JP2674562B2 - Scroll refrigerant compressor with refueling control means - Google Patents

Scroll refrigerant compressor with refueling control means

Info

Publication number
JP2674562B2
JP2674562B2 JP7105470A JP10547095A JP2674562B2 JP 2674562 B2 JP2674562 B2 JP 2674562B2 JP 7105470 A JP7105470 A JP 7105470A JP 10547095 A JP10547095 A JP 10547095A JP 2674562 B2 JP2674562 B2 JP 2674562B2
Authority
JP
Japan
Prior art keywords
chamber
pressure
oil
scroll
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7105470A
Other languages
Japanese (ja)
Other versions
JPH07286587A (en
Inventor
勝晴 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP7105470A priority Critical patent/JP2674562B2/en
Publication of JPH07286587A publication Critical patent/JPH07286587A/en
Application granted granted Critical
Publication of JP2674562B2 publication Critical patent/JP2674562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はスクロール冷媒圧縮機に
係り、旋回スクロールの背圧室およびスラスト軸受の背
面部への潤滑油供給に関するものである。 【0002】 【従来の技術】低振動、低騒音特性を備えたスクロール
圧縮機は、吸入室が渦巻き状の圧縮空間の外周部に有
り、吐出ポートが渦巻きの中心部に設けられ、圧縮流体
の流れが一方向で往復動式圧縮機や回転式圧縮機のよう
な流体を圧縮するための吐出弁を必要とせず圧縮比が一
定で、吐出脈動も比較的小さくて大きな吐出空間を必要
としないことが一般に知られている。また、圧縮室の軸
方向密封および振動や騒音特性をより一層改善するため
に、瞬時的な圧縮室圧力変化や圧縮機高速運転時などに
おける旋回スクロールのジャンピング現象を少なくする
方策として図7、図8の構成が考えられている。 【0003】図は駆動シャフト1007の先端部の駆
動ピン1007aに連結する旋回スクロール1001の
鏡板1001aが固定スクロール1002の鏡板100
2aとフレーム1008との間に微小隙間で支持され、
圧縮機の起動、停止時、高速運転時など瞬時的な圧縮室
圧力変化や回転部材の慣性力などが変化する際に旋回ス
クロール1001aが固定スクロール1002から離反
したりジャンピングするのを阻止し、旋回スクロール1
001と固定スクロール1002との軸方向微少隙間を
確保して圧縮室の密封を図り、圧縮効率を高めると共
に、部材間の衝突により生じる異常音、振動、摺動部耐
久性低下を防止する工夫がなされている。 【0004】た、圧縮室の軸方向密封をより一層確実
にするために、(1)自身の吐出ラインからのガスを減圧
してハウジング室Hに導入することによって、旋回スク
ロール1001を固定スクロール1002に押圧せしめ
て密閉空間1006の密封を図る手段、(2)ハウジング
室Hに密閉空間の気体を旋回スクロール1001の鏡板
1001aに設けた小孔1011を通じて導入し、その
ガス圧力によって旋回スクロール1001を固定スクロ
ール1002に付勢し、密閉空間1006を密封するな
どの工夫がなされている(特開昭55−142902号
公報、米国特許3994633号公報など)。 【0005】た、圧縮室の密封,摺動部の耐久性,騒
音・振動を一層改善した具体的なスクロール冷媒圧縮機
の形態が特公昭62−37238号公報でも提案されて
いる。すなわち、同公報の第3図では、密閉容器6の底
部に溜められた潤滑油14に吐出ガス圧力が作用してい
る。この潤滑油14がシャフト4の偏心孔13を経由し
て旋回スクロール部材2の背圧室9aに減圧流入の後、
旋回スクロール部材2に設けた小孔2dを通じて圧縮室
5bに流入する差圧給油通路が示されている。旋回スク
ロール部材2は、背圧室9aの潤滑油圧力によって固定
スクロール部材1に押圧される構成である。この潤滑油
14は、その経路途中でシャフト4を支持する軸受や旋
回スクロール部材2の各摺動面に給油される。更に、圧
縮室5bに流入した潤滑油は、その油膜によって圧縮室
5bの隙間を密封する。また、密閉容器6内の圧力があ
まり高くなくて、背圧室9aへの差圧給油が生じない圧
縮機起動初期には、圧縮途中ガスが旋回スクロール部材
2の小孔1dを介して圧縮室5bから背圧室9aに流入
し、旋回スクロール部材2を固定スクロール部材1に押
圧して圧縮室5を密封するという構成である。 【0006】 【発明が解決しようとする課題】しかし、この種の構成
を空調用冷媒圧縮機として使用する場合は、往復動式圧
縮機やロータリ式圧縮機などのように流体を圧縮するた
めの吐出弁を必要としない構成のために、液圧縮などに
より圧縮室内が異常圧力上昇した場合に圧縮室間隙間を
広げて圧縮流体を漏洩させ、圧縮室圧力を降下させるこ
とが出来ないのみならず、背圧室9aの圧力も高くな
り、旋回スクロール部材2を固定スクロール部材1に過
剰押圧して、圧縮負荷の増大、部品の破損、摺動部耐久
性の低下を生じるという課題がある。 【0007】た、圧縮機起動初期は吸入圧力が比較的
高いので、背圧室9aの圧力も高くなり、旋回スクロー
ル部材2を固定スクロール部材1に過剰押圧するので、
起動初期入力が過大になると共に、潤滑油14の下層に
貯溜する液冷媒が潤滑油14よりも先に各摺動部に差圧
供給され、摺動部の焼き付きが生じるなどの課題があっ
た。 【0008】一方、この種の課題解決の方策が実開昭6
2−116187号公報で提案されている。すなわち、
同公報において、可動スクロール(旋回スクロール)9
の反圧縮室側に設けた圧力作用室(背圧室)13を吐出
室6と吸入室5に対して切り替えバルブ28を介して選
択的に連通可能に設けると共に、起動時あるいは液圧縮
時において吸入室5と圧力作用室(背圧室)13を連通
させることにより、圧力作用室(背圧室)13と圧縮室
10の間に圧力差を生じさせ、この圧力差によって可動
スクロール(旋回スクロール)9を圧力作用室(背圧
室)13の側に後退移動させ、圧縮負荷を軽減する構成
である。 【0009】しかしながら上記構成では、運転モード
(起動時など)や圧縮負荷状態に応じて自動的に切り替
えバルブ28を作動させる機能がないために、圧縮負荷
軽減時期を失して効果的な負荷軽減ができない。また、
切り替えバルブ28の制御機能部品を要してコスト高に
なるなどの課題があった。 【0010】 【課題を解決するための手段】上記問題を解決するため
に本発明のスクロール圧縮機は、吐出ポートに通じる吐
出室油溜の潤滑油を、旋回スクロールを支持するスラス
ト軸受の背面および旋回スクロールの背圧室に供給する
給油通路を設けた構成において、スラスト軸受が旋回ス
クロールを過剰押圧しない手段を設けると共に、吐出室
油溜の圧力が圧縮室の圧力以下の時、その差圧によって
付勢された弁体が給油通路を閉路し、吐出室油溜の圧力
が圧縮室の圧力を超えた時、その差圧によって弁体が給
油通路を開路する弁体を備えた給油通路制御弁装置をス
ラスト軸受の背面と背圧室より上流側に設けたものであ
る。 【0011】 【作用】本発明は上記構成によって、圧縮機起動初期な
どには、スラスト軸受と背圧室への液冷媒の供給や給油
がないので旋回スクロールが固定スクロールの側へ押圧
されず、圧縮室隙間が生じているので、圧縮室圧力の急
激な上昇がなく、圧縮負荷が徐々に上昇する。圧縮機起
動後の時間経過と共に油溜の圧力が圧縮室圧力を超えた
運転状態となり、吐出室油溜の液冷媒が蒸発して潤滑油
のみがスラスト軸受と背圧室に給油され、旋回スクロー
ルが固定スクロールの側に適正な力で付勢されて、圧縮
室隙間を密封し、圧縮効率が向上する。 【0012】 【実施例】以下、本発明の実施例のスクロール冷媒圧縮
機について、図面を参照しながら説明する。図1、図2
において、101a,101bは鉄製の密閉ケース、1
80は鉄製の本体フレーム105をボルト固定した軟鋼
製の仕切り板で、その外周面部で密閉ケース101a,
101bと共に単一の溶接ビード181によって溶接密
封され、密閉ケース101a,101b内を上側の吐出
室102と下側の駆動室106(低圧側)とに仕切って
いる。本体フレーム105に支承され、インバータ電源
(図示せず)によって運転制御されるモータ103によ
り、回転駆動される駆動軸104の上端部の偏心穴13
6には、旋回スクロール118の旋回軸118bがはめ
込まれ、旋回スクロール118の自転阻止用のオルダム
リング124が、本体フレーム105に固定された割ピ
ン形の平行ピン(図示せず)に拘束されて軸方向にのみ
移動が可能なスラスト軸受120と旋回スクロール11
8の各溝に係合し、旋回スクロール118に噛み合う固
定スクロール115が、仕切り板180にボルト固定さ
れ、固定スクロール115の鏡板115bには吐出ポー
ト116が設けられ、鏡板115bの上面には、リード
バルブ形式の給油通路制御弁装置182が取り付けられ
ている。 【0013】ラスト軸受120は、その背面外側部に
配置されたシールリング170の弾性力で常に旋回スク
ロール118の方へ付勢され、仕切り板180の片側平
面部に当接して旋回スクロール118の側への軸方向移
動を規制されている。しかし、仕切り板180の板厚さ
は、スラスト軸受120を介したシールリング170の
弾性力によって、旋回スクロール118を固定スクロー
ル115に押し付けて旋回スクロール118の円滑な旋
回運動を阻害せぬように、固定スクロール115とスラ
スト軸受120との間に挟まれた旋回スクロール118
の軸方向微少隙間(約0.020mm)が確保される寸
法設定になっている。吐出室102の底部は吐出室油溜
134となり、その上部には多数の小穴を有した傘状の
パンチングメタル133が密閉ケース101aに取り付
けられ、密閉ケース101aとパンチングメタル133
との間には細樹脂線材から成るフィルタ183が詰めら
れている。吐出室102は密閉ケース101aの上面に
設けられた吐出管131、外部の冷凍サイクル配管系を
それぞれ経て密閉ケース101bの側面に設けられた吸
入管147を通じ、低圧側の駆動室106に連通してい
る。また駆動室106の底部にはモータ室油溜184が
設けられている。 【0014】出室102にも吸入室117にも連通し
ない常時密閉空間となる第2圧縮室151と吐出室油溜
134との間は、鏡板115bの底部に開口して設けら
れた油吸い込み穴185、鏡板115bに薄鋼板製のリ
ード弁186と共に取り付けられた給油通路制御弁装置
182の弁押え187と鏡板115bとの間に形成され
た弁空間188、リード弁186の打ち抜き穴189、
鏡板115bに設けられた極細通路のインジェクション
穴152とから成る絞り通路を有した第1給油通路によ
って連通している。旋回スクロール118の旋回スクロ
ールラップ118aを支持するラップ支持円盤118b
とスラスト軸受120と駆動軸104とで形成された背
圧室139は、第1給油通路の途中から分岐して弁空間
188、リード弁186の打ち抜き穴189a、鏡板1
15bに設けられた油穴A138a、仕切り板180に
設けられた極細通路の油穴B138b、本体フレーム1
05に設けられた油穴C138c、スラスト軸受120
と本体フレーム105との間に設けられ、その外周部を
ゴム製のシールリング170で支持、・密封されたレリ
ース隙間127、スラスト軸受120に設けられた油穴
D138dとで構成される給油通路により吐出室油溜1
34に連通している。背圧室139と低圧側の駆動室1
06との間は本体フレーム105の主軸受112の軸受
隙間、偏心軸受114の隙間、駆動軸104に設けられ
た偏心油穴190と、横油穴191、駆動軸104を支
承すべく本体フレーム105の下端に設けられた下部軸
受192と主軸受112との間の軸受油溜193、下部
軸受192の軸受隙間とで構成される絞り通路を有した
第1潤滑通路により連通している。また、背圧室139
と吸入室117との間は、スラスト軸受120とラップ
支持円板118bとの摺動面や、オルダムリング124
の摺動面を介して構成される第2潤滑通路によって連通
している。図5において、横軸は駆動軸104の回転角
度、縦軸は圧縮室内の冷媒圧力を示し、吸入・圧縮・吐
出過程における冷媒ガスの圧力変化状態を示す。実線6
2は正常圧力で運転時の圧力変化を示し、点線63は異
常圧力上昇運転時の圧力変化を表わす。 【0015】6において、横軸は駆動軸104の回転
角度を示し、縦軸は圧縮室内の冷媒圧力を示し、実線6
4は吐出室102にも吸入室117にも連通しない常時
密閉空間となる第2圧縮室のインジェクション穴152
の開口位置における圧力変化を示し、点線65は吸入室
117に間欠的に連通する第1圧縮室161a,161
bの定点における圧力変化を示し、一点鎖線66は吐出
室102に間欠的に連通する第3圧縮室160a,16
0bの定点における圧力変化を示し、二点鎖線67は第
1圧縮室161a,161bと第2圧縮室151a,1
51bとの間の圧縮室の定点における圧力変化を示し、
二重点線68は背圧室139の圧力変化を示す。 【0016】上のように構成されたスクロール冷媒圧
縮機について、その動作を説明する。 【0017】ータ103によって駆動軸104が回転
駆動を始めると、旋回スクロール118が旋回運動を
し、圧縮機に接続した冷凍サイクル配管系から吸入冷媒
ガスが吸入管147を通して駆動室106に流入し、そ
の中に含まれる潤滑油の一部が分離された後、吸入通路
を経て吸入室117に吸入される。この吸入冷媒ガス
は、旋回スクロール118と固定スクロール115との
間に形成され且つ吸入室117に間欠的に通じる第1圧
縮室を経て圧縮室内に閉じ込められ、旋回スクロール1
18の旋回運動に伴って常時密閉空間となる第2圧縮
室、吐出ポートと間欠的に通じる第3圧縮室へと順次移
送圧縮され、中央部の吐出ポート116を経て吐出室1
02へと吐出される。 【0018】出冷媒ガス中に含まれる潤滑油の一部
は、その自重およびパンチングメタル133の小穴や細
樹脂線材から成るフィルタ183を通過する際にその表
面などに付着などして吐出冷媒ガスから分離し、密閉ケ
ース101aの内壁を伝って流下し、吐出室油溜134
に収集される。残りの潤滑油は、吐出冷媒ガスと共に吐
出管131を経て外部の冷凍サイクル配管系へ搬出さ
れ、吸入冷媒ガスと共に吸入管147を通って圧縮機内
に帰還する。圧縮機の冷時起動後しばらくの間は、吐出
室102の圧力が第2圧縮室の圧力よりも低いので、吐
出室油溜134の潤滑油は第1給油通路を通じて差圧給
油されず、また、逆止弁の作用によって第2圧縮室から
圧縮途中冷媒ガスが吐出室油溜134に逆流もせず、ス
ラスト軸受120のレリース隙間127や旋回スクロー
ル118の背圧室139に流入することもなく、各摺動
部の残留潤滑油によって各摺動面が潤滑される。 【0019】た、背圧室139やレリース隙間127
の圧力が低いので起動初期には旋回スクロール118に
作用する圧縮室冷媒ガス圧力によって、スラスト軸受1
20が微少に後退して圧縮室軸方向隙間を広げて圧縮室
圧力を急降下させ、起動初期負荷を軽減する。圧縮機の
冷時起動後しばらくの後、吐出室102の圧力が第2圧
縮室の圧力以上に上昇した後、吐出室油溜134の潤滑
油は、給油通路制御弁装置182のリード弁186の付
勢力に抗して第1給油通路を経由する。そして漸次減圧
され、第2圧縮室に差圧給油されると共に、第1給油通
路の途中から分岐して構成される第2給油通路の油穴1
38a,138b,138cを経て漸次減圧され、吐出
側圧力と吸入側圧力との中間圧力に調整されてレリース
隙間127と背圧室139に差圧給油される。第2圧縮
室に差圧給油された潤滑油は、吸入ガスと共に圧縮室に
流入した潤滑油と合流し、隣接する圧縮室間の微少隙間
を油膜により密封して圧縮冷媒ガス漏れを防ぎ、圧縮室
間の摺動面を潤滑しながら圧縮冷媒ガスと共に吐出室1
02に再び吐出される。 【0020】リース隙間127と背圧室139に給油
された中間圧力の潤滑油は、旋回スクロール118へ背
圧力による付勢力を与え、圧縮室圧力に基づいて固定ス
クロール115から離反しょうとする旋回スクロール1
18に作用する下向きのスラスト力を軽減し、旋回スク
ロール118とスラスト軸受120との間の摺動面に作
用するスラスト荷重を小さくすると共に、スラスト軸受
120を付勢して仕切り板180に当接させ、固定スク
ロール115とスラスト軸受120との間に旋回スクロ
ール118を微小隙間で挟み、旋回スクロール118の
円滑な旋回運動を可能にする。また、背圧室139の背
圧力は旋回スクロール118がスラスト軸受120から
離反しないように調整されているので、旋回スクロール
118とスラスト軸受120とは常時摺接しており、こ
の摺接部を境として背圧室139と吸入室117とはそ
の摺接面を適切潤滑することのできる潤滑油漏洩を許容
する程度に密封されている。 【0021】たがって、背圧室139に供給された潤
滑油は、この摺接面を通過する際に減圧された後、オル
ダムリング124の摺動面を潤滑して吸入冷媒ガスに混
入し、再び圧縮室に流入する。また、残りの潤滑油は、
第1潤滑通路を通じて旋回軸118bと偏心穴136と
の隙間、偏心穴136、偏心油穴190、横油穴191
を通る給油通路と主軸受112の隙間とを経て軸受油溜
193に流入し、下部軸受192の微小隙間を通して最
終減圧される。そして駆動室106に流入し、その一部
は吸入冷媒ガスに混入して再び圧縮室へ流入するが、残
りの潤滑油はモータ室油溜184に収集される。 【0022】ータ室油溜134の潤滑油は、密閉ケー
ス101bを介して自然放熱により冷却され、その油面
がある程度高くなると、モータ103の回転子の下端部
に拡散されて駆動室106内の吸入冷媒ガスに混入し、
再び圧縮室へ流入して最終的には吐出室油溜134に収
集される。また、冷時起動初期や定常運転時に瞬時的な
液圧縮が生じて常時密閉空間となる第2圧縮室内が異常
圧力上昇した場合には、リード弁186の逆止作用によ
り、圧縮冷媒ガスが吐出室油溜134へ逆流せず、ま
た、レリース隙間127や背圧室139への流入もな
く、背圧力の上昇もないことから、スラスト軸受120
が後退して継続的な異常圧力上昇を防ぐ。 【0023】縮機停止後は吸入室117と駆動室10
6との間の吸入通路に設けられた逆止弁(図示なし)に
より、吸入通路を塞ぎ、吐出室102から吸入室117
までの圧力は圧縮空間の隙間を通じて吐出室102の圧
力に等しくなり、油吸い込み穴185の開口端をリード
弁186が塞ぐ。 【0024】の結果、圧縮機停止直後の吐出室油溜1
34の潤滑油は、第2圧縮室と背圧室139へ差圧給油
されず、背圧室139の潤滑油は、第1給油通路を通じ
て駆動室106にその差圧が一定値以下になるまで僅か
づつ戻される。 【0025】お、上記実施例では、レリース隙間12
7や背圧室139へ吐出室油溜134の潤滑油を中間圧
力にまで減圧したが、スラスト軸受120や背圧室13
9の寸法構成などにより減圧しなくともよい。また、上
記実施例では吐出室油溜134の潤滑油を第2圧縮室に
油注入したが、圧縮機運転速度や圧力などの運転条件に
より吸入室117に通じる第1圧縮室に油注入してもよ
い。以上のように上記実施例によれば、吐出室油溜13
4の潤滑油をレリース隙間127に導く通路の下流側が
旋回スクロール118の背圧室139と通じたことによ
り、圧縮機起動初期の背圧室139の圧力が低いので、
旋回スクロール118が固定スクロール115から軸方
向に離れ易くなり、圧縮室の密封を解除して、起動初期
の入力低減に寄与できると共に、圧縮室の密封が必要な
圧縮機安定運転時には、旋回スクロール118の背面を
吐出圧力と吸入圧力との中間圧力の潤滑油で付勢して、
スラスト軸受120に作用する旋回スクロール118か
らのスラスト力を軽減して入力低減できる。この結果、
圧縮機起動初期から安定運転時までの全運転領域におけ
る入力低減が実現できる。また上記実施例では、冷媒圧
縮機について説明したが、潤滑油を使用する酸素、窒
素、ヘリウムなどの他の気体圧縮機も同様の作用効果を
期待できる。 【0026】 【発明の効果】以上のように本発明は、吐出ポートに通
じる吐出室油溜の潤滑油が前記背圧室と、スラスト軸受
を背圧付勢すべくスラスト軸受の反圧縮室側に設けたレ
リース隙間の内、少なくとも一方を経由して吸入室に供
給される絞り通路を備えた給油通路を設けた構成におい
て、旋回スクロールが固定スクロールとスラスト軸受と
の間で少なくとも油膜形成可能な軸方向微小隙間を有し
て配置されるべく、スラスト軸受の軸方向移動位置を規
制する手段を設けると共に、吐出室油溜の圧力が前記圧
縮室の圧力以下の時、その差圧によって付勢された弁体
が前記給油通路を閉路し、吐出室油溜の圧力が圧縮室の
圧力を超えた時、その差圧によって弁体が給油通路を開
路する弁体を備えた給油通路制御弁装置を、背圧室とレ
リース隙間より上流側に設けたことにより、給油通路の
開閉が自動的にできることから、圧縮機起動初期や圧縮
室内で液圧縮などが生じて圧縮室圧力が吐出室油溜圧力
以上の時に、吐出室油溜からスラスト軸受の背面や背圧
室への液冷媒や潤滑油の供給を停止して供給圧力を低下
できるので、旋回スクロールの反圧縮室側に作用する固
定スクロールの側への付勢力が小さくなり、旋回スクロ
ールが圧縮室圧力によって固定スクロールから軸方向に
離反して、圧縮室隙間が生じる。その結果、圧縮負荷を
適正な時期に軽減して効果的な入力低減および圧縮機破
損防止ができる。また、旋回スクロールがスラスト軸受
によって常に過剰押圧されることがないので、旋回スク
ロールとスラスト軸受との間の摩擦損失を少なくでき
る。また、旋回スクロールがスラスト軸受によって支持
される反面、スラスト軸受からの背圧を受けることがな
いので、旋回スクロールと固定スクロールとの過剰な軸
方向接触を回避して摩擦損失を少なくできる。 【0027】また本発明は、吐出室油溜の潤滑油を圧縮
室に差圧供給する第1給油通路を設け、給油通路制御弁
装置の弁体が第1給油通路と給油通路とを同期開閉すべ
く構成したことにより、第1給油通路の開閉手段を簡易
に実現できる。 【0028】また、圧縮機起動初期などの圧縮室圧力が
油溜圧力より高い場合に、冷媒が圧縮室から吐出室油溜
へ逆流することによる圧縮機外部への潤滑油流出を防ぐ
ことができる。そのことによって、圧縮機起動後の吐出
室油溜の潤滑油を旋回スクロ ールの反圧縮室側と吸入室
に適量・適圧給油して圧縮室隙間密封による圧縮効率を
向上することができるなどの効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scroll refrigerant compressor, and relates to a back pressure chamber of an orbiting scroll and a back of a thrust bearing.
It relates to the supply of lubricating oil to the surface portion . 2. Description of the Related Art A scroll compressor having low vibration and low noise characteristics has a suction chamber at the outer periphery of a spiral compression space, and a discharge port provided at the center of the spiral to prevent the flow of compressed fluid. A single direction of flow does not require a discharge valve such as a reciprocating compressor or a rotary compressor to compress the fluid, the compression ratio is constant, the discharge pulsation is relatively small, and a large discharge space is not required. Is generally known. Further, in order to further improve the axial sealing of the compression chamber and the vibration and noise characteristics, as a measure for reducing the instantaneous pressure change of the compression chamber and the jumping phenomenon of the orbiting scroll during high-speed operation of the compressor, FIG. Eight configurations are considered. In the figure, the end plate 1001a of the orbiting scroll 1001 connected to the drive pin 1007a at the tip of the drive shaft 1007 is the end plate 100 of the fixed scroll 1002.
2a and the frame 1008 are supported by a small gap,
It prevents the orbiting scroll 1001a from separating or jumping from the fixed scroll 1002 when the compression chamber pressure changes instantaneously or the inertial force of the rotating member changes, such as when the compressor is started, stopped, or operated at high speed. Scroll 1
A small gap in the axial direction between 001 and the fixed scroll 1002 is secured to seal the compression chamber to improve the compression efficiency, and at the same time, a device for preventing abnormal noise, vibration, and durability deterioration of the sliding portion caused by the collision between the members. Has been done. [0004] Also, in order to further ensure axial sealing of the compression chamber, (1) by introducing into the housing chamber H gas from its discharge line in vacuo, the fixed scroll and the orbiting scroll 1001 (2) A gas in the closed space is introduced into the housing chamber H through a small hole 1011 provided in the end plate 1001a of the orbiting scroll 1001, and the orbiting scroll 1001 is caused by the gas pressure. The fixed scroll 1002 is biased to hermetically seal the closed space 1006 (Japanese Patent Laid-Open No. 55-142902, US Pat. No. 3,994,633, etc.). [0005] Also, sealing of the compression chamber, the durability of the sliding portion, the form of the specific scroll refrigerant compressor noise and vibration and more improvement has been proposed in Japanese Patent Publication No. Sho 62-37238. That is, in FIG. 3 of the publication, the discharge gas pressure acts on the lubricating oil 14 accumulated at the bottom of the closed container 6. After this lubricating oil 14 has flowed through the eccentric hole 13 of the shaft 4 into the back pressure chamber 9a of the orbiting scroll member 2 under reduced pressure,
A differential pressure oil supply passage that flows into the compression chamber 5b through a small hole 2d provided in the orbiting scroll member 2 is shown. The orbiting scroll member 2 is configured to be pressed against the fixed scroll member 1 by the lubricating oil pressure in the back pressure chamber 9a. The lubricating oil 14 is supplied to the bearings that support the shaft 4 and the sliding surfaces of the orbiting scroll member 2 in the course of the passage. Further, the lubricating oil that has flowed into the compression chamber 5b seals the gap in the compression chamber 5b with the oil film. Further, when the pressure in the closed container 6 is not so high and differential pressure oil supply to the back pressure chamber 9a does not occur, the gas during compression is compressed through the small hole 1d of the orbiting scroll member 2 in the compression chamber. It is configured to flow into the back pressure chamber 9a from 5b and press the orbiting scroll member 2 against the fixed scroll member 1 to seal the compression chamber 5. However, when this type of structure is used as a refrigerant compressor for air conditioning, it is necessary to compress a fluid such as a reciprocating compressor or a rotary compressor. Due to the configuration that does not require a discharge valve, when the pressure inside the compression chamber rises abnormally due to liquid compression, etc., the gap between the compression chambers is widened to leak the compressed fluid, and the pressure in the compression chamber cannot be lowered. The pressure in the back pressure chamber 9a also becomes high, and the orbiting scroll member 2 is excessively pressed against the fixed scroll member 1 to increase the compression load, damage the parts, and lower the durability of the sliding portion. [0007] Also, since the compressor starts initial relatively high suction pressure, the pressure in the back pressure chamber 9a is also increased, since the excess press the orbiting scroll member 2 to the fixed scroll member 1,
There is a problem that the initial input for starting becomes excessive and the liquid refrigerant stored in the lower layer of the lubricating oil 14 is differentially supplied to each sliding portion before the lubricating oil 14 to cause seizure of the sliding portion. . On the other hand, a measure for solving this kind of problem is a practical method.
It is proposed in the 2-116187 gazette. That is,
In the publication, a movable scroll (orbiting scroll) 9
Discharge pressure action chamber (back pressure chamber) 13 provided on the side opposite to the compression chamber
Selectable between chamber 6 and suction chamber 5 via switching valve 28.
It is installed so that it can communicate with each other at the time of startup or liquid compression.
Communication between suction chamber 5 and pressure action chamber (back pressure chamber) 13
The pressure chamber (back pressure chamber) 13 and the compression chamber
A pressure difference is generated between 10 and it is possible to move by this pressure difference.
Set the scroll (orbiting scroll) 9 to the pressure chamber (back pressure
(Chamber) 13 side to move backward to reduce the compression load
It is. However, in the above configuration, the operation mode
Automatically switches according to the compression load condition (such as at startup)
Because there is no function to operate the valve 28, the compression load
The time for reduction is lost and the load cannot be reduced effectively. Also,
Higher cost due to control function parts of switching valve 28
There was a problem such as becoming. In order to solve the above-mentioned problems, the scroll compressor of the present invention is arranged such that the lubricating oil in the discharge chamber oil reservoir communicating with the discharge port is provided on the back surface of the thrust bearing for supporting the orbiting scroll. Supply to the back pressure chamber of the orbiting scroll
In the structure with the oil supply passage, the thrust bearing
In addition to providing a means to prevent excessive pressing of the crawl, the discharge chamber
When the pressure in the oil reservoir is below the pressure in the compression chamber,
The biased valve body closes the oil supply passage, and the pressure in the discharge chamber oil reservoir
Pressure exceeds the pressure in the compression chamber, the differential pressure causes the valve element to
Install the oil supply passage control valve device equipped with the valve body that opens the oil passage.
It is provided upstream of the back surface of the last bearing and the back pressure chamber . According to the present invention, since the thrust bearing and the back pressure chamber are not supplied with liquid refrigerant or oil is supplied to the orbiting scroll at the initial stage of the compressor , the orbiting scroll is not pressed toward the fixed scroll. Since the compression chamber gap is generated, the compression load does not increase rapidly and the compression load gradually increases. With the passage of time after starting the compressor, the operating pressure of the oil reservoir exceeds the pressure of the compression chamber , the liquid refrigerant in the oil reservoir of the discharge chamber evaporates, and only the lubricating oil is supplied to the thrust bearing and the back pressure chamber. Is urged toward the fixed scroll by an appropriate force to seal the compression chamber gap and improve the compression efficiency. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A scroll refrigerant compressor according to an embodiment of the present invention will be described below with reference to the drawings. 1 and 2
In, 101a and 101b are iron closed cases, 1
Reference numeral 80 denotes a mild steel partition plate to which an iron main body frame 105 is fixed by bolts.
It is welded and sealed together with 101b by a single weld bead 181 to partition the insides of the sealed cases 101a and 101b into an upper discharge chamber 102 and a lower drive chamber 106 (low pressure side). The eccentric hole 13 at the upper end of the drive shaft 104 which is supported by the main body frame 105 and is rotationally driven by the motor 103 whose operation is controlled by an inverter power supply (not shown).
The orbiting shaft 118b of the orbiting scroll 118 is fitted into the shaft 6, and the Oldham ring 124 for preventing rotation of the orbiting scroll 118 is constrained by a split pin type parallel pin (not shown) fixed to the main body frame 105. Thrust bearing 120 and orbiting scroll 11 that can move only in the axial direction
A fixed scroll 115 that engages with each groove of 8 and meshes with the orbiting scroll 118 is bolted to a partition plate 180, a discharge port 116 is provided on the end plate 115b of the fixed scroll 115, and a lead is provided on the top surface of the end plate 115b. A valve type oil supply passage control valve device 182 is attached. [0013] scan thrust bearing 120, the seal ring 170 disposed on the back outer part is urged towards the constantly orbiting scroll 118 by the elastic force of the orbiting scroll 118 in contact with the side planar portion of the partition plate 180 The axial movement to the side is restricted. However, the plate thickness of the partition plate 180 is such that the elastic force of the seal ring 170 via the thrust bearing 120 does not press the orbiting scroll 118 against the fixed scroll 115 and hinder the smooth orbiting motion of the orbiting scroll 118. An orbiting scroll 118 sandwiched between a fixed scroll 115 and a thrust bearing 120.
The dimension setting is such that a small axial gap (about 0.020 mm) is secured. The bottom of the discharge chamber 102 serves as a discharge chamber oil sump 134, and an umbrella-shaped punching metal 133 having a large number of small holes is attached to the sealed case 101a at the upper part thereof, and the sealed case 101a and the punching metal 133 are attached.
A filter 183 made of a fine resin wire is packed between and. The discharge chamber 102 communicates with the drive chamber 106 on the low pressure side through a discharge pipe 131 provided on the upper surface of the closed case 101a and an intake pipe 147 provided on the side surface of the closed case 101b via an external refrigeration cycle piping system. There is. A motor chamber oil sump 184 is provided at the bottom of the drive chamber 106. [0014] During the second compression chamber 151 to discharge failure outlet chamber 102 in a normally closed space which does not communicate to the suction chamber 117 and discharge chamber oil reservoir 134, suction oil provided in an opening in the bottom of the end plate 115b A hole 185, a valve space 188 formed between the valve retainer 187 of the oil supply passage control valve device 182 attached to the end plate 115b together with a thin steel plate reed valve 186, and a punch hole 189 of the reed valve 186,
It communicates with a first oil supply passage having a throttle passage formed of an injection hole 152 of an ultrafine passage provided in the end plate 115b. Wrap support disk 118b for supporting the orbiting scroll wrap 118a of the orbiting scroll 118.
The back pressure chamber 139 formed by the thrust bearing 120 and the drive shaft 104 branches off from the middle of the first oil supply passage to form the valve space 188, the punched hole 189a of the reed valve 186, and the end plate 1.
15b is an oil hole A138a, a partition plate 180 is an oil hole B138b of an ultrafine passage, a body frame 1
Oil hole C138c provided in 05, thrust bearing 120
Between the main frame 105 and the main body frame 105, the outer peripheral portion of which is supported and sealed by a rubber seal ring 170. A release gap 127 sealed and an oil hole D138d provided in the thrust bearing 120 Discharge chamber oil sump 1
34. Back pressure chamber 139 and low pressure side drive chamber 1
Between the main frame 105 and the main frame 105 so as to support the bearing gap of the main bearing 112 of the main frame 105, the gap of the eccentric bearing 114, the eccentric oil hole 190 provided in the drive shaft 104, the lateral oil hole 191, and the drive shaft 104. A first lubricating passage having a throttle passage formed by a bearing oil reservoir 193 between a lower bearing 192 provided at the lower end of the main bearing 112 and a main bearing 112, and a bearing gap of the lower bearing 192. Also, the back pressure chamber 139
Between the suction chamber 117 and the suction chamber 117, the sliding surface between the thrust bearing 120 and the lap support disk 118b, and the Oldham ring 124.
Are communicated with each other by a second lubrication passage configured through the sliding surface of the. In FIG. 5, the horizontal axis represents the rotation angle of the drive shaft 104, the vertical axis represents the refrigerant pressure in the compression chamber, and shows the pressure change state of the refrigerant gas during the suction, compression, and discharge processes. Solid line 6
2 shows the pressure change during normal pressure operation, and the dotted line 63 shows the pressure change during abnormal pressure increase operation. In FIG . 6, the horizontal axis represents the rotation angle of the drive shaft 104, the vertical axis represents the refrigerant pressure in the compression chamber, and the solid line 6
4 is an injection hole 152 of the second compression chamber, which is a normally closed space that does not communicate with the discharge chamber 102 or the suction chamber 117.
Of the first compression chambers 161a and 161 which intermittently communicate with the suction chamber 117.
The pressure change at the fixed point of b is shown, and the alternate long and short dash line 66 indicates the third compression chambers 160a, 16a intermittently communicating with the discharge chamber 102.
The pressure change at the fixed point of 0b is shown, and the two-dot chain line 67 indicates the first compression chambers 161a, 161b and the second compression chambers 151a, 1a.
51b shows the pressure change at a fixed point of the compression chamber between 51b and
The double dotted line 68 shows the pressure change in the back pressure chamber 139. [0016] The constructed scroll refrigerant compressor as the following, the operation thereof will be described. [0017] When the drive shaft 104 by motors 103 start driving rotation, the orbiting scroll 118 is a pivoting movement, flows into the driving chamber 106 suction refrigerant gas through the suction pipe 147 from the refrigeration cycle piping system connected to the compressor Then, after part of the lubricating oil contained therein is separated, it is sucked into the suction chamber 117 through the suction passage. The sucked refrigerant gas is trapped in the compression chamber through the first compression chamber which is formed between the orbiting scroll 118 and the fixed scroll 115 and intermittently communicates with the suction chamber 117.
Along with the swirling motion of 18, the second compression chamber, which is always a closed space, and the third compression chamber, which communicates intermittently with the discharge port, are sequentially transferred and compressed, and the discharge chamber 1 passes through the discharge port 116 in the central portion.
It is discharged to 02. The ejection part of the lubricating oil contained in the output refrigerant gas, its own weight and punching discharged refrigerant gas is like attached like on the surface when passing through a filter 183 made of a small hole or fine resin wire metal 133 From the discharge chamber oil reservoir 134, and flows down along the inner wall of the closed case 101a.
Will be collected. The remaining lubricating oil is carried out to the external refrigeration cycle piping system together with the discharge refrigerant gas through the discharge pipe 131, and returns to the compressor through the suction pipe 147 together with the suction refrigerant gas. For a while after the cold start of the compressor, the pressure of the discharge chamber 102 is lower than the pressure of the second compression chamber, so that the lubricating oil in the discharge chamber oil sump 134 is not differentially supplied through the first oil supply passage. By the action of the check valve, the refrigerant gas in the middle of compression does not flow back into the discharge chamber oil sump 134 from the second compression chamber, and does not flow into the release gap 127 of the thrust bearing 120 or the back pressure chamber 139 of the orbiting scroll 118. Each sliding surface is lubricated by the residual lubricating oil of each sliding portion. [0019] In addition, the back pressure chamber 139 and the release gap 127
Since the pressure in the thrust bearing 1 is low due to the pressure of the refrigerant gas in the compression chamber acting on the orbiting scroll 118 in the initial stage of startup,
20 retreats slightly and widens the axial gap in the compression chamber to sharply reduce the pressure in the compression chamber, reducing the initial load on startup. Some time after the cold start of the compressor, after the pressure in the discharge chamber 102 rises above the pressure in the second compression chamber, the lubricating oil in the discharge chamber oil sump 134 is fed to the reed valve 186 of the oil supply passage control valve device 182. Passes through the first oil supply passage against the biasing force. Then, the pressure is gradually reduced, differential pressure oil is supplied to the second compression chamber, and the oil hole 1 of the second oil supply passage formed by branching from the middle of the first oil supply passage.
The pressure is gradually reduced through 38a, 138b, 138c, adjusted to an intermediate pressure between the discharge side pressure and the suction side pressure, and differential pressure oil is supplied to the release gap 127 and the back pressure chamber 139. The lubricating oil differentially supplied to the second compression chamber merges with the lubricating oil that has flowed into the compression chamber together with the suction gas, and seals a minute gap between the adjacent compression chambers with an oil film to prevent compressed refrigerant gas leakage and compression. Discharge chamber 1 with compressed refrigerant gas while lubricating the sliding surfaces between the chambers
It is discharged again to 02. The lubricating oil of intermediate pressure oil is supplied to the LES lease gap 127 and the back pressure chamber 139, it provides a biasing force of the back pressure to the orbiting scroll 118, turning to be cane away from the fixed scroll 115 on the basis of the compression chamber pressure Scroll 1
The downward thrust force acting on 18 is reduced, the thrust load acting on the sliding surface between the orbiting scroll 118 and the thrust bearing 120 is reduced, and the thrust bearing 120 is urged to contact the partition plate 180. Then, the orbiting scroll 118 is sandwiched between the fixed scroll 115 and the thrust bearing 120 with a minute gap, so that the orbiting scroll 118 can smoothly orbit. Further, since the back pressure of the back pressure chamber 139 is adjusted so that the orbiting scroll 118 does not separate from the thrust bearing 120, the orbiting scroll 118 and the thrust bearing 120 are always in sliding contact with each other, and this sliding contact portion is the boundary. The back pressure chamber 139 and the suction chamber 117 are hermetically sealed so that the sliding contact surfaces thereof can be appropriately lubricated to allow leakage of lubricating oil. [0021] When designing equipment, lubricating oil supplied to the back pressure chamber 139 is reduced in pressure when passing through the sliding surface, and mixed with lubricating to suction refrigerant gas sliding surface of the Oldham ring 124 , Flows into the compression chamber again. The remaining lubricating oil is
Through the first lubrication passage, the gap between the swivel shaft 118b and the eccentric hole 136, the eccentric hole 136, the eccentric oil hole 190, and the lateral oil hole 191.
Through the oil supply passage passing through and the gap between the main bearings 112, and then flows into the bearing oil sump 193, and finally reduced in pressure through a minute gap in the lower bearing 192. Then, it flows into the drive chamber 106, a part of it is mixed with the suction refrigerant gas and flows into the compression chamber again, but the remaining lubricating oil is collected in the motor chamber oil sump 184. The lubricating oil of the motors chamber oil reservoir 134 is cooled by natural heat dissipation via the sealed casing 101b, when the oil level becomes high to some extent, the drive chamber 106 is diffused to the lower end of the rotor of the motor 103 Mixed with the refrigerant gas in the inside,
It flows into the compression chamber again and is finally collected in the discharge chamber oil sump 134. Further, in the case where an abnormal pressure rise occurs in the second compression chamber, which is always a closed space, due to the instantaneous liquid compression occurring at the initial stage of cold start or at the time of steady operation, the check refrigerant of the reed valve 186 discharges the compressed refrigerant gas. The thrust bearing 120 does not flow back into the chamber oil sump 134, does not flow into the release gap 127 or the back pressure chamber 139, and does not increase back pressure.
To prevent a continuous abnormal pressure rise. [0023] After compressors stop the suction chamber 117 driving chamber 10
A check valve (not shown) provided in the suction passage between the discharge chamber 102 and the suction chamber 117
Up to the pressure of the discharge chamber 102 through the gap of the compression space, and the reed valve 186 closes the opening end of the oil suction hole 185. [0024] As a result, immediately after the compressor stop the discharge chamber oil reservoir 1
The lubricating oil of 34 is not differentially supplied to the second compression chamber and the back pressure chamber 139, and the lubricating oil of the back pressure chamber 139 is supplied to the drive chamber 106 through the first oil supply passage until the differential pressure becomes less than a certain value. It is returned little by little. [0025] The tail, in the above-described embodiment, the release gap 12
7, the lubricating oil in the discharge chamber oil reservoir 134 was reduced to an intermediate pressure to the back pressure chamber 139 and the thrust bearing 120 and the back pressure chamber 13.
The pressure need not be reduced due to the dimensional configuration of FIG. Further, in the above embodiment, the lubricating oil in the oil reservoir 134 of the discharge chamber is injected into the second compression chamber. However, the oil is injected into the first compression chamber communicating with the suction chamber 117 depending on operating conditions such as compressor operating speed and pressure. Good. As described above, according to the above-described embodiment, the discharge chamber oil sump 13
Since the downstream side of the passage that guides the lubricating oil of No. 4 to the release gap 127 communicates with the back pressure chamber 139 of the orbiting scroll 118, the pressure in the back pressure chamber 139 at the initial stage of compressor startup is low.
The orbiting scroll 118 easily separates from the fixed scroll 115 in the axial direction, which can release the sealing of the compression chamber and contribute to reduction of the input in the initial stage of start-up, and at the time of stable operation of the compressor in which the compression chamber needs to be sealed, the orbiting scroll 118 is Energize the back of the with the lubricating oil of the intermediate pressure between the discharge pressure and the suction pressure,
The thrust force from the orbiting scroll 118 acting on the thrust bearing 120 can be reduced to reduce the input. As a result,
It is possible to reduce the input in the entire operation area from the initial stage of compressor startup to stable operation. Further, although the refrigerant compressor has been described in the above embodiments, similar effects can be expected with other gas compressors such as oxygen, nitrogen, and helium that use lubricating oil. As described above, according to the present invention, the lubricating oil in the oil reservoir of the discharge chamber communicating with the discharge port is the back pressure chamber and the thrust bearing.
Is installed on the side opposite to the compression chamber of the thrust bearing to bias the back pressure.
Supply the suction chamber through at least one of the lease gaps.
In the structure in which the oil supply passage having the throttle passage to be supplied is provided, the orbiting scroll includes the fixed scroll and the thrust bearing.
Between them, there is at least an axial minute gap where an oil film can be formed.
The axial movement position of the thrust bearing so that
Is provided, and the pressure in the discharge chamber oil reservoir is
A valve element that is urged by the pressure difference when the pressure is below the pressure in the compression chamber.
Closes the oil supply passage, and the pressure in the discharge chamber oil reservoir
When the pressure is exceeded, the valve body opens the oil supply passage due to the pressure difference.
Install the oil supply passage control valve device with the valve body that
Since it is installed on the upstream side of the lease gap,
Since it can be opened and closed automatically, it is possible to
Liquid compression etc. occurs in the room and the compression chamber pressure is the discharge chamber oil reservoir pressure.
At the time of the above, the back of the thrust bearing and back pressure are
Supply pressure is reduced by stopping the supply of liquid refrigerant and lubricating oil to the chamber
Therefore, the force acting on the side opposite to the compression chamber of the orbiting scroll is fixed.
The biasing force to the side of the constant scroll is reduced,
The axial pressure from the fixed scroll due to the compression chamber pressure.
When separated, a compression chamber gap is created. As a result, the compression load
Reduce at the right time to effectively reduce input and break the compressor
You can prevent loss. In addition, the orbiting scroll is a thrust bearing.
Since it is not always over-pressed by
The friction loss between the roll and the thrust bearing can be reduced.
You. The orbiting scroll is supported by thrust bearings.
However, the back pressure from the thrust bearing cannot be received.
Therefore, excessive axes of orbiting scroll and fixed scroll
Friction loss can be reduced by avoiding directional contact. Further, the present invention compresses the lubricating oil in the discharge chamber oil reservoir.
The first oil supply passage for supplying the differential pressure to the chamber is provided, and the oil supply passage control valve
The valve body of the device should open and close the first oil supply passage and the oil supply passage synchronously.
The simple structure of the opening and closing means for the first oil supply passage
Can be realized. Further, the pressure in the compression chamber at the initial stage of compressor startup is
When the pressure is higher than the oil sump pressure, the refrigerant flows from the compression chamber to the discharge chamber oil sump.
Of lubricating oil from the compressor
be able to. As a result, the discharge after the compressor is started
Anti compression chamber side and the suction chamber of the orbiting scroll the lubricating oil chamber oil reservoir
The appropriate amount and pressure of oil is applied to the
There is an effect such as being able to improve.

【図面の簡単な説明】 【図1】本発明の一実施例におけるスクロール冷媒圧縮
機の縦断面図 【図2】同圧縮機における給油通路制御弁装置のリード
弁取り付け外観図 【図3】それぞれ同圧縮機の吐出ポート付近における圧
縮室の移動説明図 【図4】それぞれ同圧縮機の吐出ポート付近における圧
縮室の移動説明図 【図5】同圧縮機の吸入行程から吐出行程までの冷媒ガ
スの圧力変化を示す特性図 【図6】各圧縮室における定点の圧力変化を示す特性図 【図7】従来のスクロール圧縮機の縦断面図 【図8】図7の部分拡大図 【符号の説明】 102 吐出室 103 モータ 104 駆動軸 105 本体フレーム 115 固定スクロール 115a 固定スクロールラップ 115b 鏡板 116 吐出ポート 117 吸入室 118 旋回スクロール 118a 旋回スクロールラップ 118c ラップ支持円板 120 スラスト軸受 127 レリース隙間 134 吐出室油溜 139 背圧室182 給油通路制御弁装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical cross-sectional view of a scroll refrigerant compressor according to an embodiment of the present invention. FIG. 2 is an external view of a reed valve installation of an oil supply passage control valve device in the compressor. Illustration of movement of the compression chamber near the discharge port of the compressor [Fig. 4] Illustration of movement of the compression chamber near the discharge port of the compressor [Fig. 5] Refrigerant gas from the intake stroke to the discharge stroke of the compressor FIG. 6 is a characteristic diagram showing the pressure change at a fixed point in each compression chamber. FIG. 7 is a vertical sectional view of a conventional scroll compressor. FIG. 8 is a partially enlarged view of FIG. 102 discharge chamber 103 motor 104 drive shaft 105 main body frame 115 fixed scroll 115a fixed scroll wrap 115b end plate 116 discharge port 117 suction chamber 118 orbiting scroll 118a orbiting Crawl wrap 118c Wrap support disk 120 Thrust bearing 127 Release gap 134 Discharge chamber oil reservoir 139 Back pressure chamber 182 Oil supply passage control valve device

Claims (1)

(57)【特許請求の範囲】 1.固定スクロールの一部をなす鏡板の一面に形成され
た渦巻き状の固定スクロールラップに対して旋回スクロ
ールの一部をなすラップ支持円板上の旋回スクロールラ
ップを揺動回転自在に噛み合わせ、両スクロール間に渦
巻き形の圧縮空間を形成し、前記固定スクロールラップ
の中心部には吐出ポートを設け、前記固定スクロールラ
ップの外側には吸入室を設け、前記圧縮空間は吸入側よ
り吐出側に向けて連続移行する複数個の圧縮室に区画さ
れて流体を圧縮するスクロール圧縮機構を形成し、駆動
軸を支承する本体フレームに取り付けられて前記旋回ス
クロールの反圧縮室側を支持し且つ軸方向移動が可能な
スラスト軸受と、前記固定スクロールとの間に前記旋回
スクロールが配置されており、前記旋回スクロールは前
反圧縮室側に設けられた背圧室に隣接し、前記吐出ポ
ートに通じる吐出室油溜の潤滑油が前記背圧室と、前記
スラスト軸受を背圧付勢すべく前記スラスト軸受の反圧
縮室側に設けたレリース隙間の内、少なくとも一方を経
由して前記吸入室に供給される絞り通路を備えた給油通
路を設けた構成において、前記旋回スクロールが前記固
定スクロールと前記スラスト軸受との間で少なくとも油
膜形成可能な軸方向微小隙間を有して配置されるべく、
前記スラスト軸受の軸方向移動位置を規制する手段を設
けると共に、前記吐出室油溜の圧力が前記圧縮室の圧力
以下の時、その差圧によって付勢された弁体が前記給油
通路を閉路し、前記吐出室油溜の圧力が前記圧縮室の圧
力を超えた時、その差圧によって前記弁体が前記給油通
路を開路する前記弁体を備えた給油通路制御弁装置を、
前記背圧室と前記レリース隙間より上流側に設けたスク
ロール冷媒圧縮機。 2.吐出室油溜の潤滑油を圧縮室に差圧供給する第1給
油通路を設け、給油通路制御弁装置の弁体が前記第1給
油通路と給油通路とを同時期に開閉すべく構成した請求
項1記載のスクロール冷媒圧縮機。
(57) [Claims] A scroll-type fixed scroll wrap formed on one surface of an end plate that forms a part of a fixed scroll, and an orbiting scroll wrap on a wrap support disk that forms a part of an orbiting scroll are oscillated and rotatably engaged to form both scrolls. A spiral compression space is formed therebetween, a discharge port is provided at the center of the fixed scroll wrap, a suction chamber is provided outside the fixed scroll wrap, and the compression space extends from the suction side toward the discharge side. Driven by forming a scroll compression mechanism that divides the fluid into multiple compression chambers that move continuously
Attached to the body frame that supports the shaft,
Supports the anti-compression chamber side of the crawl and allows axial movement
The swivel between the thrust bearing and the fixed scroll
The scroll is arranged and the orbiting scroll is
Serial adjacent to the back pressure chamber provided in the anti-compression chamber side, and the lubricating oil is the back pressure chamber of the discharge chamber oil reservoir communicating with the discharge port, wherein
In order to urge the thrust bearing with back pressure, the thrust bearing counter pressure
At least one of the release gaps provided on the shrink chamber side
Therefore, in the configuration in which the oil supply passage including the throttle passage that is supplied to the suction chamber is provided, the orbiting scroll is
At least oil between the constant scroll and the thrust bearing
To be arranged with a small axial gap that allows film formation,
A means for restricting the axial movement position of the thrust bearing is provided.
At the same time, the pressure in the discharge chamber oil reservoir is equal to the pressure in the compression chamber.
The valve element urged by the pressure difference is
The passage is closed and the pressure in the discharge chamber oil reservoir is equal to the pressure in the compression chamber.
When the force is exceeded, the pressure difference causes the valve body to
An oil supply passage control valve device including the valve body for opening a passage,
A scroll refrigerant compressor provided upstream of the back pressure chamber and the release gap . 2. The first supply that supplies the differential pressure of the lubricating oil in the discharge chamber oil reservoir to the compression chamber
An oil passage is provided, and the valve body of the oil supply passage control valve device is provided with the first supply valve.
The scroll refrigerant compressor according to claim 1, wherein the oil passage and the oil supply passage are configured to be opened and closed at the same time .
JP7105470A 1995-04-28 1995-04-28 Scroll refrigerant compressor with refueling control means Expired - Fee Related JP2674562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7105470A JP2674562B2 (en) 1995-04-28 1995-04-28 Scroll refrigerant compressor with refueling control means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7105470A JP2674562B2 (en) 1995-04-28 1995-04-28 Scroll refrigerant compressor with refueling control means

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62332005A Division JPH07117049B2 (en) 1987-12-28 1987-12-28 Scroll compressor

Publications (2)

Publication Number Publication Date
JPH07286587A JPH07286587A (en) 1995-10-31
JP2674562B2 true JP2674562B2 (en) 1997-11-12

Family

ID=14408485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7105470A Expired - Fee Related JP2674562B2 (en) 1995-04-28 1995-04-28 Scroll refrigerant compressor with refueling control means

Country Status (1)

Country Link
JP (1) JP2674562B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220585A (en) * 1999-01-28 2000-08-08 Toyota Autom Loom Works Ltd Scroll type compressor
JP2005282495A (en) * 2004-03-30 2005-10-13 Anest Iwata Corp Scroll fluid machine
JP2016048056A (en) * 2014-08-28 2016-04-07 サンデンホールディングス株式会社 Scroll type fluid machine and freezer unit using the same
JP2017115762A (en) * 2015-12-25 2017-06-29 サンデンホールディングス株式会社 Scroll-type compressor
WO2018131089A1 (en) * 2017-01-11 2018-07-19 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776287A (en) * 1980-10-31 1982-05-13 Hitachi Ltd Scroll compressor
JPS5879684A (en) * 1982-10-20 1983-05-13 Mitsubishi Electric Corp Scroll type compressor
JPH0350308Y2 (en) * 1986-01-13 1991-10-28

Also Published As

Publication number Publication date
JPH07286587A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
JP2956509B2 (en) Scroll gas compressor
JP2782858B2 (en) Scroll gas compressor
US4545747A (en) Scroll-type compressor
EP0840011B1 (en) Scroll machine with reverse rotation sound attenuation
KR100463283B1 (en) Scroll Type Compressor
JPH1037869A (en) Scroll gas compressor
JPH11141483A (en) Electric gas compressor
JPS58160583A (en) Scroll type fluidic machine
JP2959457B2 (en) Scroll gas compressor
JP3028054B2 (en) Scroll gas compressor
JPH0754784A (en) Shaft through scroll compressor
JP2674562B2 (en) Scroll refrigerant compressor with refueling control means
JPH07117049B2 (en) Scroll compressor
JP2557533B2 (en) Hermetic variable speed scroll compressor
JP3045961B2 (en) Scroll gas compression
JPH0826861B2 (en) Scroll gas compressor
JP3545826B2 (en) Scroll compressor
JPH0765580B2 (en) Scroll gas compressor
JPS61218792A (en) Scroll compressor
JP2790126B2 (en) Scroll gas compressor
JPH0778391B2 (en) Scroll gas compressor
JPH09158863A (en) Scroll compressor
JP2870509B2 (en) Scroll gas compressor
JP2574599B2 (en) Scroll compressor
JP2870490B2 (en) Scroll gas compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees