JPH0826861B2 - Scroll gas compressor - Google Patents

Scroll gas compressor

Info

Publication number
JPH0826861B2
JPH0826861B2 JP4175188A JP17518892A JPH0826861B2 JP H0826861 B2 JPH0826861 B2 JP H0826861B2 JP 4175188 A JP4175188 A JP 4175188A JP 17518892 A JP17518892 A JP 17518892A JP H0826861 B2 JPH0826861 B2 JP H0826861B2
Authority
JP
Japan
Prior art keywords
chamber
back pressure
passage
scroll
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4175188A
Other languages
Japanese (ja)
Other versions
JPH05187370A (en
Inventor
勝晴 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4175188A priority Critical patent/JPH0826861B2/en
Publication of JPH05187370A publication Critical patent/JPH05187370A/en
Publication of JPH0826861B2 publication Critical patent/JPH0826861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスクロール気体圧縮機に
係り、旋回スクロールへの背圧力制御に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scroll gas compressor, and more particularly to back pressure control for an orbiting scroll.

【0002】[0002]

【従来の技術】近年、工作機械の発展に伴い実用化され
つつあり低振動・低騒音特性を備えた圧縮機として注目
を浴びているスクロール圧縮機は、例えば特開昭59−
49386号公報にも示されているように吸入室が外周
部にあり、吐出ポートがうず巻きの中心部に設けられ、
圧縮流体の流れが一方向のため高速運転時の流体抵抗が
小さくて圧縮効率が高いことは一般によく知られてい
る。また、この種の高圧ガス密閉シェル構造の圧縮機
は、特開昭59−49386号公報で知られているよう
に図5に示す構成または特開昭55−148994号公
報で知られるように図6に示す構成、または前記の特開
昭55−178994号公報の圧縮機を上・下に転倒さ
せた形態の特開昭57−68579号公報の構成などが
提案され、旋回スクロールの背圧室の適切な圧力設定に
より、旋回スクロールに作用する軸方向のスラスト力を
軽減しながら各摺動部の潤滑が次のように構成されてい
た。
2. Description of the Related Art In recent years, scroll compressors which have been put into practical use with the development of machine tools and which have attracted attention as compressors having low vibration and low noise characteristics are disclosed in, for example, Japanese Unexamined Patent Publication No.
As shown in Japanese Patent No. 49386, the suction chamber is provided at the outer periphery, and the discharge port is provided at the center of the spiral.
It is generally well known that the flow of compressed fluid is unidirectional, so that the fluid resistance during high-speed operation is small and the compression efficiency is high. Further, a compressor having a high-pressure gas closed shell structure of this kind has a structure shown in FIG. 5 as known from Japanese Patent Laid-Open No. 59-49386 or a structure shown in Japanese Patent Laid-Open No. 55-148994. 6 or the structure of JP-A-57-68579 in which the compressor of JP-A-55-178994 is turned upside down is proposed, and the back pressure chamber of the orbiting scroll is proposed. Lubrication of each sliding portion was configured as follows while reducing the axial thrust force acting on the orbiting scroll by appropriately setting the pressure.

【0003】すなわち図5においては、固定スクロール
ラップ123は駆動軸105を支承する本体フレーム1
02に取付けられた鏡板121に固定され、旋回スクロ
ールラップ116はラップ支持円盤115に固定され、
このラップ支持円盤115は、鏡板121と本体フレー
ム102との間の背圧室120に軸方向の微小隙間を有
した遊合状態で配置され、背圧室120を外側の背圧室
A120aと内側の背圧室B120bとに仕切る機能お
よび自転阻止機能とを備えたオルダムリング118を介
して旋回可能に支承され、さらに端部に駆動用のモータ
110と偏心部を備えた駆動軸105によって旋回運動
をする。そして吸入・圧縮されたガスは密閉シェル10
1内に吐出する。吐出ガスから分離した潤滑油は密閉シ
ェル101の底部の油溜109に収集され、駆動軸10
5の下端に開口して偏心状態で設けられた油穴106、
および駆動軸105を支承する軸受部を通して遠心ポン
プ作用を利用して高圧力状態で背圧室120に導かれ
る。さらにオルダムリング118の摺動部の微小隙間を
経て吐出圧力と吸入圧力との中間圧力にまで減圧された
潤滑油は、背圧室A120aに流入後、鏡板121に設
けた細穴のバランス通路126を通して吸入室122に
流入する過程で各摺動部を潤滑する構成であった。
That is, in FIG. 5, the fixed scroll wrap 123 supports the drive shaft 105 and the main body frame 1
02 is fixed to the end plate 121, the orbiting scroll wrap 116 is fixed to the wrap support disk 115,
The lap support disk 115 is arranged in a loose fit state in the back pressure chamber 120 between the end plate 121 and the main body frame 102 with a minute gap in the axial direction, and the back pressure chamber 120 is located outside the back pressure chamber.
A120a and the inner back pressure chamber B120b partition function
And, it is pivotally supported by an Oldham ring 118 having a rotation preventing function, and is pivoted by a driving motor 110 and a drive shaft 105 having an eccentric portion at its end. The inhaled / compressed gas is sealed shell 10
Discharge into 1. The lubricating oil separated from the discharge gas is collected in the oil sump 109 at the bottom of the closed shell 101, and the drive shaft 10
5, an oil hole 106 opened at the lower end of
And, through the bearing portion that supports the drive shaft 105, it is guided to the back pressure chamber 120 in a high pressure state by utilizing the centrifugal pump action. Further, the lubricating oil , which has been reduced in pressure to an intermediate pressure between the discharge pressure and the suction pressure through a minute gap in the sliding portion of the Oldham ring 118 , flows into the back pressure chamber A 120a, and then the balance passage 126 of the fine hole provided in the end plate 121. The sliding portions are lubricated in the process of flowing into the suction chamber 122 through the through holes.

【0004】また図6においては、背圧室220はオル
ダムリング218によって圧力的に仕切られていなく、
吸入室222との連通もないが旋回スクロールのラップ
支持円盤215に設けられた細穴のバランス通路226
によって適当な位置の圧縮室240と連通されており、
このバランス通路226はラップ支持円盤215が旋回
運動することによって圧縮室240との連通が開閉され
て、背圧室220と圧縮室240との間の間欠給油を構
成している。また背圧室220は、吐出ガスで充満され
た密閉シェル201の底部の油溜209とは駆動軸20
5に設けられた油穴206と駆動軸205を支承する軸
受の微小隙間を経由して連通されており、油溜209の
潤滑油は背圧室220に中間圧力で流入の後、バランス
通路226を通して圧縮室240に流入する過程で各摺
動部に給油される。
Further, in FIG. 6, the back pressure chamber 220 is not partitioned by the Oldham ring 218 in terms of pressure.
There is no communication with the suction chamber 222, but a fine hole balance passage 226 provided in the lap support disk 215 of the orbiting scroll.
Is connected to the compression chamber 240 at an appropriate position by
The balance passage 226 opens and closes communication with the compression chamber 240 as the lap support disk 215 pivots, and constitutes intermittent oil supply between the back pressure chamber 220 and the compression chamber 240. The back pressure chamber 220, the drive shaft and the oil reservoir 209 at the bottom of the sealed shell 201 filled with ejection outlet gas 20
5 is communicated with the oil hole 206 provided in the No. 5 via a minute gap of the bearing that supports the drive shaft 205, and
Lubricating oil flows into the back pressure chamber 220 at an intermediate pressure and then balances.
Each slide in the process of flowing into the compression chamber 240 through the passage 226.
The moving part is refueled.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た図5のような背圧室120内から吸入室122までの
細穴連通給油通路のみの構成では、このスクロール圧縮
機をヒートポンプ冷凍サイクルに組み込み冷媒圧縮機と
して使用する場合には、特に暖房運転冷凍サイクルから
除霜運転冷凍サイクルに切り換えた直後、吐出室圧力が
低圧状態に、吸入室圧力が高圧状態になる関係上、冷媒
ガスが吸入室122から背圧室120にバランス通路1
26を介して逆流し、背圧室120および駆動軸105
の軸受摺動部に貯溜の潤滑油を油溜9にまで流出させる
とともに、油溜9に逆流した冷媒ガスは油溜9の潤滑油
を拡散させ、その結果吐出冷媒ガスとともに圧縮機外部
配管系へ流出させ、一時的に油溜9の潤滑油不足が生じ
る。このため、背圧室120の背圧不安定、潤滑油不
足、軸受摺動部の潤滑油不足がほぼ同時に発生し、旋回
スクロール114の駆動軸主軸線に対する傾きや関連部
品との衝突による異常音、異常摩耗を招くという問題が
あった。
However, in the structure having only the fine hole communication oil supply passage from the back pressure chamber 120 to the suction chamber 122 as shown in FIG. 5, the scroll compressor is incorporated into the heat pump refrigeration cycle to make a refrigerant. When used as a compressor, in particular, immediately after switching from the heating operation refrigeration cycle to the defrosting operation refrigeration cycle, the discharge chamber pressure becomes a low pressure state and the suction chamber pressure becomes a high pressure state. From the back pressure chamber 120 to the balance passage 1
Backflow through the back pressure chamber 120 and the drive shaft 105.
Together to efflux lubricating oil reservoir to the oil reservoir 9 to the bearing sliding portion, the refrigerant gas flowing back to the oil reservoir 9 diffuses the lubricating oil of the oil reservoir 9, outside of the compressor with the result ejection out refrigerant gas It is caused to flow out to the piping system, and a shortage of lubricating oil in the oil sump 9 occurs temporarily. Therefore, back pressure instability of the back pressure chamber 120, insufficient lubrication oil, and insufficient lubrication oil in the bearing sliding portion occur almost at the same time, and the abnormal noise due to the inclination of the orbiting scroll 114 with respect to the drive shaft main axis and collision with related parts. However, there was a problem of causing abnormal wear.

【0006】また、図6のような背圧室220と圧縮室
240との間を細穴のバランス通路226で連通するの
みの構成も図5の場合と同様の問題があった。すなわ
ち、暖房運転冷凍サイクルから除霜運転冷凍サイクルに
切り換えた直後、吸入室圧力が高圧状態になり、圧縮途
中の圧縮室は異常圧力上昇し、バランス通路226を介
して冷媒ガスが背圧室220に逆流し、上述と同様の潤
滑油不足を生じる。また、圧縮機始動直後は、吐出圧
力、背圧室圧力が低いので圧縮途中の冷媒ガスが背圧室
220に逆流し、その結果、背圧室220の圧力が油溜
209の圧力よりも高い状態となり、油溜209から背
圧室220への給油ができず、摺動部を損傷させるとい
う問題があった。また、冷媒液や多量の潤滑油を圧縮し
て圧縮室を異常圧力上昇させる、いわゆる液圧縮現象に
よる過負荷運転時にも冷媒ガスが背圧室220に逆流し
て旋回スクロール215への背圧室を異常に高めるの
で、旋回スクロール215が固定スクロール223から
駆動軸205の主軸線方向に離反して圧縮室隙間を拡大
し圧縮室圧力が急低下するのを阻害し、圧縮機の著しい
損傷を招くという問題があった。
Further, the structure in which the back pressure chamber 220 and the compression chamber 240 as shown in FIG. 6 only communicate with each other through the balance passage 226 having a fine hole has the same problem as in the case of FIG. That is, immediately after switching from the heating operation refrigeration cycle to the defrosting operation refrigeration cycle, the suction chamber pressure becomes a high pressure state, the compression chamber in the middle of compression raises an abnormal pressure, and the refrigerant gas passes through the balance passage 226 and the back pressure chamber 220 flows. Backflow to the same, causing the same lack of lubricating oil as described above. Immediately after starting the compressor, since the discharge pressure and the back pressure chamber pressure are low, the refrigerant gas during compression flows back into the back pressure chamber 220, and as a result, the pressure in the back pressure chamber 220 is higher than the pressure in the oil sump 209. In this state, there is a problem in that the oil cannot be supplied from the oil sump 209 to the back pressure chamber 220 and the sliding portion is damaged. In addition, the refrigerant gas flows backward into the back pressure chamber 220 even during overload operation due to a so-called liquid compression phenomenon that compresses the refrigerant liquid or a large amount of lubricating oil to raise the abnormal pressure in the compression chamber, and the back pressure chamber to the orbiting scroll 215. Is increased abnormally, so that the orbiting scroll 215 moves from the fixed scroll 223.
There has been a problem that the drive shaft 205 is separated in the main axis direction to expand the compression chamber gap and prevent the compression chamber pressure from dropping rapidly, resulting in significant damage to the compressor.

【0007】一方、背圧室の異常圧力上昇を防ぐ方策と
して、特開昭57−76291号公報で提案されている
背圧制御手段がある。すなわち、背圧室と吸入系を連絡
する経路に弁体と押圧バネを設け、常時はバネの押圧力
にて弁体を介して上記経路を閉路し、異常高背圧時に開
路するという構成である。この背圧制御手段を図5およ
び図6などのスクロール気体圧縮機に応用した場合は、
圧縮機冷時始動初期や圧縮機低速運転時などのように吐
出室圧力が低くて、吐出室に通じる油溜(109,20
9)と吸入系および圧縮室との間の給油通路の差圧が小
さい運転状態では、上記背圧制御手段が給油通路をほぼ
遮断状態にしているので上記給油通路に関わる摺動部の
損傷を招くという問題があった。
On the other hand, there are measures to prevent abnormal pressure rise in the back pressure chamber.
Then, it is proposed in JP-A-57-76291.
There is a back pressure control means. That is, the back pressure chamber and the inhalation system are connected.
The valve body and the pressing spring are installed in the path to
Closes the above path via the valve body and opens when abnormally high back pressure
It is a structure to go by. This back pressure control means is shown in FIG.
When applied to scroll gas compressors such as
When the compressor is cold, it is discharged in the initial stage or when the compressor is operating at low speed.
The outlet pressure is low and the oil sump (109, 20
9) The pressure difference in the oil supply passage between the suction system and the compression chamber is small.
When the operating condition is short, the back pressure control means closes the oil supply passage.
Since it is in the cutoff state, the sliding parts related to the oil supply passage are
There was a problem of causing damage.

【0008】本発明は上記問題点を解決するものであ
り、給油通路途中の絞り通路の開度を制御して背圧室圧
力を調整することにより、効率と耐久性に優れたスクロ
ル気体圧縮機を提供することを目的とする。
The present invention solves the above problems.
Control the opening of the throttle passage in the middle of the oil supply passage to control the back pressure chamber pressure.
By adjusting the forces, and to provide a superior efficiency and durability scroll <br/> Lumpur gas compressors.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明のスクロール気体圧縮機は、吐出ポートに通
る油溜から旋回スクロールの背圧室および吸入室または
圧縮室へと順次経由する給油通路を備え、かつその給油
路には背圧室から吸入室または圧縮室へのみの流体流
入を許容する逆止弁作用を有した給油通路制御装置を備
えて、その給油通路制御装置はそれ自身の温度が上昇す
るとその通路を狭め、それ自身の温度が低下するとその
通路を広げる開度調整機能を備えたものである。
Means for Solving the Problems] Scroll gas compressors of the present invention in order to achieve the above object, Through the discharge port
Back pressure chamber and suction chamber of the orbiting scroll or
Equipped with the fuel supply passage through sequentially into the compression chamber, the oil supply passage to the oil supply <br/> communication path Katsuso having a check valve function of permitting fluid flow of only from the back pressure chamber to the suction chamber or compression chamber The refueling passage control device is provided with a control device, and has an opening adjustment function of narrowing the passage when the temperature of the refueling passage increases and expanding the passage when the temperature of the refueling passage decreases.

【0010】[0010]

【作用】本発明は上記構成によって、圧縮機冷時始動直
後や高低圧側配管系の切り替え直後などの吐出側圧力、
背圧室圧力が低く、かつ吐出側圧力に対して吸入側圧力
比較的高い場合などに吸入室または圧縮室から気体が
背圧室に逆流するのを阻止され、背圧室の異常圧力上昇
の防止と背圧室および背圧室より上流側に貯溜する潤滑
油の流出が防止され、潤滑油が確保される。また、吐出
側と吸入側との間の差圧拡大に追従して圧縮負荷増加を
伴い、給油通路制御装置の温度上昇がその通路の開度を
狭めて油溜から吸入側および圧縮室への過剰な潤滑油流
入を防止し、耐久性と圧縮効率の向上を図ることができ
る。
According to the present invention, the discharge side pressure immediately after the cold start of the compressor or the switching of the high and low pressure side piping system,
Low back pressure chamber pressure and the gas from the suction chamber or compression chamber, such as when the suction side pressure is relatively high with respect to the discharge-side pressure is locked inhibitory flowing back to the back pressure chamber, abnormal pressure in the back pressure chamber The rise is prevented and the back pressure chamber and the lubricating oil stored upstream of the back pressure chamber are prevented from flowing out, so that the lubricating oil is secured. Also, discharge
Increase the compression load by following the expansion of the differential pressure between the suction side and the suction side.
Along with this, the temperature rise of the oil supply passage control device reduces the opening of the passage.
Excessive lubricating oil flow from the oil reservoir to the suction side and compression chamber
Can be prevented to improve durability and compression efficiency.
It

【0011】[0011]

【実施例】以下、本発明の一実施例のスクロール気体圧
縮機について、図面を参照しながら説明する。図1は本
発明の第1の実施例のスクロール冷媒圧縮機の縦断面
図、図2は図1におけるA部の拡大断面図である。図1
において、1は密閉シェル、2は密閉シェル1に圧入固
定された本体フレーム、3,4は本体フレーム2の中心
部に設けられた軸受、5は軸受3,4に支承され貫通し
た油穴6と軸受4に対向した位置に油穴6と連通して油
穴7を設けた駆動軸で、その上端には偏心軸部8が設け
られ、下端は密閉シェル1の底部の油溜9にまで伸びて
没入している。10はモータでその回転子11が駆動軸
5に、固定子12が密閉シェル1に圧入固定されてい
る。偏心軸部8に連結し、その中心に軸受部13を備え
て偏心軸部8と軸受部13とで背圧室C20cを構成す
る旋回スクロール14のラップ支持円盤15はその上面
に直立した旋回スクロールラップ16が一体的に形成さ
れ、その下面は本体フレーム2の上端開口穴に突出した
スラスト軸受座17に支承されている。旋回スクロール
ラップ16は、その平面形状が渦巻状をなし、その縦断
面は矩形をなして隣合う旋回スクロールラップ16とは
平行関係にある。自転阻止用のオルダムリング18は、
平らなリングの両面に互いに直交する平行キー形状のキ
ー部を備えたもので、ラップ支持円盤15とスラスト軸
受座17との間に設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A scroll gas compressor according to an embodiment of the present invention will be described below with reference to the drawings. 1 is a vertical sectional view of a scroll refrigerant compressor according to a first embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a portion A in FIG. FIG.
In the figure, 1 is a closed shell, 2 is a body frame press-fitted and fixed to the closed shell 1, 3 and 4 are bearings provided in the center of the body frame 2, and 5 is an oil hole 6 which is supported by the bearings 3 and 4 and penetrates therethrough. And a bearing 4 and a drive shaft that communicates with the oil hole 6 and is provided with an oil hole 7, the upper end of which is provided with an eccentric shaft portion 8 and the lower end of which extends to an oil reservoir 9 at the bottom of the closed shell 1. It is stretched and immersed. Reference numeral 10 denotes a motor, the rotor 11 of which is fixed to the drive shaft 5 and the stator 12 of which is fixed to the closed shell 1 by press fitting. The wrap support disk 15 of the orbiting scroll 14, which is connected to the eccentric shaft portion 8 and has the bearing portion 13 at the center thereof to form the back pressure chamber C20c by the eccentric shaft portion 8 and the bearing portion 13, is the orbiting scroll upright on its upper surface. The wrap 16 is integrally formed, and the lower surface of the wrap 16 is supported by a thrust bearing seat 17 protruding into an upper opening hole of the main body frame 2. The orbiting scroll wrap 16 has a spiral shape in a plan view, and has a rectangular vertical cross section in parallel with the adjacent orbiting scroll wraps 16. The Oldham ring 18 for rotation prevention is
A flat ring is provided with parallel key-shaped key portions that are orthogonal to each other on both sides, and is provided between the lap support disk 15 and the thrust bearing seat 17.

【0012】このオルダムリング18の上面側のキー部
はラップ支持円盤15の背面に設けられたキー溝(図示
せず)に、下面側のキー部はスラスト軸受座17に設け
られたキー溝19にはめ込まれており、駆動軸5の回転
によってラップ支持円盤15の軸受部13は駆動軸5の
軸心の回りに円運動をなし、旋回スクロールラップ16
は旋回運動をする。また、本体フレーム2の上端面に
は、上端開口穴をふさいでラップ支持円盤15の背圧室
20とした固定スクロール34の鏡板21がスラスト軸
受座17とともに旋回スクロール14のラップ支持円盤
15を微小隙間で挟むように取付けられ、旋回スクロー
ル14の背圧室20を形成している。背圧室20はラッ
プ支持円盤15によって仕切られ、その外周面側の背圧
室A20aを背面側の背圧室B20bに分けられてい
る。鏡板21にはその内側に環状の吸入室22が設けら
れている。吸入室22の内側には旋回スクロールラップ
16に平行でかつ同形状寸法の固定スクロールラップ2
3の渦巻の中心部には、密閉シェル1内を吐出空間24
とした吐出ポート25が設けられている。ラップ支持円
盤15との摺動面に開口して吸入室22と背圧室A22
aを連通する細穴のバランス通路26が鏡板21に設け
られ、背圧室A22aと背圧室B22bを連通する細穴
のバランス通路27とがスラスト軸受座17に設けら
れ、ラップ支持円盤15が所定の旋回角度範囲(最も外
側にある圧縮室の吸入容積が増加の過程)にあるときの
バランス通路26およびバランス通路27が連通する
ようにそれぞれ配置されている。
The key portion on the upper surface side of the Oldham ring 18 is a key groove (not shown) provided on the back surface of the lap support disk 15, and the key portion on the lower surface side is a key groove 19 provided on the thrust bearing seat 17. The bearing portion 13 of the wrap support disk 15 makes a circular motion around the axis of the drive shaft 5 by the rotation of the drive shaft 5, and the orbiting scroll wrap 16
Makes a turning motion. Further, the end plate 21 of the fixed scroll 34, which serves as the back pressure chamber 20 of the lap support disk 15 by closing the upper end opening hole in the upper end surface of the main body frame 2, together with the thrust bearing seat 17, the lap support disk of the orbiting scroll 14.
Mounting et been 15 so as to sandwich a minute gap, the turning scroll
The back pressure chamber 20 of the valve 14 is formed. The back pressure chamber 20 is partitioned by the lap support disk 15, and the back pressure on the outer peripheral surface side is divided.
The chamber A 20a is divided into a back pressure chamber B 20b on the back side. The end plate 21 is provided with an annular suction chamber 22 inside thereof. A fixed scroll wrap 2 parallel to the orbiting scroll wrap 16 and having the same shape and size is provided inside the suction chamber 22.
In the central part of the spiral of 3, the discharge space 24
The discharge port 25 is provided. The suction chamber 22 and the back pressure chamber A 22 are opened at the sliding surface with respect to the lap support disk 15.
The end plate 21 is provided with a fine balancing passage 26 communicating with a.
Is provided balancing passage 27 and the gas thrust bearing seat 17 of the small hole for communicating the back pressure chamber A 22a and the back pressure chamber B 22b, the orbiting wrap support disk 15 is in a predetermined angular range (outermost
The balance passage 26 and the balance passage 27 are arranged to communicate with each other only when the suction volume of the compression chamber on the side is in the process of increasing .

【0013】図2に示すように、バランス通路26の途
中には、鏡板21にケース40が圧入されてバランス通
路26の両端開口部を狭めるように構成され、その通路
の中央部の上流側には鋼球41が、下流側にはコイルバ
ネ42が装着されて給油通路制御装置43を構成してい
る。コイルバネ42はそれ自身の温度が上昇すると伸長
して鋼球41を付勢してバランス通路26を漸次狭めな
がら最終的に閉じ、それ自身の温度が低下すると収縮し
て鋼球41への付勢を弱めて鋼球41が背圧室20と吸
入室22との間の圧力差に基づいて作用する鋼球41へ
の背圧力に対抗して鋼球41を移動させ、バランス通路
26を広げるような形状記憶特性を備えて鋼球41を常
時付勢している。また、環状の吸入室22には側方より
密閉シェル1を貫通した吸入管28が接続され、密閉シ
ェル1の上面には密閉シェル1の内側面に向かって開口
した吐出管29が接続されている。密閉シェル1に圧入
固定された本体フレーム2の外側面には溝30が設けら
れ、この溝30が密閉シェル1の鏡板21の側の吐出空
間24とモータ10の側とを連通している。
As shown in FIG . 2, in the middle of the balance passage 26.
During the case 40 to the mirror plate 21 is configured so as to narrow the openings of both ends of the press-fitted balance passage 26, the steel ball 41 on the upstream side of the center of the passage, the coil spring 42 on the downstream side The refueling passage control device 43 is installed and constitutes the refueling passage control device 43. When the temperature of the coil spring 42 rises, the coil spring 42 expands to urge the steel ball 41 to gradually narrow the balance passage 26.
However, when the temperature of the steel ball 41 is finally closed and the temperature of the steel ball 41 decreases, the steel ball 41 contracts to weaken the urging force on the steel ball 41, and the steel ball 41 acts on the basis of the pressure difference between the back pressure chamber 20 and the suction chamber 22. The steel ball 41 is constantly urged with a shape memory characteristic of moving the steel ball 41 against the back pressure to the ball 41 and expanding the balance passage 26. A suction pipe 28 penetrating the hermetic shell 1 from the side is connected to the annular suction chamber 22, and a discharge pipe 29 opening toward the inner side surface of the hermetic shell 1 is connected to the upper surface of the hermetic shell 1. There is. A groove 30 is provided on the outer surface of the main body frame 2 press-fitted and fixed to the closed shell 1, and the groove 30 communicates the discharge space 24 on the end plate 21 side of the closed shell 1 with the motor 10 side.

【0014】以上のように構成されたスクロール冷媒圧
縮機について、以下図1および図2を用いてその動作を
説明する。すなわち、モータ10の回転子11が回転し
駆動軸5が回転駆動されると旋回スクロール14が旋回
運動をし、吸入管28を通して冷媒ガスが吸入室22に
吸入され、この冷媒ガスは旋回スクロールラップ16と
固定スクロールラップ23の間に形成された圧縮室内に
閉じ込められ、旋回スクロールラップ16の旋回運動に
伴って圧縮され、吐出ポート25より吐出空間24へ吐
出され、冷媒ガス中に含まれる潤滑油の一部はその自重
などによって冷媒ガスから分離して密閉シェル1と本体
フレーム2との間の溝30などを経て底部の油溜9に収
集され、残りの潤滑油は吐出冷媒ガスとともに吐出管2
9を経て外部の冷凍サイクルへ搬出される。一方、固定
スクロール34の鏡板21と本体フレーム2とによって
吐出空間24から隔離されて形成された背圧室20を経
由する高圧側の油溜9から低圧側の吸入室22までの差
圧給油は次のようにして行われる。
The operation of the scroll refrigerant compressor configured as described above will be described below with reference to FIGS. 1 and 2. That is, the rotor 11 is revolving scroll 14 is orbiting motion with the drive shaft 5 to rotate the driven rotation of the motors 10, the refrigerant gas is sucked into the suction chamber 22 through the suction pipe 28, the refrigerant gas swirling It is confined in a compression chamber formed between the scroll wrap 16 and the fixed scroll wrap 23, compressed along with the orbiting movement of the orbiting scroll wrap 16, discharged from the discharge port 25 to the discharge space 24, and contained in the refrigerant gas. Part of the lubricating oil is separated from the refrigerant gas by its own weight and the like, and is collected in the bottom oil sump 9 through the groove 30 between the closed shell 1 and the main body frame 2 and the remaining lubricating oil is discharged together with the discharged refrigerant gas. Discharge pipe 2
It is carried out to the outside refrigerating cycle through 9. On the other hand, the differential pressure oil supply from the high pressure side oil reservoir 9 to the low pressure side suction chamber 22 via the back pressure chamber 20 formed by being separated from the discharge space 24 by the end plate 21 of the fixed scroll 34 and the main body frame 2 is performed. This is done as follows.

【0015】すなわち、圧縮機冷時起動直後の圧縮機内
の各部の温度は低く、背圧室20と吸入室22との間の
圧力差は小さいが、細穴のバランス通路26はコイルバ
ネ42が収縮状態で鋼球41への付勢を解いて開通状態
にあり、圧縮機の起動後、吐出冷媒ガスで充満された密
閉シェル1の底部の油溜9の粘性の高い潤滑油は駆動軸
5に設けられた油穴6,7と駆動軸5を支承する軸受
3,4や偏心軸部8の軸受部13の微小隙間を通過する
ことによって漸次減圧され吸入圧力と吐出圧力との中間
圧力の状態で背圧室20bに供給される。さらに潤滑油
は、旋回スクロール14のラップ支持円盤15の旋回運
動によって間欠的に開閉する細穴のバランス通路27を
経て背圧室A20aに間欠給油され、バランス通路26
を経て吸入室22に間欠給油され、吸入冷媒ガスととも
に再び圧縮される。また、圧縮機起動後、吐出室圧力の
上昇とともに圧縮機内部の温度が上昇してコイルバネ4
2の温度が設定値を越えるとコイルバネ42が伸長して
鋼球41を付勢し、バランス通路26を狭める。油溜9
と背圧室20との間の差圧が拡大する一方、流動性が良
くなった潤滑油は鏡板21とラップ支持円盤15との摺
動面などを経て吸入室22に流入する。このスクロール
冷媒圧縮機をヒートポンプ式冷凍サイクルに組み込み、
暖房運転冷凍サイクルから除霜運転冷凍サイクルに切り
替えた直後には、吐出室圧力が低圧状態に、吸入室圧力
が高圧状態になる関係から、冷媒ガスが吸入室22から
背圧室20にバランス通路26,27を介して逆流しよ
うとするが、バランス通路26に設けた鋼球41の逆止
弁作用によりその通路を閉じ、冷媒ガスが背圧室20を
経由して油溜9に逆流するのを阻止し、背圧室20や軸
受摺動面の潤滑油流出と摺動面の焼付きを防ぐ。
[0015] That is, the temperature in the compressor of each part immediately after startup compressor cooling is low, between the back pressure chamber 20 and the suction chamber 22
Although the pressure difference is small, the balance passage 26 of the small hole is in the open state by releasing the bias to the steel ball 41 with the coil spring 42 contracted, and after the compressor is started, the closed shell 1 filled with the discharge refrigerant gas The highly viscous lubricating oil in the oil sump 9 at the bottom of the shaft passes through minute gaps between the oil holes 6 and 7 provided in the drive shaft 5 and the bearings 3 and 4 supporting the drive shaft 5 and the bearing part 13 of the eccentric shaft part 8. By doing so, the pressure is gradually reduced and the intermediate pressure between the suction pressure and the discharge pressure is supplied to the back pressure chamber 20b. Further, the lubricating oil is intermittently supplied to the back pressure chamber A 20a through a balance passage 27 having a fine hole which is opened and closed intermittently by the orbiting motion of the lap support disk 15 of the orbiting scroll 14, and the balance passage 26
It is intermittently fed between the suction chamber 22 through the are compressed again together with the suction refrigerant gas. Also, after the compressor is started, the temperature inside the compressor rises as the pressure in the discharge chamber rises, and the coil spring 4
Temperature of 2 exceeds the set value when the coil spring 42 is extended to urge the steel ball 41, Ru narrowed balance passage 26. Oil sump 9
While the differential pressure between the back pressure chamber 20 and the back pressure chamber 20 increases, the lubricating oil having improved fluidity flows into the suction chamber 22 through the sliding surface between the end plate 21 and the lap support disk 15. Incorporating this scroll refrigerant compressor into the heat pump type refrigeration cycle,
Immediately after switching from the heating operation refrigeration cycle to the defrosting operation refrigeration cycle, the refrigerant gas flows from the suction chamber 22 to the back pressure chamber 20 because the discharge chamber pressure becomes a low pressure state and the suction chamber pressure becomes a high pressure state. The steel balls 41 provided in the balance passage 26 close the passages due to the check valve action, and the refrigerant gas flows back to the oil reservoir 9 via the back pressure chamber 20 . prevent, prevent seizure of the lubricating oil flowing out and the sliding surface of the back pressure chamber 20 and the bearing sliding surface.

【0016】この差圧給油方式によれば、ラップ支持円
盤15の背面の背圧室20の圧力を給油通路の通路抵抗
調整によって吐出圧力に近い状態から吸入圧力に近い状
態にまで自由に設定できるので、ラップ支持円盤15の
背面に作用する背面付勢力と圧縮室内のガス圧荷重との
荷重差を自由に調整でき、それによってラップ支持円盤
15を鏡板21の側に押し付けることも、また、鏡板2
1から離してスラスト軸受座17の側に押し付けること
もできる。本実施例では定常運転時など潤滑油の粘性が
低い場合のラップ支持円盤15は鏡板21の側へスラス
ト力が作用するように、また、冷時起動直後など潤滑油
の粘性が高い場合のラップ支持円盤15はスラスト軸受
座17の側へスラスト力が作用するように背圧室20の
領域と圧力が設定され、その圧力を実現すべく給油通路
制御装置43の通路開度が設定されている。なお、本実
施例ではバランス通路26の下流側の開口穴がコイルバ
ネ42の端部に連通している構成であったが、図3に示
すようにコイルバネ42aの中央部付近または鋼球41
の側付近に給油通路制御装置43aを備えたバランス通
路26aより連通する構成、さらには、図4に示すよう
にコイルバネ42bを有する給油通路制御装置43b
スラスト軸受座17に設けたバランス通路27に設ける
構成やこれらの組み合わせの構成であってもよい。
According to this differential pressure oil supply system, the pressure of the back pressure chamber 20 on the back surface of the lap support disk 15 can be freely set from the state close to the discharge pressure to the state close to the suction pressure by adjusting the passage resistance of the oil supply passage. Therefore, the load difference between the back-side biasing force acting on the back surface of the lap support disk 15 and the gas pressure load in the compression chamber can be freely adjusted, so that the lap support disk 15 can be pressed against the end plate 21 side. Two
It can also be pushed away from the thrust bearing seat 17 side. In the present embodiment, the lap support disk 15 in the case where the viscosity of the lubricating oil is low, such as during steady operation, is such that the thrust force acts on the end plate 21 side, and the lap in the case where the viscosity of the lubricating oil is high, such as immediately after cold start. The support disk 15 is provided in the back pressure chamber 20 so that the thrust force acts on the thrust bearing seat 17 side.
The area and pressure are set, and the oil supply passage is designed to achieve that pressure.
The passage opening of the control device 43 is set. In the present embodiment, the downstream opening of the balance passage 26 is connected to the end of the coil spring 42. However, as shown in FIG. 3, the coil spring 42a is near the center or the steel ball 41.
The balance passage equipped with the oil supply passage control device 43a near the
A structure communicating with the passage 26a , and further, as shown in FIG.
The supply oil passage control device 43b having a coil spring 42b to
Configuration provided balance passage 27 provided in the thrust bearing seat 17 and may be a combination of these configurations.

【0017】また上記実施例では、背圧室20の給油通
路下流側を吸入室としたが、図6の従来のスクロール圧
縮機の場合と同様に、背圧室20の給油通路下流側を圧
縮工程中の圧縮室にしてもよく、その給油通路途中に図
2と同様の給油通路制御装置を設けてもよい。なお、こ
の給油通路構成における給油通路制御装置は以下に述べ
る逆止弁作用も兼ねる。すなわち、圧縮機冷時始動直後
などは、圧縮機外部配管系に連通する吐出室の圧力が低
く、油溜9から背圧室20への差圧による潤滑油流入が
少ないので、背圧室20の圧力が背圧室20に連通する
圧縮室の変動する圧力よりも瞬時的に低い場合がある。
このため、圧縮途中の冷媒ガスが背圧室20に流入しよ
うとするが、給油通路制御装置43の逆止弁作用により
背圧室20への逆流が阻止され、その結果、背圧室20
から油溜9への給油通路の冷媒ガス吹抜けがなく、これ
伴う潤滑油流出とそれに伴う摺動部焼付きを防ぐ。ま
た、圧縮途中に冷媒液や多量の潤滑油を圧縮することに
起因して生じる圧縮室瞬間異常圧力上昇(液圧縮現象)
時に冷媒ガスが背圧室20に逆流することも防ぐ。その
ことによって、背圧室20の異常圧力上昇と旋回スクロ
ール14への背圧付勢力増加を阻止し、旋回スクロール
14を固定スクロール34から軸方向に離反させ、圧縮
室圧力を急低下して過負荷軽減作用を行わせることもで
きる。
[0017] In the above embodiment, although the oil supply passage downstream of the back pressure chamber 20 and the suction chamber, the conventional scroll pressure 6
Like the case of compressor, it may be the oil supply passage downstream of the back pressure chamber 20 into the compression chamber during the compression step may be provided with a similar oil supply passage control device and Figure 2 during the oil supply passage. The oil supply passage control device in this oil supply passage configuration also functions as a check valve described below. That is, immediately after the cold start of the compressor, the pressure of the discharge chamber communicating with the compressor external piping system is low, and the lubricating oil may flow into the back pressure chamber 20 from the oil reservoir 9 due to the differential pressure.
Since the pressure is small, the pressure in the back pressure chamber 20 may be momentarily lower than the fluctuating pressure in the compression chamber communicating with the back pressure chamber 20.
Therefore, the refrigerant gas in the middle of compression tries to flow into the back pressure chamber 20, but the check valve action of the oil supply passage control device 43 prevents the back flow to the back pressure chamber 20. As a result, the back pressure chamber 20 is blocked.
There is no blow-through of the refrigerant gas from the oil supply passage to the oil sump 9.
Prevent lubricating oil spill and the sliding portion seizure associated therewith accompanying. In addition, instantaneous abnormal pressure rise in the compression chamber (liquid compression phenomenon) that occurs due to compression of the refrigerant liquid and a large amount of lubricating oil during compression.
It also prevents the refrigerant gas from flowing back to the back pressure chamber 20. As a result, the abnormal pressure rise in the back pressure chamber 20 and the back pressure biasing force increase to the orbiting scroll 14 are prevented, the orbiting scroll 14 is separated from the fixed scroll 34 in the axial direction, and the pressure in the compression chamber is suddenly reduced. A load reducing action can be performed.

【0018】以上のように上記実施例によれば、吐出ポ
ート25に通じて吐出ガス圧力の作用する油溜9から、
駆動軸5に設けられた油穴6,7と駆動軸5を支承する
軸受3,4や偏心軸部8の軸受部13の微小隙間、旋回
スクロール14の背圧室20および吸入室22へと順次
経由する給油通路を備え、その給油通路途中の背圧室2
0と吸入室22との間の鏡板21に設けられた細穴部を
有するバランス通路26に鋼球41の弁体とそれを上流
側に向かって付勢するコイルバネ42とからな る給油通
路制御装置43を配置した構成において、コイルバネ4
2はそれ自身の温度が上昇すると伸長して鋼球41への
付勢力を増し、鋼球41を上流側に前進させてバランス
通路26の開度を狭め、それ自身の温度が低下すると収
縮して鋼球41への付勢力を弱めてバランス通路26の
開度を広げる形状記憶特性を有する開度調整機能を備え
たことにより、圧縮機冷時始動直後しばらくの間は吐出
圧力が低く、油溜9から背圧室20に流入する潤滑油の
圧力が低くかつ粘性が高くとも、給油通路制御装置43
のバランス穴26の絞り通路の開度が広いので、油溜9
の潤滑油が軸受摺動部を経由して背圧室20から吸入室
22へと流入する差圧給油され易い状態となり、このた
め圧縮機起動初期の摺動部潤滑が確保され、耐久性を向
上することができる。
As described above, according to the above embodiment, the discharge port
From the oil sump 9 which acts on the discharge gas pressure through the port 25 ,
The oil holes 6 and 7 provided in the drive shaft 5, the bearings 3 and 4 supporting the drive shaft 5, the minute gaps in the bearing portion 13 of the eccentric shaft portion 8, the back pressure chamber 20 and the suction chamber 22 of the orbiting scroll 14, A back pressure chamber 2 provided with a refueling passage that sequentially passes through the refueling passage.
0 on the end plate 21 between the suction chamber 22 and
The valve body of the steel ball 41 and the upstream of the valve body in the balance passage 26 that has
In the configuration of arranging the supply oil passage controller 43 Do that because the coil spring 42 which urges the side, the coil spring 4
2 expands to the steel ball 41 when its own temperature rises.
Increase the urging force and move the steel ball 41 to the upstream side for balance
If the opening of the passage 26 is narrowed and the temperature of itself decreases,
The balance passage 26 of the balance passage 26 is reduced by reducing the urging force to the steel ball 41.
Equipped with an opening adjustment function that has a shape memory characteristic that widens the opening
As a result, the compressor discharges for a while immediately after the cold start.
The pressure of the lubricating oil flowing from the oil sump 9 into the back pressure chamber 20 is low.
Even if the pressure is low and the viscosity is high, the oil supply passage control device 43
Since the opening of the throttle passage of the balance hole 26 of the
Lubricating oil from the back pressure chamber 20 through the bearing sliding portion to the suction chamber
It becomes easy to be supplied with the differential pressure oil flowing into the
Therefore, lubrication of sliding parts is ensured at the initial stage of compressor startup, improving durability.
You can go up.

【0019】また、圧縮機安定運転中は、油溜9と吸入
室22との間の差圧が大きくなる一方、圧縮機各部の温
度も摺動熱と圧縮熱とにより上昇しており、油溜9の潤
滑油の粘性が低くて流動性も良いが、給油通路制御装置
43のバランス穴26の絞り通路の開度が狭められてい
るので、吸入室22への過剰な潤滑油流入が抑制され、
圧縮室での潤滑油圧縮による入力増加を防ぐことができ
る。
During stable operation of the compressor, the oil sump 9 and suction
While the differential pressure between the chamber 22 and the
The temperature also rises due to sliding heat and compression heat,
Lubricating oil has low viscosity and good fluidity, but oil supply passage control device
The opening of the throttle passage of the balance hole 26 of 43 is narrowed.
Therefore, excessive inflow of lubricating oil into the suction chamber 22 is suppressed,
It is possible to prevent an increase in input due to the compression of lubricating oil in the compression chamber.
It

【0020】また、上記実施例によれば鋼球41とコイ
ルバネ42とはバランス通路26の上流側(背圧室2
0)から下流側(吸入室22)へのみの開通を許容する
逆止弁作用を備えるべく配置されたことにより、このス
クロール冷媒圧縮機をヒートポンプ式冷凍サイクルに組
み込み、暖房運転冷凍サイクルから除霜運転冷凍サイク
ルに切り替えた直後には、吐出室圧力が低圧状態に、吸
入室圧力が高圧状態になる関係から、冷媒ガスが吸入室
22から背圧室20にバランス通路26,27を介して
逆流しようとするが、バランス通路26に設けた鋼球4
1の逆止弁作用によりその通路を閉じ、冷媒ガスが背
室20を経由して油溜9に逆流するのを阻止し、背圧室
20や軸受摺動面の潤滑油流出と摺動面の焼付きを防ぐ
ことができる。特に、暖房運転冷凍サイクルから除霜運
転冷凍サイクルに切り替えた直後の吸入室22や吸入室
22に隣接する圧縮室は高圧冷媒ガスが流入して温度上
昇するので、コイルバネ42が伸長して鋼球41への付
勢力を増す。その結果、鋼球 41による逆止弁作用のシ
ール性が良くなり、摺動面の耐久性を更に向上すること
ができる。
Further , according to the above embodiment, the steel ball 41 and the carp are
The lube spring 42 is located upstream of the balance passage 26 (back pressure chamber 2
0) Allows opening only from the downstream side (suction chamber 22)
By being arranged to have a check valve action, this scroll refrigerant compressor is incorporated into a heat pump type refrigeration cycle, and immediately after switching from the heating operation refrigeration cycle to the defrosting operation refrigeration cycle, the discharge chamber pressure becomes a low pressure state. Since the suction chamber pressure is high , the refrigerant gas is transferred from the suction chamber 22 to the back pressure chamber 20 through the balance passages 26 and 27.
Although trying to flow backward, the steel ball 4 provided in the balance passage 26
Close the passage by the check valve action of 1, refrigerant gas via the back pressure chamber 20 and prevented from flowing back to the oil reservoir 9, the back pressure chamber
It is possible to prevent the lubricating oil from leaking from the sliding surface 20 and the bearing and seizure of the sliding surface . Especially, the defrosting operation from the heating operation refrigeration cycle
Suction chamber 22 and suction chamber immediately after switching to the refrigeration cycle
High pressure refrigerant gas flows into the compression chamber adjacent to 22
As it rises, the coil spring 42 expands and attaches to the steel ball 41.
Increase power. As a result, the check valve action of the steel ball 41
And the durability of the sliding surface can be further improved .

【0021】[0021]

【発明の効果】以上のように本発明の第1は、固定スク
ロールラップの中心部に設けた吐出ポートに通じる油
溜、旋回スクロールの背圧室、固定スクロールラップの
外側に設けた吸入室または圧縮室を順次経由する給油通
路を備え、その給油通路途中の背圧室と吸入室または圧
縮室との間に給油通路制御装置を配置し、その給油通路
制御装置にはそれ自身の温度が上昇するとその通路を狭
め、それ自身の温度が低下するとその通路を広げるべく
作動する形状記憶特性を有する開度調整機能を備えたこ
とにより、圧縮機冷時始動直後しばらくの間は吐出圧力
が低く、油溜から背圧室に流入する潤滑油の圧力が低く
かつ粘性が高くとも、給油通路制御装置の絞り通路の開
度が広いので、油溜の潤滑油が背圧室から吸入室または
圧縮室までの差圧が小さくとも、最終的に圧縮室へ差圧
給油され易い状態となるので、圧縮機起動初期の差圧給
油による摺動部潤滑を確保し、耐久性を向上することが
できる。また、圧縮機安定運転中は、油溜と吸入室また
は圧縮室との間の差圧が大きくなる一方、圧縮機各部の
温度も摺動熱と圧縮熱とにより上昇しており、油溜の潤
滑油の粘性が低くて流動性も良いが、給油通路制御装置
の絞り通路の開度が狭められているので、吸入室または
圧縮室への過剰な潤滑油流入を抑制し、圧縮室での潤滑
油圧縮による入力増加を阻止するとともに、圧縮室へ潤
滑油を適量流入させることができる。その結果、潤滑油
膜作用によって圧縮室隙間を密封し圧縮効率を高めるこ
とができる。すなわち、圧縮機負荷状態に応じた吸入室
または圧縮室への差圧給油量調整機能を備えることによ
り、入力増加防止と圧縮効率を向上できる。さらに、吐
出圧力が高い高負荷運転時に圧縮機各部の温度上昇によ
り背圧室と吸入室または圧縮室との間に配置した給油通
路制御装置の通路開度が狭まるので、油溜からの潤滑油
流入によって背圧室を所要の圧力に容易に上昇させて、
旋回スクロールを固定スクロールに適正力で付勢するこ
とができる。また逆に、吐出圧力が低い低負荷運転時に
は圧縮機各部の温度が下降することにより、背圧室と吸
入室または圧縮室との間の通路開度が広がるので、背圧
室圧力を容易に 下降させ、旋回スクロールを固定スクロ
ールの側に適正力で付勢できるという実質的な圧縮負荷
に応じた背圧室圧力の調整が可能となり、常に高い圧縮
効率を維持できる。
As described above , the first aspect of the present invention is to provide a fixed disc.
Oil leading to the discharge port provided at the center of the roll wrap
Reservoir, back pressure chamber of orbiting scroll, fixed scroll wrap
Equipped with the fuel supply passage through the suction chamber or compression chamber provided outside sequentially arranged oil supply passage control device between the oil supply passage way in the back pressure chamber and the suction chamber or compression chamber, the oil supply passage
The control device narrows its passage when its own temperature rises.
To widen its passage when its own temperature drops
With the opening adjustment function that has a shape memory characteristic that operates, the discharge pressure for a while immediately after the cold start of the compressor
Is low, the pressure of the lubricating oil flowing from the oil reservoir into the back pressure chamber is low
And even if the viscosity is high, opening the throttle passage of the oil supply passage control device
Due to its wide range, the lubricating oil in the oil reservoir can be transferred from the back pressure chamber to the suction chamber or
Even if the differential pressure to the compression chamber is small, the differential pressure will eventually reach the compression chamber.
Since it becomes easy to refuel, differential pressure supply at the initial stage of compressor startup
It is possible to secure lubrication of sliding parts with oil and improve durability.
it can. In addition, during stable operation of the compressor,
The pressure difference between the compressor and
The temperature also rises due to sliding heat and compression heat,
Lubricating oil has low viscosity and good fluidity, but oil supply passage control device
Since the opening of the throttle passage is narrowed,
Lubricating in the compression chamber by suppressing excessive inflow of lubricating oil into the compression chamber
Prevents an increase in input due to oil compression and moistens the compression chamber.
A proper amount of lubricating oil can be introduced. As a result, the lubricating oil
A membrane action seals the compression chamber gap to improve compression efficiency.
Can be. That is, the suction chamber according to the compressor load state
Or by providing a function to adjust the differential pressure oil supply to the compression chamber
As a result, it is possible to prevent input increase and improve compression efficiency. In addition, vomiting
During high load operation where the output pressure is high, the temperature rise in each part of the compressor
The oil supply passage located between the back pressure chamber and the suction chamber or compression chamber.
Since the passage opening of the road control device is narrowed, the lubricating oil from the oil reservoir
The back pressure chamber is easily raised to the required pressure by the inflow,
The orbiting scroll can be biased to the fixed scroll with appropriate force.
Can be. Conversely, during low load operation where the discharge pressure is low
The temperature of each part of the compressor drops
Since the opening of the passage between the entrance and compression chambers increases, back pressure
The chamber pressure can be easily lowered and the orbiting scroll can be fixed.
Substantial compression load that can be biased to the side of the roll with appropriate force
The back pressure chamber pressure can be adjusted according to the
Can maintain efficiency.

【0022】また、本発明の第2は、給油通路制御装置
が弁体とその弁体を給油通路の上流側に向かって付勢す
るバネ装置からなり、そのバネ装置はそれ自身の温度が
上昇すると弁体への付勢力を増し、それ自身の温度が低
下すると弁体への付勢力を弱める形状記憶特性を有し、
弁体とバネ装置とは給油通路の上流側から下流側へのみ
の開通を許容する逆止弁作用を備えるべく配置されたこ
とにより、圧縮機冷時始動直後や高圧および低圧側配管
系の切り替え直後などの吐出側圧力、背圧室圧力が低
く、かつ吸入側圧力が高い場合などに、気体が給油通路
制御装置を経由して吸入室または圧縮室から背圧室に逆
流するのを阻止し、背圧室の異常圧力上昇を防ぐととも
に、背圧室に貯溜の潤滑油が給油通路上流側の油溜に
出するのを防ぐことができる。また、油溜への気体流入
を阻止して潤滑油が圧縮機外部へ流出するのを防ぐこと
ができる。それによって、背圧室に関わる摺動面の耐久
性低下を防止することができる。また、摺動部に潤滑油
膜を介在させ、その油膜緩衝作用によって摺動部から生
じる騒音、振動の低下を図ることができる。また、背圧
室の異常圧力上昇を防止することにより、旋回スクロー
固定スクロールの軸方向側へ押し付け過ぎること
がなく、圧縮室圧力が異常上昇した場合にも旋回スクロ
ールを固定スクロールから軸方向に離反させ、圧縮室
圧力低下によって過負荷運転を防止し、圧縮機の耐久性
を高めることができる。特に、圧縮機冷時始動直後や高
圧および低圧側配管系の切り替え直後は、吸入室または
吸入室に隣接する圧縮室が高圧気体の流入によって温度
上昇するので、バネ装置が伸長して弁体への付勢力を増
す。その結果、弁体による逆止弁作用のシール性が良く
なり、上述の給油通路制御装置の逆止弁機能による種々
の効用をより一層高めるなど数多くの効果を奏するもの
である。
A second aspect of the present invention is a fuel supply passage control device.
Urges the valve body and the valve body toward the upstream side of the oil supply passage
Spring device, which has its own temperature
When it rises, it increases the urging force on the valve body and the temperature of itself decreases.
When lowered, it has a shape memory characteristic that weakens the biasing force on the valve body,
Valve body and spring device only from upstream side to downstream side of oil supply passage
Is arranged so as to have a check valve action that allows the opening of the
As a result, when the discharge side pressure, the back pressure chamber pressure is low, and the suction side pressure is high, such as immediately after the cold start of the compressor or immediately after switching the high pressure and low pressure side piping systems, the gas is supplied to the oil supply passage.
Via the control unit to prevent the backflow of whether we back pressure chamber the suction chamber or compression chamber, prevents the abnormal pressure rise in the back pressure chamber, reservoir of lubricating oil to the back pressure chamber is oil supply passage upstream oil It can be prevented from flowing into the sump . Further, it is possible to prevent the gas from flowing into the oil reservoir and prevent the lubricating oil from flowing out of the compressor. As a result, it is possible to prevent the durability of the sliding surface related to the back pressure chamber from decreasing. Further, the lubrication oil film interposed on the sliding portion, it is possible to reduce the noise, vibration generated from the sliding portion by the oil film cushioning effects. Further, by preventing the abnormal pressure rise in the back pressure chamber, without excessively pressing the orbiting scroll in the axial direction of the fixed scroll, the axis also orbiting scroll when the compression chamber pressure rises abnormally from the fixed scroll Direction , the compression chamber pressure is reduced to prevent overload operation, and the durability of the compressor can be improved. Especially when the compressor is cold
Immediately after switching the pressure and low pressure side piping system,
The compression chamber adjacent to the suction chamber is heated by the inflow of high-pressure gas.
As it rises, the spring device expands, increasing the biasing force on the valve body.
You. As a result, the check valve action of the valve body is well sealed.
The check valve function of the oil supply passage control device described above
More the utility is intended to achieve the numerous advantages including enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例スクロール冷媒圧縮機
の縦断面図
FIG. 1 is a vertical sectional view of a scroll refrigerant compressor according to a first embodiment of the present invention.

【図2】図1におけるA部の拡大断面図 FIG. 2 is an enlarged cross-sectional view of part A in FIG.

【図3】同第2の実施例のスクロール冷媒圧縮機の要部
部分断面図
FIG. 3 is a main part of a scroll refrigerant compressor according to the second embodiment.
Partial cross section

【図4】同第3の実施例のスクロール冷媒圧縮機の要部
部分断面図
FIG. 4 is a main part of a scroll refrigerant compressor according to the third embodiment.
Partial cross section

【図5】従来のスクロール圧縮機の縦断面図FIG. 5 is a vertical sectional view of a conventional scroll compressor.

【図6】同他のスクロール圧縮機の縦断面図FIG. 6 is a vertical sectional view of the other scroll compressor.

【符号の説明】[Explanation of symbols]

1 密閉シェル 2 本体フレーム 5 駆動軸 10 モータ 14 旋回スクロール 15 ラップ支持円盤 16 旋回スクロールラップ 20 背圧室 21 鏡板 22 吸入室 23 固定スクロールラップ 25 吐出ポート 26,26a,27 バランス通路 34 固定スクロール 41 鋼球 42,42a,42b コイルバネ 43,43a,43b 給油通路制御装置 1 Sealed Shell 2 Body Frame 5 Drive Shaft 10 Motor 14 Orbiting Scroll 15 Lap Support Disc 16 Orbiting Scroll Wrap 20 Back Pressure Chamber 21 End Plate 22 Suction Chamber 23 Fixed Scroll Lap 25 Discharge Port 26, 26a, 27 Balance Passage 34 Fixed Scroll 41 Steel Ball 42, 42a, 42b Coil spring 43, 43a, 43b Oil supply passage control device

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F04C 29/06 D Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area F04C 29/06 D

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固定スクロールの一部をなす鏡板の一面
に形成されたうず巻状の固定スクロールラップに対して
旋回スクロールの一部をなすラップ支持円盤上の旋回ス
クロールラップを搖動自在にかみ合わせ、前記両スクロ
ール間にうず巻形の圧縮空間を形成し、前記固定スクロ
ールラップの中心部には吐出ポートを設け、前記固定ス
クロールラップの外側には吸入室を形成し、前記ラップ
支持円盤は、駆動軸を支承する本体フレームと前記鏡板
との間に遊合状態で配置され、かつ前記旋回スクロール
を前記固定スクロールの側に付勢するための背圧室に隣
接し、前記旋回スクロールが自転阻止機構に係合して
記固定スクロールラップと前記旋回スクロールラップと
の間に形成される圧縮室の容積変化を利用して流体を圧
縮するようにしたスクロール式圧縮機構を形成し、前記
吐出ポートに通じる油溜、前記背圧室、前記吸入室また
は前記圧縮室を順次経由する給油通路を備え、前記給油
通路途中の前記背圧室と前記吸入室または前記圧縮室
の間に給油通路制御装置を配置し、前記給油通路制御装
置にはそれ自身の温度が上昇するとその通路を狭め、そ
れ自身の温度が低下すると前記通路を広げるべく作動す
る形状記憶特性を有する開度調整機能を備えたスクロー
ル気体圧縮機。
Was 1. A engage the orbiting scroll wrap on the lap support disk forming part of the orbiting scroll relative to the spiral of the fixed scroll wrap formed on one surface of the end plate forming part of the fixed scroll freely oscillating , Both the skull
A spiral wound compression space is formed between the
A discharge port is provided in the center of the roll wrap, and a suction chamber is formed outside the fixed scroll wrap, and the wrap support disk is arranged in a loose state between the main body frame supporting the drive shaft and the end plate. And the orbiting scroll
Next to the back pressure chamber for urging the
In contact with each other, the orbiting scroll is engaged with the rotation preventing mechanism to compress the fluid by utilizing the volume change of the compression chamber formed between the fixed scroll wrap and the orbiting scroll wrap. the scroll type compression mechanism is formed, the
Oil reservoir communicating with the discharge port, the back pressure chamber, lubrication between the suction chamber or with the oil supply passage passing through the compression chamber successively, wherein said back pressure chamber of the oil supply passage middle suction chamber or the compression chamber A passage control device is installed and the lubrication passage control device is installed.
When the temperature of its own rises, it narrows its passage,
When the temperature of itself decreases, it operates to widen the passage.
A scroll gas compressor having an opening adjustment function having shape memory characteristics .
【請求項2】 給油通路制御装置は、弁体と前記弁体を2. The oil supply passage control device includes a valve body and the valve body.
給油通路の上流側に向かって付勢するバネ装置からなDo not use a spring device that biases the oil supply passage toward the upstream side.
り、前記バネ装置はそれ自身の温度が上昇すると前記弁When the temperature of the spring device rises,
体への付勢力を増し、それ自身の温度が低下すると前記When the urging force on the body increases and the temperature of itself decreases,
弁体への付勢力を弱める形状記憶特性を有し、前記弁体The valve body has a shape memory characteristic that weakens the biasing force to the valve body.
と前記バネ装置とは前記給油通路の上流側から下流側へAnd the spring device from the upstream side to the downstream side of the oil supply passage.
のみの開通を許容する逆止弁作用を備えるように配置さArranged to have a check valve action that allows the opening of the chisel
れた請求項1記載のスクロール気体圧縮機。The scroll gas compressor according to claim 1, further comprising:
JP4175188A 1992-07-02 1992-07-02 Scroll gas compressor Expired - Lifetime JPH0826861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4175188A JPH0826861B2 (en) 1992-07-02 1992-07-02 Scroll gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4175188A JPH0826861B2 (en) 1992-07-02 1992-07-02 Scroll gas compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14874485A Division JPH0778391B2 (en) 1985-07-05 1985-07-05 Scroll gas compressor

Publications (2)

Publication Number Publication Date
JPH05187370A JPH05187370A (en) 1993-07-27
JPH0826861B2 true JPH0826861B2 (en) 1996-03-21

Family

ID=15991828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4175188A Expired - Lifetime JPH0826861B2 (en) 1992-07-02 1992-07-02 Scroll gas compressor

Country Status (1)

Country Link
JP (1) JPH0826861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998596B2 (en) 2009-09-02 2015-04-07 Daikin Industries, Ltd. Scroll compressor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741120A (en) 1995-06-07 1998-04-21 Copeland Corporation Capacity modulated scroll machine
JP3874469B2 (en) 1996-10-04 2007-01-31 株式会社日立製作所 Scroll compressor
JP2003013872A (en) * 2001-06-28 2003-01-15 Toyota Industries Corp Scroll type compressor and its refrigerant compressing method
JP4520731B2 (en) * 2003-12-03 2010-08-11 日立アプライアンス株式会社 Scroll compressor
US6896498B1 (en) * 2004-04-07 2005-05-24 Scroll Technologies Scroll compressor with hot oil temperature responsive relief of back pressure chamber
CN100455807C (en) * 2004-04-28 2009-01-28 乐金电子(天津)电器有限公司 Screw compressor
JP4585984B2 (en) * 2006-03-27 2010-11-24 株式会社日立製作所 Scroll compressor
JP2006342810A (en) * 2006-08-25 2006-12-21 Mitsubishi Electric Corp Pressure regulating valve device
JP5641978B2 (en) * 2011-02-28 2014-12-17 三菱電機株式会社 Scroll compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148994A (en) * 1979-05-09 1980-11-19 Hitachi Ltd Closed scroll fluid device
JPS5776291A (en) * 1980-10-31 1982-05-13 Hitachi Ltd Scroll fluid machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998596B2 (en) 2009-09-02 2015-04-07 Daikin Industries, Ltd. Scroll compressor

Also Published As

Publication number Publication date
JPH05187370A (en) 1993-07-27

Similar Documents

Publication Publication Date Title
JP2782858B2 (en) Scroll gas compressor
JP2585380Y2 (en) Rotary compressor
KR100746896B1 (en) Scroll compressor
JPH11141483A (en) Electric gas compressor
JPH0733829B2 (en) Scroll compressor
JPH0826861B2 (en) Scroll gas compressor
JPH09228968A (en) Scroll compressor
JPS61218792A (en) Scroll compressor
JPH07117049B2 (en) Scroll compressor
JPH07109195B2 (en) Scroll gas compressor
JPH0778391B2 (en) Scroll gas compressor
JP3045961B2 (en) Scroll gas compression
JPH0765580B2 (en) Scroll gas compressor
JP2511863B2 (en) Scroll gas compressor
JP2790126B2 (en) Scroll gas compressor
JP2574599B2 (en) Scroll compressor
JP2674562B2 (en) Scroll refrigerant compressor with refueling control means
JP2730659B2 (en) Scroll compressor
JP2605688B2 (en) Scroll gas compressor
JPH09217690A (en) Scroll gas compressor
JP3333862B2 (en) Scroll compressor
JP2870490B2 (en) Scroll gas compressor
JP2785805B2 (en) Scroll gas compressor
JP3111785B2 (en) Scroll compressor
JP3162236B2 (en) Scroll compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term