiral oil groove 41 provided on the surface of the lower shaft portion 4a of the drive shaft 4, and the lubricating oil is supplied to the thrust ball bearing 13 by the micro bearing at the end of the lower bearing 4a. When the lubricating oil passes through the gap, the sealing action of the oil film causes the discharge of the refrigerant gas atmosphere in the motor chamber 6 and the main bearing 1
The upstream space of No. 2 is cut off. After the pressure in the motor chamber 6 increases to a certain extent, the lubricating oil containing the dissolved discharged refrigerant gas in the discharge chamber oil sump 34 is reduced to an intermediate pressure between the discharge pressure and the suction pressure as it passes through a small gap in the main bearing 12. back pressure chamber 3
9, and then flows into the outer peripheral space 37 via the oil groove A40a of the eccentric bearing 14, the eccentric bearing space 36, and the hole A3B passing through the orbiting scroll 18, and furthermore, the oil inlet C38c, which opens intermittently, and the injection groove 54. , second compression chambers 51a, 51b via injection holes 52m, 52b.
and lubricates the sliding surfaces along its path.

また、背圧室39に差圧給油された潤滑油は、シールリ
ング70の弾性力と共に中間圧力の付勢力を旋回スクロ
ール18に作用させてラップ支持円板18cを鏡板15
bとの摺動面に押圧油膜シールして外周部空間37と吸
入室17との間の連通を遮断すると共に、スラスト軸受
20とラップ支持円板18cとの摺動面の隙間も潤滑シ
ールする。
The lubricating oil supplied to the back pressure chamber 39 at a differential pressure acts on the orbiting scroll 18 with an intermediate pressure urging force together with the elastic force of the seal ring 70 to move the lap support disk 18c onto the end plate 15.
A pressure oil film is sealed on the sliding surface between the thrust bearing 20 and the suction chamber 17 to block communication between the outer peripheral space 37 and the suction chamber 17, and the gap between the sliding surface between the thrust bearing 20 and the lap support disk 18c is also lubricated and sealed. .

また、圧縮機の冷時始動後しばらくの間は、第9図、第
10図から理解できるように吐出室2の圧力が第2圧縮
室51m、51bの圧力よりも低いので、圧縮途中の冷
媒ガスが第2圧縮室51m、51bからインジェクショ
ン通路55を経て背圧室39に逆流しようとするが、逆
止弁58の逆止作用にて外周部空間37への逆流が阻止
され、吐出室油溜34の潤滑油は吐出室2の圧力上昇と
共に背圧室39、外周部空間37にまで差圧給油される
In addition, for a while after the cold start of the compressor, the pressure in the discharge chamber 2 is lower than the pressure in the second compression chambers 51m and 51b, as can be understood from FIGS. 9 and 10. Gas tries to flow back from the second compression chambers 51m and 51b to the back pressure chamber 39 via the injection passage 55, but the backflow to the outer space 37 is prevented by the check action of the check valve 58, and the discharge chamber oil As the pressure in the discharge chamber 2 increases, the lubricating oil in the reservoir 34 is supplied to the back pressure chamber 39 and the outer peripheral space 37 at a differential pressure.

したがって、冷時始動初期のスラスト軸受20への背圧
付勢力が圧縮室圧力により生じ旋回スフが微少に後退し
て旋回スクロール1日と固定スクロール15との間の軸
方向隙間を拡大することにより圧縮空間に漏れを生じて
圧縮室圧力を下げ、始動初期の圧縮負荷を軽減する。
Therefore, the back pressure urging force on the thrust bearing 20 at the initial stage of cold start is generated by the pressure in the compression chamber, and the orbiting scroll moves slightly backward, thereby expanding the axial clearance between the orbiting scroll 1 and the fixed scroll 15. A leak occurs in the compression space, lowering the compression chamber pressure and reducing the compression load at the initial stage of startup.

その後、吐出室2の圧力上昇に伴い外周部空間37の潤
滑油はコイルスプリング59の付勢力に抗してインジェ
クション穴52暑、52bを介して駆動軸4の回転速度
に逆比例するように計量制御されて第2圧縮室51m、
51bへインジェクションされる。
Thereafter, as the pressure in the discharge chamber 2 increases, the lubricating oil in the outer peripheral space 37 is metered through the injection hole 52 and 52b against the biasing force of the coil spring 59 so as to be inversely proportional to the rotational speed of the drive shaft 4. controlled second compression chamber 51m;
51b.

また、吐出室油溜34は環状溝2Bやレリース隙間27
とも通じているのでスラスト軸受20はその背圧力によ
り付勢されてスペーサ21の端面に当接しており、旋回
スクロール18のラップ支持円板18Cはスラスト軸受
20と固定スクロール15の鏡板15bとの間で微少隙
間を保持されて円滑に摺動すると共に固定スクロールラ
ップ15!1の端面とラップ支持円板18cとの間、並
びに、旋回スクロールラップ18暑との端面と鏡板15
bとの間の隙間も微少に保持されて隣接する圧縮空間の
気体漏れを少なくする。
In addition, the discharge chamber oil reservoir 34 is connected to the annular groove 2B and the release gap 27.
The thrust bearing 20 is urged by the back pressure and comes into contact with the end face of the spacer 21, and the lap support disk 18C of the orbiting scroll 18 is connected between the thrust bearing 20 and the end plate 15b of the fixed scroll 15. A small gap is maintained between the end face of the fixed scroll wrap 15!1 and the wrap support disk 18c, as well as between the end face of the orbiting scroll wrap 18 and the mirror plate 15.
The gap between the compressor and the compressor is also kept small to reduce gas leakage from the adjacent compression space.

第2圧縮室51 m、51 bのインジェクション穴5
2m、52bの開口部は第10図の如くの圧力変化64
をし、吐出室2の圧力に追従して変化する背圧室圧力6
8よりも瞬時的に高いが平均圧力が低いので背圧室39
からの潤滑油は油入C38cの鏡板開口端でラップ支持
円板18cの摺動面により間欠的に開閉され給油されな
がらインジェクション通路55を経て間欠的に第2圧縮
室51a、51bに流入し、正常運転時の背圧室圧力6
8よりも瞬時的に高い第2圧縮室51暑、51b内の圧
縮冷媒ガスは細径のインジェクション穴52a、52b
で減衰されてインジェクション溝54への瞬時的な逆流
がなく、インジェクション溝54内の圧力が背圧室圧力
68よりも高くならない。
Injection holes 5 in second compression chambers 51 m and 51 b
2m, the opening of 52b has a pressure change 64 as shown in Figure 10.
The back pressure chamber pressure 6 changes in accordance with the pressure in the discharge chamber 2.
Although it is momentarily higher than 8, the average pressure is lower, so the back pressure chamber 39
The lubricating oil flows intermittently into the second compression chambers 51a, 51b through the injection passage 55 while being intermittently opened and closed by the sliding surface of the lap support disk 18c at the opening end of the end plate of the oil filler C38c and being supplied with oil. Back pressure chamber pressure 6 during normal operation
The compressed refrigerant gas in the second compression chamber 51 and 51b is instantaneously higher than that in the second compression chamber 51b through the narrow injection holes 52a and 52b.
There is no instantaneous backflow to the injection groove 54, and the pressure within the injection groove 54 does not become higher than the back pressure chamber pressure 68.

なお、駆動軸4の一回転当たりの外周部空間37から油
入C38cへの潤滑油流入量は、駆動軸4の回転速度が
遅い場合には多く、速い場合には少なくなるように流量
調整され、第2圧縮室51a、51bへの油インジェク
ション量も相応して増減する。
Note that the flow rate is adjusted so that the amount of lubricating oil flowing from the outer circumferential space 37 to the oil filler C38c per rotation of the drive shaft 4 increases when the rotation speed of the drive shaft 4 is slow, and decreases when the rotation speed of the drive shaft 4 is fast. , the amount of oil injected into the second compression chambers 51a, 51b also increases or decreases accordingly.

第2圧縮室51m151bにインジェクションされた潤
滑油は、吸入冷媒ガスと共に圧縮室に流入した潤滑油と
合流して隣接する圧縮室間の隙間を油膜により密封して
圧縮気体漏れを防ぎ、圧縮室間の摺動面を潤滑しながら
圧縮気体と共に吐出室2に吐出され、圧縮機低速運転時
の吐出冷媒ガス中の潤滑油は吐出冷媒ガスの流速も遅く
潤滑油の混入も少ないためモータ室6でほぼ分離され、
高速運転時には潤滑油の一部が外部へ吐出される。
The lubricating oil injected into the second compression chamber 51m151b merges with the lubricating oil that has flowed into the compression chamber together with the suction refrigerant gas, and seals the gap between adjacent compression chambers with an oil film to prevent compressed gas leakage. The lubricating oil in the discharged refrigerant gas is discharged into the motor chamber 2 together with the compressed gas while lubricating the sliding surfaces of the motor chamber 6. almost separated,
During high-speed operation, some of the lubricating oil is discharged to the outside.

この時、インジェクションにより流入した潤滑油とその
中に含まれる圧縮冷媒ガスによる加熱作用などで圧縮室
圧力は、油インジェクションをしない場合よりも上昇し
て第9図の曲線62のように所要吐出圧力に達した定常
運転時の変化を呈する。
At this time, due to the heating effect of the lubricating oil that has flowed in due to the injection and the compressed refrigerant gas contained therein, the pressure in the compression chamber increases compared to the case without oil injection, and the required discharge pressure increases as shown by curve 62 in Figure 9. It exhibits changes during steady operation when it reaches .

また、冷時始動初期や安定運転時に油インジェクション
やその他の原因で瞬時的な液圧縮が生じた場合の圧縮室
圧力は第9図の点線63のように異常な圧力上昇と過圧
縮が生じるが、吐出室2とそれに連通ずる高圧空間容積
が大きいので吐出室圧力の上昇が極めて小さい。
In addition, when instantaneous liquid compression occurs due to oil injection or other causes during the initial cold start or stable operation, the compression chamber pressure will cause an abnormal pressure rise and overcompression as shown by the dotted line 63 in Figure 9. Since the volume of the discharge chamber 2 and the high-pressure space communicating therewith is large, the increase in pressure in the discharge chamber is extremely small.

また、液圧縮により第2圧縮室51a、51bに連通ず
るインジェクション溝54なども異常圧力上昇するが、
細径の油入C38cの絞り効果と逆止弁58の逆止作用
により外周部空間37とインジェクション溝54との間
を遮断され、背圧室39の圧力は変わらず、スラスト軸
受20の背面に作用する背圧付勢力にも変動がなく、そ
の結果、液圧縮時には旋回スクロール1Bに作用する過
大なスラスト力によって上述のようにスラスト軸受20
が後退して圧縮室圧力が降下し、その後、正常運転を継
続する。
Furthermore, due to liquid compression, the pressure in the injection groove 54 communicating with the second compression chambers 51a, 51b increases abnormally.
Due to the throttling effect of the small-diameter oil filler C38c and the non-return action of the check valve 58, the outer space 37 and the injection groove 54 are shut off, and the pressure in the back pressure chamber 39 remains unchanged, and the back pressure of the thrust bearing 20 is There is no fluctuation in the back pressure force that acts, and as a result, when the liquid is compressed, the excessive thrust force that acts on the orbiting scroll 1B causes the thrust bearing 20 to
moves back and the compression chamber pressure drops, after which normal operation continues.

なり、液圧縮途中でスラスト軸受20が後退することに
より圧縮室圧力は第9図の一点鎖線63aの如く途中で
降圧する。
As the thrust bearing 20 retreats during liquid compression, the pressure in the compression chamber drops midway as shown by the dashed line 63a in FIG.

圧縮機停止後は、圧縮室内圧力により旋回スクロール1
8に逆旋回トルクが生じ、旋回スクロール18が逆旋回
して吐出冷媒ガスが吸入側に逆流する。この吐出冷媒ガ
スの逆流に追従して、逆止弁50が第3図の位置から第
4図の位置に移動し、逆止弁50の表面に施されたテフ
ロン被膜により吸入管端面48を密封して吐出冷媒ガス
の逆流を制止し旋回スクロール18の逆旋回が停止し、
吸入通路42と吐出ポート16との間の空間は吐出圧力
を保持する。
After the compressor stops, the orbiting scroll 1
A reverse rotation torque is generated at 8, the orbiting scroll 18 rotates in the reverse direction, and the discharged refrigerant gas flows back to the suction side. Following this backflow of the discharged refrigerant gas, the check valve 50 moves from the position shown in FIG. 3 to the position shown in FIG. to stop the reverse flow of the discharged refrigerant gas, and the reverse rotation of the orbiting scroll 18 is stopped.
The space between the suction passage 42 and the discharge port 16 maintains the discharge pressure.

また、インジェクション通路55の逆止弁58を境にし
て圧縮室に連通ずる通路は吐出圧力になるが、外周部空
間37と背圧室39との間の空間はしばらくの間、中間
圧力を保持し、吐出室油溜34からの潤滑油微少流入に
より次第に吐出圧力に近付く。圧縮機停止時、旋回スク
ロール18は逆転し第3圧縮室60暑、60bが拡大し
て逆旋回トルクを生じない位置に停止し、油入C38a
・の外周部空間37への開口部はラップ支持円板18c
により遮断される。
In addition, the passage that communicates with the compression chamber with the check valve 58 of the injection passage 55 as a border has a discharge pressure, but the space between the outer peripheral space 37 and the back pressure chamber 39 maintains an intermediate pressure for a while. However, due to a slight inflow of lubricating oil from the discharge chamber oil reservoir 34, the pressure gradually approaches the discharge pressure. When the compressor is stopped, the orbiting scroll 18 rotates in reverse, the third compression chamber 60b expands, and stops at a position where no reverse rotation torque is generated, and the oil filler C38a
The opening to the outer peripheral space 37 is the wrap support disk 18c.
is blocked by

圧縮機停止後はコイルスプリング59の付勢力によって
も逆止弁58かインジェクション通路55を遮断するの
で外周部空間37から圧縮室への潤滑油流入がない。
After the compressor is stopped, the check valve 58 or the injection passage 55 is blocked by the biasing force of the coil spring 59, so that no lubricating oil flows from the outer peripheral space 37 into the compression chamber.

以上のように上記実施例によれば旋回スクロール18が
駆動軸4を支承する本体フレーム5と固定スクロール1
5との間に配置され、吸入室17にも吐出ポート16に
も通じない第2圧縮室51!I、51bと吐出ポート1
6に通じる吐出室油溜34とは細径の油入C38cと細
径のインジェクション穴52−152bをその両端に有
するインジェクション通路55を経由する給油通路で連
通し、固定スクロール15の一部を成す渦巻き形状の固
定スクロールラップ15aと旋回スクロール18の一部
を成す渦巻き形状の旋回スクロールラップ18mの渦巻
き数が、渦巻き始めの円弧部などを除いて実質的に第2
圧縮室51m、51bを形成することのできる最少の巻
き数にしたことにより、圧縮室の容積変化率を少なくす
る反面、給油通路を通じて圧縮吐へ潤滑油を給油し、圧
縮室間隙間を油膜密封することによる圧縮室の圧力上昇
を促進させると共に適当な給油加熱(潤滑油中に混入す
る圧縮冷媒ガスを含む)による圧縮室圧力上昇とによっ
て第9図における圧力曲線82aを圧力曲線62にまで
変化させた如く、吸入冷媒ガスを過不足のない吐出圧力
にまで昇圧することができる。このため1第9図の圧力
曲線62の斜線部分1のような過圧縮による動力損失が
少なくなると共に吸入室、圧縮室部分が小さくなり圧縮
機の小型化が実現できる。
As described above, according to the above embodiment, the orbiting scroll 18 is connected to the main body frame 5 supporting the drive shaft 4 and the fixed scroll 1.
5, and does not communicate with either the suction chamber 17 or the discharge port 16! I, 51b and discharge port 1
6 communicates with the discharge chamber oil reservoir 34 through an oil supply passage via an injection passage 55 having a small diameter oil filler C38c and a small diameter injection hole 52-152b at both ends thereof, and forms a part of the fixed scroll 15. The number of spirals of the spiral-shaped fixed scroll wrap 15a and the spiral-shaped orbiting scroll wrap 18m forming a part of the orbiting scroll 18 is substantially the second, except for the arc portion at the beginning of the spiral.
By setting the number of turns to the minimum that can form the compression chambers 51m and 51b, the volume change rate of the compression chambers is reduced, but on the other hand, lubricating oil is supplied to the compression discharge through the oil supply passage, and the gap between the compression chambers is sealed with an oil film. The pressure curve 82a in FIG. 9 changes to the pressure curve 62 by accelerating the pressure rise in the compression chamber by heating the oil supply (including the compressed refrigerant gas mixed in the lubricating oil). As described above, the suction refrigerant gas can be pressurized to just the right discharge pressure. Therefore, the power loss due to overcompression as shown in the shaded area 1 of the pressure curve 62 in FIG. 9 is reduced, and the suction chamber and compression chamber portions are made smaller, making it possible to downsize the compressor.

また、上記実施例によれば給油通路途中のインジェクシ
ョン通路55は旋回スクロール18のラップ支持円板1
8cと固定スクロール15の鏡板15bとの摺動面に開
口して鏡板15bに設けられ、油シンジエクション通路
55の上流側開口部が旋回スクロール18の旋回運動に
連動してラップ支持円板18cにより間欠的に開閉され
ることにより、吐出室油溜34から第2圧縮室51m、
51bに流入する潤滑油量は、旋回スクロール1日が一
旋回する時間の長い場合には多く、短い場合には少なく
なるように制御される。このため、第2圧縮室51m、
51bへの油インジェクション量は駆動軸4の回転速度
に逆比例して増減するので、圧縮機低速運転時のように
圧縮時間が長くて圧縮途中冷媒ガスの漏れ量が多くなる
場合には充分な給油による油膜シールによって圧縮室間
の密封を高めて圧縮効率を向上することができる。
Further, according to the above embodiment, the injection passage 55 in the middle of the oil supply passage is connected to the lap support disk 1 of the orbiting scroll 18.
8c and the end plate 15b of the fixed scroll 15, and is provided in the end plate 15b so that the upstream opening of the oil synjection passage 55 is connected to the orbiting movement of the orbiting scroll 18 and is opened by the lap support disk 18c. By being intermittently opened and closed, the second compression chamber 51m from the discharge chamber oil sump 34,
The amount of lubricating oil flowing into 51b is controlled so that it increases when the orbiting scroll takes a long time to make one revolution in a day, and decreases when it is short. For this reason, the second compression chamber 51m,
The amount of oil injected into 51b increases or decreases in inverse proportion to the rotation speed of the drive shaft 4, so if the compression time is long and the amount of refrigerant gas leaks during compression is large, such as when the compressor is operated at low speed, The oil film seal created by oil supply can improve the sealing between compression chambers and improve compression efficiency.

また、圧縮機高速運転時のように圧縮時間が短くて圧縮
途中冷媒ガスの漏れ量が少なくなる場合には、給油量を
少なくして加熱と潤滑油溶解冷媒ガスの流入量を抑制し
、圧縮室の温度上昇と過圧縮を防止して動力損失の低減
と耐久性を高めることができる。
In addition, when the compression time is short and the amount of refrigerant gas leaking during compression is small, such as when the compressor is running at high speed, the amount of oil supplied is reduced to suppress heating and the amount of inflow of refrigerant gas dissolved in the lubricating oil. It prevents temperature rise and overcompression in the chamber, reducing power loss and increasing durability.

また、吐出冷媒ガスの流速が速くて油分離効率が悪くな
る圧縮機高速運転時でも吐出冷媒ガスに混入する潤滑油
量が少ないので圧縮機外部の冷凍サイクルへの油吐出量
も少なくなり、冷凍サイクルの熱交換器の熱交換性能の
低下を防ぎ、圧縮機内潤滑油確保によって圧縮機耐久性
向上や圧縮室への油インジェクション効果を発揮させる
ことができる。
In addition, even when the compressor is operated at high speed, where the flow rate of the discharged refrigerant gas is high and oil separation efficiency deteriorates, the amount of lubricating oil mixed in the discharged refrigerant gas is small, so the amount of oil discharged to the refrigeration cycle outside the compressor is also reduced. It prevents the heat exchange performance of the heat exchanger of the cycle from deteriorating, and by securing lubricating oil inside the compressor, it is possible to improve the durability of the compressor and to achieve the effect of oil injection into the compression chamber.

また、上記実施例ではインジェクション穴52a、52
bを第2圧縮室に開口したが、吸入室17に通じる第1
圧縮室6l−261bに開口してもよい。
Further, in the above embodiment, the injection holes 52a, 52
b opens into the second compression chamber, but the first opening leading to the suction chamber 17
It may open into the compression chamber 6l-261b.

また、上記実施例では冷媒圧縮機について説明したが、
潤滑油を使用する酸素、窒素、ヘリウムなどの他の気体
圧縮機の場合も同様の作用効果を期待できる。
Furthermore, in the above embodiment, the refrigerant compressor was explained, but
Similar effects can be expected with other gas compressors such as oxygen, nitrogen, and helium that use lubricating oil.

発明の効果 以上のように本発明は、旋回スクロールが駆動軸を支承
する本体フレームと固定スクロールとの間に配置され、
吸入室に通じる第1圧縮室または吸入室にも吐出ポート
にも通じない第2圧縮室と吐出ポートに通じる吐出室の
油溜(または吐出室に通じる油溜)とは絞り部を有する
給油通路で連通し、固定スクロールの一部をなす固定ス
クロールラップと旋回スクロールの一部をなす旋回スク
ロールラップの渦巻き数が実質的に第2圧縮室を形成で
きる最少の巻き数にしたことにより、圧縮室の容積変化
率を少なくして気体の圧縮比を小さくする反面、給油通
路を通じて圧縮室へ潤滑油を給油し、圧縮室間隙間の油
膜密封と適切な給油加熱により圧縮室圧力上昇を促進さ
せて吸入気体を過不足のない吐出圧力に昇圧することが
できるので、吐出圧力を確保しながら圧縮部を小さくし
て圧縮機の小型化を図ることができる。
Effects of the Invention As described above, the present invention has an orbiting scroll disposed between a main body frame supporting a drive shaft and a fixed scroll,
The first compression chamber that communicates with the suction chamber or the second compression chamber that does not communicate with either the suction chamber or the discharge port and the oil sump in the discharge chamber that communicates with the discharge port (or the oil sump that communicates with the discharge chamber) are oil supply passages that have a constricted part. By making the number of turns of the fixed scroll wrap that forms part of the fixed scroll and the orbiting scroll wrap that forms part of the orbiting scroll the minimum number of turns that can substantially form the second compression chamber, the compression chamber While reducing the rate of change in the volume of the gas to reduce the gas compression ratio, lubricating oil is supplied to the compression chamber through the oil supply passage, sealing the oil film in the gap between the compression chambers, and heating the oil supply appropriately to promote pressure rise in the compression chamber. Since the intake gas can be pressurized to just the right discharge pressure, it is possible to downsize the compressor by making the compression section smaller while ensuring the discharge pressure.

また、本発明は給油通路が旋回スクロールの旋回運動に
連動してラップ支持円板により間欠的に開閉されること
により、給油通路を閉塞する寸法を充分に確保ができる
ので吐出室の油溜(または吐出室に通じる油溜)から圧
縮空間に流入する潤滑油量は、旋回スクロールが一旋回
する時間の長い場合には多く、短い場合には少なくなる
ように制御できる。このため、圧縮空間への油インジェ
クション量は駆動軸の回転速度に逆比例して増減するの
で、圧縮機低速運転時のように圧縮時間が長くて圧縮途
中気体の漏れ量が多くなる場合には充分な給油による油
膜シールによって圧縮室間の密封を高めて圧縮効率の向
上と吐出圧力の確保また、圧縮機高速運転時のように圧
縮時間が短くて圧縮途中気体の漏れ量が少なくなる場合
には、給油量を少なくして潤滑油による加熱と潤滑油溶
解気体の流入量を抑制し、圧縮最終工程における過圧縮
を少なくして圧縮室の温度上昇と圧力上昇を防止して動
力損失の低減と耐久性を高めることができる。
In addition, in the present invention, the oil supply passage is intermittently opened and closed by the lap support disk in conjunction with the orbiting movement of the orbiting scroll, so that a sufficient size for closing the oil supply passage can be secured, so that the oil sump in the discharge chamber ( The amount of lubricating oil flowing into the compression space from the oil reservoir (or oil reservoir communicating with the discharge chamber) can be controlled so that it increases when the time for one revolution of the orbiting scroll is long, and decreases when the time for one revolution of the orbiting scroll is short. For this reason, the amount of oil injected into the compression space increases or decreases in inverse proportion to the rotational speed of the drive shaft, so if the compression time is long and the amount of gas leaking during compression increases, such as when the compressor is running at low speed, The oil film seal provided by sufficient oil supply improves the seal between the compression chambers, improving compression efficiency and ensuring discharge pressure.Also, when the compression time is short and the amount of gas leaking during compression is reduced, such as when the compressor is running at high speed. reduces power loss by reducing the amount of oil supplied, suppressing the heating caused by the lubricating oil and the inflow of lubricating oil dissolved gas, and reducing overcompression in the final compression process to prevent temperature and pressure rises in the compression chamber. and durability can be increased.

また、吐出気体の流速が速くて油分離効率が悪くなる圧
縮機高速運転時でも吐出気体に混入する潤滑油量が少な
いので圧縮機外部への油吐出量も少なくなり、圧縮機外
部での油回収の必要もなく、圧縮機内潤滑油確保によっ
て圧縮機耐久性向上や圧縮空間への油インジェクション
効果を発揮できると共に圧縮機外部配管系の設置空間や
コストを削減できるなど数多くの優れた効果を奏し小型
のスクロール気体圧縮機を実現するものである。
In addition, even during compressor high-speed operation, where the flow rate of discharged gas is high and oil separation efficiency deteriorates, the amount of lubricating oil mixed in with the discharged gas is small, so the amount of oil discharged to the outside of the compressor is also reduced. There is no need for recovery, and it has many excellent effects such as improving compressor durability by securing lubricating oil inside the compressor, achieving the effect of oil injection into the compression space, and reducing the installation space and cost of the compressor external piping system. This realizes a small scroll gas compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるスクロール冷媒圧縮
機の縦断面図、第2図は第1図に関する主要部品の分解
斜視図、第3図は第1図におけるA−A線での断面図、
第4図は第3図における吸入管接続部における逆止弁の
位置説明図、第5図1℃ は第4図におけるB−B線における縦断面数、第6図は
給油通路に用いる逆止弁の外観図、第7図、第8図は吐
出ポート部の圧縮室の移動説明図、第9図は吸入行程か
ら吐出行程までの冷媒ガスの圧力変化を示す特性図、第
10図は各圧縮室における定点圧力変化を示す特性図、
第11図は吐出ポートに連なる圧縮室の容積が最小状態
の圧縮室配置説明図、第12図は従来の給油通路を備え
たスクロール圧縮機の縦断面図である。 2・・・・・・吐出室、3・・・・・・モータ、4・・
・・・・駆動軸、5・・・・・・本体フレーム、12・
・・・・・主軸受、15・・・・・・固定スクロール、
15a・・・・・・固定スクロールラップ、16・・・
・・・吐出ポート、17・・・・・・吸入室、18・・
・・・・旋回スクロール、18a・・・・・・旋回スク
ロールラップ、18c・・・・・・ラップ支持円板、3
4・・・・・・吐出室油溜、38a・・・・・・油室C
139・・・・・・背圧室、51 m、51 b=・・
・−第2圧縮室、52−152b・・・・・・インジェ
クション穴、54・・・・・・インジェクション溝、5
5・・・・・・油インジェクション通路、58・・・・
・・逆止弁、59・・・・・・コイルスプリング、60
m、60b・・・・・・第3圧縮室、6l−161b・
・・・・・第1圧縮室。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名15
−一固定スクロール 61b s7−vt欠き 5δ一連止弁 ωaωb−第3EjlllN
Fig. 1 is a longitudinal cross-sectional view of a scroll refrigerant compressor according to an embodiment of the present invention, Fig. 2 is an exploded perspective view of main parts related to Fig. 1, and Fig. 3 is a cross section taken along line A-A in Fig. 1. figure,
Fig. 4 is an explanatory diagram of the position of the check valve at the suction pipe connection in Fig. 3, Fig. 5 1°C is the number of longitudinal sections taken along the line B-B in Fig. 4, and Fig. 6 is the non-return valve used in the oil supply passage. The external view of the valve, Figures 7 and 8 are diagrams explaining the movement of the compression chamber in the discharge port section, Figure 9 is a characteristic diagram showing the pressure change of refrigerant gas from the suction stroke to the discharge stroke, and Figure 10 is a diagram illustrating the movement of the compression chamber in the discharge port section. Characteristic diagram showing fixed point pressure changes in the compression chamber,
FIG. 11 is an explanatory view of the arrangement of the compression chambers in a state where the volume of the compression chambers connected to the discharge ports is at a minimum, and FIG. 12 is a vertical cross-sectional view of a conventional scroll compressor equipped with an oil supply passage. 2...Discharge chamber, 3...Motor, 4...
... Drive shaft, 5 ... Body frame, 12.
...Main bearing, 15...Fixed scroll,
15a...Fixed scroll wrap, 16...
...Discharge port, 17...Suction chamber, 18...
...Orbiting scroll, 18a...Orbiting scroll wrap, 18c...Wrap support disk, 3
4...Discharge chamber oil sump, 38a...Oil chamber C
139...Back pressure chamber, 51 m, 51 b=...
・-Second compression chamber, 52-152b... Injection hole, 54... Injection groove, 5
5...Oil injection passage, 58...
... Check valve, 59 ... Coil spring, 60
m, 60b...Third compression chamber, 6l-161b.
...First compression chamber. Name of agent: Patent attorney Toshio Nakao and 1 other person15
- One fixed scroll 61b s7-vt notch 5δ series stop valve ωaωb-3rd EjlllN

Claims (2)

【特許請求の範囲】[Claims] (1)固定スクロールの一部をなす鏡板の一面に形成さ
れた渦巻き状の固定スクロールラップに対して旋回スク
ロールの一部をなすラップ支持円板上に形成された渦巻
き状の旋回スクロールラップを揺動回転自在に噛み合わ
せ、両スクロール間に渦巻き形の圧縮空間を形成し、前
記固定スクロールラップの中心部には吐出ポートを設け
、前記固定スクロールラップの外側には吸入室を設け、
前記圧縮空間は吸入側より吐出側に向けて連続移行する
複数個の圧縮室に区画されて流体を圧縮するスクロール
圧縮機構を形成し、前記旋回スクロールは駆動軸を支承
する本体フレームと前記固定スクロールとの間に配置さ
れ、前記吸入室に通じる第1圧縮室または前記吸入室に
も前記吐出ポートにも通じない第2圧縮室と前記吐出ポ
ートに通じる吐出室の油溜または前記吐出室に通じる油
溜とは絞り部を有する給油通路で連通し、前記固定スク
ロールラップと前記旋回スクロールラップの渦巻き数が
実質的に前記第2圧縮室を形成できる最少の巻き数であ
るスクロール気体圧縮機。
(1) Shake the spiral fixed scroll wrap formed on the wrap support disk that forms part of the orbiting scroll with respect to the spiral fixed scroll wrap formed on one surface of the end plate that forms part of the fixed scroll. The scrolls are engaged in a rotatable manner to form a spiral compression space between the two scrolls, a discharge port is provided in the center of the fixed scroll wrap, and a suction chamber is provided outside the fixed scroll wrap.
The compression space is divided into a plurality of compression chambers that continuously move from the suction side to the discharge side to form a scroll compression mechanism that compresses fluid, and the orbiting scroll is connected to a main body frame that supports a drive shaft and the fixed scroll. and a first compression chamber that communicates with the suction chamber or a second compression chamber that does not communicate with either the suction chamber or the discharge port, and an oil sump in a discharge chamber that communicates with the discharge port or that communicates with the discharge chamber. A scroll gas compressor that communicates with an oil reservoir through an oil supply passage having a constriction part, and wherein the number of turns of the fixed scroll wrap and the orbiting scroll wrap is the minimum number of turns that can substantially form the second compression chamber.
(2)前記給油通路は旋回スクロールの旋回運動に連動
してラップ支持円板により間欠的に開閉される特許請求
の範囲第1項記載のスクロール気体圧縮機。
(2) The scroll gas compressor according to claim 1, wherein the oil supply passage is intermittently opened and closed by a lap support disk in conjunction with the orbiting motion of the orbiting scroll.
JP62328540A 1987-12-24 1987-12-24 Scroll gas compressor Expired - Lifetime JPH0826862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62328540A JPH0826862B2 (en) 1987-12-24 1987-12-24 Scroll gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62328540A JPH0826862B2 (en) 1987-12-24 1987-12-24 Scroll gas compressor

Publications (2)

Publication Number Publication Date
JPH01170780A true JPH01170780A (en) 1989-07-05
JPH0826862B2 JPH0826862B2 (en) 1996-03-21

Family

ID=18211423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62328540A Expired - Lifetime JPH0826862B2 (en) 1987-12-24 1987-12-24 Scroll gas compressor

Country Status (1)

Country Link
JP (1) JPH0826862B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358391A (en) * 1986-08-22 1994-10-25 Copeland Corporation Hermetic compressor with heat shield
US5649816A (en) * 1986-08-22 1997-07-22 Copeland Corporation Hermetic compressor with heat shield
US5674062A (en) * 1986-08-22 1997-10-07 Copeland Corporation Hermetic compressor with heat shield
US8289566B2 (en) 2000-12-28 2012-10-16 Seiko Epson Corporation Logo data generating method, data storage medium recording the logo data generating method, a computer program product containing commands executing the steps of the logo data generating logo data generating method, and a logo data generating system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993982A (en) * 1982-11-19 1984-05-30 Hitachi Ltd Scroll fluid machine
JPS59105986A (en) * 1982-12-10 1984-06-19 Hitachi Ltd Scroll type compressor
JPS62261686A (en) * 1986-05-09 1987-11-13 Matsushita Electric Ind Co Ltd Scroll gas compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993982A (en) * 1982-11-19 1984-05-30 Hitachi Ltd Scroll fluid machine
JPS59105986A (en) * 1982-12-10 1984-06-19 Hitachi Ltd Scroll type compressor
JPS62261686A (en) * 1986-05-09 1987-11-13 Matsushita Electric Ind Co Ltd Scroll gas compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358391A (en) * 1986-08-22 1994-10-25 Copeland Corporation Hermetic compressor with heat shield
US5487654A (en) * 1986-08-22 1996-01-30 Copeland Corporation Hermetic compressor with heat shield
US5649816A (en) * 1986-08-22 1997-07-22 Copeland Corporation Hermetic compressor with heat shield
US5674062A (en) * 1986-08-22 1997-10-07 Copeland Corporation Hermetic compressor with heat shield
US8289566B2 (en) 2000-12-28 2012-10-16 Seiko Epson Corporation Logo data generating method, data storage medium recording the logo data generating method, a computer program product containing commands executing the steps of the logo data generating logo data generating method, and a logo data generating system

Also Published As

Publication number Publication date
JPH0826862B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
JP2782858B2 (en) Scroll gas compressor
US4545747A (en) Scroll-type compressor
JPH11107950A (en) Injection device of compressor
JPH1037869A (en) Scroll gas compressor
JPH0249994A (en) Rotary compressor
JPH10141270A (en) Two stage gas compressor
JP2001323881A (en) Compressor
JPH01177482A (en) Scroll compressor
JP3045961B2 (en) Scroll gas compression
JPH01170780A (en) Scroll gas compressor
JPS61218792A (en) Scroll compressor
JP2790126B2 (en) Scroll gas compressor
JPH0733827B2 (en) Gas scroll compressor
JP2870490B2 (en) Scroll gas compressor
JPH01106989A (en) Scroll compressor
JP2870489B2 (en) Scroll gas compressor
JP2785805B2 (en) Scroll gas compressor
JP2785806B2 (en) Scroll gas compressor
JP2574599B2 (en) Scroll compressor
JPH073229B2 (en) Scroll gas compressor
JP2820137B2 (en) Scroll gas compressor
JPH0733830B2 (en) Scroll gas compressor
JPS62178794A (en) Scroll compressor
JP2692097B2 (en) Scroll gas compressor
JPH0742945B2 (en) Scroll gas compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080321

Year of fee payment: 12