JP2730659B2 - Scroll compressor - Google Patents

Scroll compressor

Info

Publication number
JP2730659B2
JP2730659B2 JP4175186A JP17518692A JP2730659B2 JP 2730659 B2 JP2730659 B2 JP 2730659B2 JP 4175186 A JP4175186 A JP 4175186A JP 17518692 A JP17518692 A JP 17518692A JP 2730659 B2 JP2730659 B2 JP 2730659B2
Authority
JP
Japan
Prior art keywords
back pressure
pressure chamber
chamber
scroll
wrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4175186A
Other languages
Japanese (ja)
Other versions
JPH0650274A (en
Inventor
勝晴 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4175186A priority Critical patent/JP2730659B2/en
Publication of JPH0650274A publication Critical patent/JPH0650274A/en
Application granted granted Critical
Publication of JP2730659B2 publication Critical patent/JP2730659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はスクロール圧縮機に係
り、旋回スクロールへの背圧力付与に関するものであ
る。 【0002】 【従来の技術】近年、工作機械の発展に伴い実用化され
つつあり低振動、低騒音特性を備えた圧縮機として注目
を浴びているスクロール圧縮機は、例えば特開昭59−
49386号公報にも示されているように吸入室がうず
巻き形状の圧縮室の外周部にあり、吐出ポートが中心部
に設けられ、圧縮流体の流れが一方向のため高速運転時
の流体抵抗が小さくて圧縮効率が高いことは一般によく
知られている。 【0003】また、この種の高圧ガス密閉シェル構造の
圧縮機は、特開昭59−49386号公報で知られるよ
うに図6に示す構成が提案され、旋回スクロールの背圧
室の適切な圧力設定により、旋回スクロールに作用する
軸方向のスラスト力を軽減しながら各摺動部の潤滑が次
のように構成されていた。 【0004】すなわち、図6において、固定スクロール
ラップ123は駆動軸105を支承する本体フレーム1
02に取付られた鏡板121に固定され、旋回スクロー
ルラップ116はラップ支持円盤115に固定され、こ
のラップ支持円盤115は、鏡板121と本体フレーム
102との間の背圧室120に軸方向の微小隙間を有し
た遊合状態で配置され、背圧室120を外側の背圧室A
120aと内側の背圧室B120bとに仕切る機能およ
び自転阻止機能とを備えたオルダムリング118を介し
て旋回可能に支承され、さらに端部に駆動用のモータ1
10と偏心部を備えた駆動軸105によって旋回運動を
する。そして吸入・圧縮されたガスは密閉シェル101
内に吐出する。吐出ガスから分離した潤滑油は密閉シェ
ル101の底部の油溜109に収集され、駆動軸105
の下端に開口して偏心状態で設けられた油穴106、お
よび駆動軸105を支承する軸受部を通して遠心ポンプ
作用を利用して高圧力状態で背圧室120に導かれる。 【0005】更に、オルダムリング118の摺動部の微
小隙間を経て吐出圧力と吸入圧力との中間圧力にまで減
圧された潤滑油は、背圧室A120aに流入後、鏡板1
21に設けた細穴のバランス通路126を通して吸入室
122に流入する過程で各摺動部を潤滑する構成であっ
た。 【0006】 【発明が解決しょうとする課題】しかしながら上記の図
6のような背圧室B120b内から背圧室A120aへ
の減圧給油通路としてオルダムリング118の摺動隙間
のみに依存する構成では、摺動隙間の不均一性から絞り
通路抵抗にバラツキが生じ、背圧室A120aの中間圧
力を適正確保できず、旋回スクロールへの背圧付勢力に
過不足が生じる。その結果、旋回スクロールと固定スク
ロールとの軸方向過剰接触による入力損失や軸方向接触
力不足による圧縮途中気体洩れを招く。また、オルダム
リング118の摺動隙間のバラツハキから摺動隙間を不
均一に潤滑が通過する。その結果、背圧室B120bの
潤滑油温度分布も不均一になって、旋回スクロールの熱
歪や熱膨張の不均一性から、圧縮室隙間の部分的拡大を
招くなどの課題があった。 【0007】そこで、本発明は旋回スクロールの背圧室
の潤滑油を均一な温度分布にするための給油通路を設け
ることにより、旋回スクロールへの適正な付勢力の確保
と圧縮室隙間の密封を確保して、耐久性と圧縮効率に優
れたスクロール圧縮機を提供するものである。 【0008】 【課題を解決するための手段】上記問題を解決するため
に本発明のスクロール圧縮機は、旋回スクロールの背圧
室が旋回スクロールのラップ支持円盤の中心部に配置さ
れて吐出圧力相当の潤滑油領域の背圧室C20cと、背圧
室C20cの外側に配置されて吸入圧力相当の潤滑油領域
の背圧室B20bおよび背圧室A20aから成って潤滑油が
順次経由すべく連通されると共に、吸入室に通じる背圧
室A20aはラップ支持円盤を収納すべく固定スクロール
の鏡板と本体フレームのスラスト軸受座との間に配置さ
れ、背圧室B20bはスラスト軸受座に内側から給油する
潤滑油を確保すべく配置され、背圧室B20bと背圧室A
20aとの間はラップ支持円盤の旋回運動によって交互に
開通する複数のバランス通路で連通され、バランス通路
背圧室A20aまたはB20bのいずれか一方の中心に対
して互いに反対の位置に配置されたものである。 【0009】 【作用】本発明は上記構成によって、吸入圧力相当にま
で減圧されて背圧室B20bに流入した背圧室C20c
からの潤滑油は、旋回スクロールの旋回運動に伴って交
互に開通し互いに反対側に配設された通路を介して背圧
室A20aに流入して、背圧室A20aが均一な温度分
布の潤滑油雰囲気になる。この潤滑油がラップ支持円盤
の外周摺動部を潤滑・冷却することによってラップ支持
円盤の不均一な熱変形が少なくなり、旋回スクロールの
円滑な旋回摺動の実現と圧縮室隙間の部分的拡大および
縮小が回避でき、摺接部品間の衝突のない静粛な圧縮運
転が得られる。 【0010】 【実施例】以下、本発明の一実施例のスクロール圧縮機
について、図面を参照しながら説明する。図1は本発明
の一実施例におけるスクロール冷媒圧縮機の縦断面図、
図2は図1におけるB部の詳細説明図を示すものであ
る。 【0011】図1において、1は密閉シェル、2は密閉
シェル1に圧入固定された本体フレーム、3、4は本体
フレーム2の中心部に設けられた軸受、5は軸受3、4
に支承され貫通した油穴6と軸受4に対向した位置に油
穴6と連通して油穴7を設けた駆動軸で、その上端には
偏心軸部8が設けられ、下端は密閉シェル1の底部の油
溜9にまで伸びて没入している。 【0012】また図2のように、油穴6の上端部には、
絞り部を有するバランス通路50が設けられており、バ
ランス通路50には鋼球41と鋼球41を油穴6の開口
端の側へ常時付勢するコイルバネ42cと油穴6より細
穴の絞り通路を有するキャップ51とから成る給油通路
制御装置が配置され、バランス通路50の両端開口部を
狭めるように構成されている。10はモータでその回転
子11が駆動軸5に、固定子12が密閉シェル1に圧入
固定されている。 【0013】偏心軸部8に連結し、その中心に軸受部1
3を備えて偏心軸部8と軸受部13とで背圧室C20c
を構成する旋回スクロール14のラップ支持円盤15は
その上面に直立した旋回スクロールラップ16が一体的
に形成され、その下面は本体フレーム2の上端開口穴に
突出したスラスト軸受座17に支承されている。 【0014】旋回スクロールラップ16は、その平面形
状が渦巻状を成し、その縦断面は矩形を成して隣合う旋
回スクロールラップ16とは平行関係にある。 【0015】自転阻止用のオルダムリング18は、平ら
なリングの両面に互いに直交する平行キー形状のキー部
を備えたもので、ラップ支持円盤15とスラスト軸受座
17との間に設けられている。このオルダムリング18
の上面側のキー部はラップ支持円盤15の背面に設けら
れたキー溝(図示せず)に、下面側のキー部はスラスト
軸受座17に設けられたキー溝19にはめ込まれてお
り、駆動軸5の回転によってラップ支持円盤15の軸受
部13は駆動軸5の軸心の回りに円運動を成し、旋回ス
クロールラップ16は旋回運動をする。 【0016】また、本体フレーム2の上端面には、上端
開口穴をふさいでラップ支持円盤15の背圧室20とし
た固定スクロール34の鏡板21がスラスト軸受座17
と共に旋回スクロール14のラップ支持円盤15を微小
隙間で挟むように取付けられ、旋回スクロール14の背
圧室20を形成している。 【0017】背圧室20はラップ支持円盤15によって
仕切られ、その外周面側の背圧室A20aと背面側の背
圧室B20bに分けられている。 【0018】鏡板21にはその内側に環状の吸入室22
が設けられている。吸入室22の内側には旋回スクロー
ルラップ16に平行で且つ同形状寸法の固定スクロール
ラップ23の渦巻の中心部には、密閉シェル1内を吐出
空間24とした吐出ポート25が設けられている。 【0019】ラップ支持円盤15との摺動面に開口して
吸入室22と背圧室A20aを連通する細穴のバランス
通路26と背圧室A20aと背圧室B20bを連通する
細穴のバランス通路27とが鏡板21とスラスト軸受座
17に設けられ、ラップ支持円盤15が所定の旋回角度
範囲(最も外側にある圧縮室の吸入容積が増加の過程)
にある時のみバランス通路26およびバランス通路27
が連通するように、スラスト軸受座17に設けられたバ
ランス通路27aが閉塞するように、バランス通路27
とバランス通路27aとが背圧室A20aまたはB20
bのいずれか一方の中心に対して互いに概反対位置に
置されている。 【0020】図2に示すように、バランス通路26の途
中には、鏡板21にケース40が圧入されてバランス通
路26の両端開口部を挟めるように構成され、その通路
の中央部の上流側には鋼球41が、下流側にはコイルバ
ネ42が装着されて給油通路制御装置43を構成し、コ
イルバネ42は背圧室20と吸入室22との間の圧力差
に基づいて鋼球41に作用する背圧力に抗して鋼球41
を移動させ、バランス通路26の開度を連続的に変化さ
せるべく、鋼球41を常時付勢している。 【0021】また、環状の吸入室22には側方より密閉
シェル1を貫通した吸入管28が接続され、密閉シェル
1の上面には密閉シェル1の内側面に向かって開口した
吐出管29が接続されている。 【0022】密閉シェル1に圧入固定された本体フレー
ム2の外側面には溝30が設けられ、この溝30が密閉
シェル1の鏡板21の側の吐出空間24とモータ10の
側とを連通している。 【0023】以上のように構成されたスクロール冷媒圧
縮機について、以下、図1および図2を用いてその動作
を説明する。図1はスクロール冷媒圧縮機の縦断面図、
図2は図1におけるバランス通路50の近傍B部の詳細
図であって、モータ10の回転子11が回転し、駆動軸
5が回転駆動されると旋回スクロール14が旋回運動を
し、吸入管28を通して冷媒ガスが吸入室22に吸入さ
れ、この冷媒ガスは旋回スクロールラップ16と固定ス
クロールラップ23の間に形成された圧縮室内に閉じ込
められ、旋回スクロールラップ16の旋回運動に伴って
圧縮され、吐出ポート25より吐出空間24へ吐出さ
れ、冷媒ガス中に含まれる潤滑油の一部はその自重など
によって冷媒ガスから分離して密閉シェル1と本体フレ
ーム2との間の溝30などを経て底部の油溜9に収集さ
れ、残りの潤滑油は吐出冷媒ガスと共に吐出管29を経
て外部の冷凍サイクルへ搬出される。 【0024】一方、固定スクロール34の鏡板21と本
体フレーム2とによって吐出空間24から隔離されて形
成された背圧室20を経由する高圧側の油溜9から低圧
側の吸入室22までの差圧給油は次のようにして行われ
る。 【0025】すなわち、圧縮機冷時始動後しばらくの間
は、背圧室20と吸入室22との間および油溜9と背圧
室20との間の圧力差が小さく、バランス通路26およ
びバランス通路50の開度は最小状態に絞られている。 【0026】一方、吐出冷媒ガスで充満された密閉シェ
ル1の底部の油溜9の粘性の高い潤滑油は駆動軸5に設
けられた油穴6、7とバランス通路50と駆動軸5を支
承する軸受3、4や偏心軸部8の軸受部13の微小隙間
を経由して背圧室20b,背圧室20cに差圧供給され
る。 【0027】背圧室20bへは、バランス通路50を通
過する際に減圧されて背圧室20cに流入後、軸受部1
3の摺動隙間を通過する際にも再び減圧されて流入する
潤滑油と軸受3,4の摺動隙間を通過する際に減圧され
た潤滑油とが合流して吐出圧力と吸入圧力との中間圧力
状態で流入する。 【0028】さらに潤滑油は、旋回スクロール14のラ
ップ支持円盤15の旋回運動によって間欠的に開閉する
細穴のバランス通路27,27aを交互に経て減圧さ
れ、背圧室A20aに間欠給油される。 【0029】潤滑油が互いに反対位置に設けられたバラ
ンス通路27,27aから背圧室A 0aに交互に流入す
ることによって、背圧室A20aおよび背圧室B20b
の潤滑油は均一に分布し、摺動面を均一に冷却するの
で、ラップ支持円盤15の温度分布は平均化された状態
になる。 【0030】背圧室A20aの圧力上昇に伴い、バラン
ス通路26の開度が徐々に広がり、背圧室A20aの潤
滑油は吸入室22に少量づつ間欠給油され、吸入冷媒ガ
スと共に再び・吐出される。 【0031】圧縮機始動後の時間経過と共に吐出圧力が
上昇し、圧縮室圧力も上昇し、ガス圧縮時に伴い旋回ス
クロール14に作用するスラスト荷重も増大するが、油
溜9から軸受3,4,軸受部13を経由して背圧室20
に流入する潤滑油量が増し、背圧室20の圧力が上昇し
て旋回スクロール14への背圧室付勢力を高め、旋回ス
クロール14に作用するスラスト力を軽減すると共に、
旋回スクロール14を固定スクロール34の側に適切な
力で押圧させる。 【0032】なお、バランス通路50に設けられた給油
通路制御装置43cは、吐出圧力の上昇に追従して油穴
6と背圧室20cとの間の差圧により鋼球41がコイル
バネ42cの付勢力に抗して油穴6の開口端から離れる
方向に移動し、その通路の開度を広げて潤滑油の減圧度
合を低下させ、背圧室20c,背圧室20bの背圧力を
高め、吐出圧力の上昇に追従して増加する圧縮室圧力
(吐出ガスが圧縮室に逆流して圧縮室分布圧力を高め
る)に抗して旋回スクロール14に作用するスラスト荷
重を軽減する。 【0033】給油通路制御装置43の通路の最大開度は
キャップ51の中央部に設けられた細穴の絞り通路によ
って制限されており、油溜9から背圧室20への過剰な
潤滑油流入を防いでいる。 【0034】万一、冷凍サイクルの配管系でゴミ詰まり
などが生じ、吸入圧力が異常低下、吐出圧力が異常上昇
した際には、圧縮室分布圧力に比して背圧室20圧力が
過大となる場合には、給油通路制御装置43cの絞り通
路の開度を広げて背圧室20の圧力を適正範囲に制御す
る。当然のことながら、吸入圧力,吐出圧力が正常な定
常運転時においても、油溜9と背圧室20との間の給油
通路の絞り開度を給油通路制御装置43cが制御し、背
圧室20と吸入室22との間の給油通路の絞り通路の開
度を給油通路制御装置43cが制御し、それによって吸
入圧力と吐出圧力に応じた背圧室20圧力に設定されて
いる。 【0035】また、このスクロール冷媒圧縮機をヒート
ポンプ式冷凍サイクルに組み込み、暖房運転冷凍サイク
ルから除霜運転冷凍サイクルに切り替えた直後には、吐
出室圧力が低圧状態に、吸入室圧力が高圧状態になる関
係から、冷媒ガスが吸入室22から背圧室20にバラン
ス通路26、27,27aを介して逆流しょうとする
が、バランス通路26に設けた鋼球41の逆止弁作用に
よりその通路を閉じ、冷媒ガスが背圧室20を経由して
油溜9に逆流するのを阻止し、背圧室20や軸受摺動面
の潤滑油流出と摺動面の焼付きを防ぐ。 【0036】なお、上記実施例ではバランス通路26の
下流側の開口穴がコイルバネ42の端部に連通している
構成であったが、図4に示すようにコイルバネ42の中
央部付近または鋼球41の側付近に連通する構成、さら
には、図5に示すように給油通路制御装置43bをバラ
ンス通路27に設ける構成やこれらの組み合せの構成で
あってもよい。 【0037】この差圧給油方式によれば、ラップ支持円
盤15の背面の背圧室20の圧力を給油通路の通路抵抗
調整によって吐出圧力に近い状態から吸入圧力に近い状
態にまで自由に設定できる。 【0038】したがって、ラップ支持円盤15の背面に
作用する背面付勢力と圧縮室内のガス圧荷重との荷重差
を自由に調整でき、それによってラップ支持円盤15を
鏡板21の側に押し付けることも、また、鏡板21から
離してスラスト軸受座17の側に押し付けることもでき
る。 【0039】上記実施例では定常運転時など潤滑油の流
動性が良く、背圧室20cから吸入室22に所要の潤滑
油量が供給されている場合のラップ支持円盤15は鏡板
21と常時摺接するように、また、冷時起動直後など潤
滑油の温度が低くて流動性が悪く、背圧室20cから吸
入室22に必要な潤滑油量が供給されない場合のラップ
支持円盤15はスラスト軸受座17と常時摺接するよう
に背圧室20の領域と圧力が設定され、その圧力と給油
量を実現すべく給油通路制御装置43、43cの通路開
度が設定されている。 【0040】また、圧縮室の軸方向隙間が微小で圧縮室
密封に特別な配慮を必要としない場合には、上述の説明
からも明白なように、給油通路制御装置43、43cの
通路抵抗調整によって、旋回スクロール14が固定スク
ロール34に対して傾斜または軸方向接触のない安定し
た旋回運動を行えるように、スラスト軸受座17に常時
接触すべく背圧室20の各潤滑油圧力と各領域とを区画
することもできる。 【0041】吐出圧力と吸入圧力との差圧が小さく差圧
給油量が少ない場合でも、旋回スクロール14がスラス
ト軸受座17に常時接触して安定的な旋回運動をするこ
とによって、旋回スクロール14とスラスト軸受座17
との間、および旋回スクロール14と駆動軸5の偏心軸
部8との間の摺動面衝突や間欠的な摺動が回避され、潤
滑油膜の破壊が防止されて耐久性が向上する。また、潤
滑油膜の緩衝作用によって振動と騒音発生が抑制され
る。 【0042】特に、背圧室20と給油通路を簡易構成に
すべく、背圧室20bと背圧室20aとを吸入圧力相当
に設定する一方、背圧室20cを吐出圧力相当の潤滑油
領域に設定することも容易にできる。 【0043】 【発明の効果】以上のように本発明は、旋回スクロール
の背圧室が旋回スクロールのラップ支持円盤の中心部に
配置されて吐出圧力相当の潤滑油領域の背圧室C20c
と、背圧室C20cの外側に配置されて吸入圧力相当の潤
滑油領域の背圧室B20bおよび背圧室A20aから成って
潤滑油が順次経由すべく連通されると共に、吸入室に通
じる背圧室A20aはラップ支持円盤を収納すべく固定ス
クロールの鏡板と本体フレームのスラスト軸受座との間
に配置され、背圧室B20bはスラスト軸受座に内側から
給油する潤滑油を確保すべく配置され、背圧室B20bと
背圧室A20aとの間はラップ支持円盤の旋回運動によっ
て交互に開通する複数のバランス通路で連通され、バラ
ンス通路は背圧室A20aまたはB20bのいずれか一方の
中心に対して互いに反対の位置に配置されたことによ
り、吸入圧力相当にまで減圧されて背圧室B20bに流
入した背圧室C20cからの潤滑油は、旋回スクロール
の旋回運動に伴って交互に開通し互いに反対側に配設さ
れた通路を介して背圧室A20aに流入するので、背圧
室A20aを均一な温度分布の潤滑油雰囲気にする。こ
の潤滑油がラップ支持円盤の外周摺動部を潤滑・冷却す
る事によってラップ支持円盤の不均一な熱変形を少なく
し、旋回スクロールの円滑な旋回摺動の実現と圧縮室隙
間の部分的拡大および縮小を回避できる。その結果、圧
縮室微小隙間を保持して圧縮効率の向上と摺接部品間の
衝突のない低騒音・低振動化を図るという効果を奏する
ものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scroll compressor and, more particularly, to applying a back pressure to an orbiting scroll. 2. Description of the Related Art In recent years, scroll compressors that have been put into practical use with the development of machine tools and have been receiving attention as compressors having low vibration and low noise characteristics are disclosed in, for example, Japanese Patent Application Laid-Open No.
As shown in Japanese Patent No. 49386, the suction chamber is located at the outer periphery of the spiral compression chamber, the discharge port is provided at the center, and the flow of the compressed fluid is unidirectional, so that the fluid resistance during high-speed operation is low. It is generally well known that they are small and have high compression efficiency. Further, as shown in Japanese Patent Application Laid-Open No. Sho 59-49386, this type of compressor having a high-pressure gas-sealed shell structure is proposed as shown in FIG. By setting, lubrication of each sliding portion was configured as follows while reducing the axial thrust force acting on the orbiting scroll. [0006] That is, in FIG. 6, the fixed scroll wrap 123 includes a main body frame 1 that supports the drive shaft 105.
The orbiting scroll wrap 116 is fixed to a lap support disk 115, and the orbiting scroll wrap 116 is fixed to the back pressure chamber 120 between the end plate 121 and the main body frame 102 in the axial direction by a small amount. The back pressure chamber 120 is arranged in a play state with a gap, and the back pressure chamber 120 is located outside the back pressure chamber A.
120a is rotatably supported via an Oldham ring 118 having a function of partitioning into an inner back pressure chamber B120b and a function of preventing rotation.
A revolving motion is performed by a drive shaft 105 having an eccentric part and an eccentric part. The gas sucked and compressed is supplied to the closed shell 101.
Discharge inside. The lubricating oil separated from the discharge gas is collected in an oil reservoir 109 at the bottom of the sealed shell 101, and the drive shaft 105
The oil is introduced into the back pressure chamber 120 at a high pressure by using a centrifugal pumping action through an oil hole 106 opened at the lower end of the oil pump and provided in an eccentric state and a bearing portion supporting the drive shaft 105. [0005] Further, the lubricating oil, which has been reduced to an intermediate pressure between the discharge pressure and the suction pressure through the minute gap of the sliding portion of the Oldham ring 118, flows into the back pressure chamber A120a, and then flows into the back pressure chamber A120a.
Each of the sliding portions is lubricated in the process of flowing into the suction chamber 122 through the fine hole balance passage 126 provided in the suction passage 21. [0006] However, in the above-described configuration in which only the sliding gap of the Oldham ring 118 is used as a reduced pressure oil supply passage from the inside of the back pressure chamber B120b to the back pressure chamber A120a as shown in FIG. The unevenness of the sliding gap causes variations in the resistance of the throttle passage, making it impossible to properly secure the intermediate pressure in the back pressure chamber A120a, resulting in excessive or insufficient back pressure biasing force to the orbiting scroll. As a result, input loss due to axial excessive contact between the orbiting scroll and fixed scroll and gas leakage during compression due to insufficient axial contact force are caused. Further, the lubrication passes through the sliding gap unevenly due to the variation in the sliding gap of the Oldham ring 118. As a result, the lubricating oil temperature distribution in the back pressure chamber B120b becomes non-uniform, and there is a problem that the thermal distortion of the orbiting scroll and the non-uniform thermal expansion cause a partial expansion of the compression chamber gap. In view of the above, the present invention provides an oil supply passage for providing a uniform temperature distribution of the lubricating oil in the back pressure chamber of the orbiting scroll, thereby ensuring an appropriate urging force to the orbiting scroll and sealing the compression chamber gap. An object of the present invention is to provide a scroll compressor which has excellent durability and compression efficiency. In order to solve the above-mentioned problems, a scroll compressor according to the present invention has a back pressure chamber of an orbiting scroll disposed at the center of a lap support disk of the orbiting scroll and has a discharge pressure. And a back pressure chamber C20c in the lubricating oil area, and a back pressure chamber B20b and a back pressure chamber A20a in the lubricating oil area arranged outside the back pressure chamber C20c and corresponding to the suction pressure. At the same time, a back pressure chamber A20a communicating with the suction chamber is disposed between the end plate of the fixed scroll and the thrust bearing seat of the main body frame to accommodate the lap support disk, and the back pressure chamber B20b supplies oil to the thrust bearing seat from the inside. The back pressure chamber B20b and the back pressure chamber A are arranged to secure the lubricating oil.
20a is communicated with a plurality of balance passages that are alternately opened by the swiveling motion of the lap support disk, and the balance passages are opposed to the center of one of the back pressure chambers A20a and B20b.
And arranged at substantially opposite positions. According to the present invention, the above structure reduces the pressure equivalent to the suction pressure.
Back pressure chamber C20c that has been depressurized and has flowed into the back pressure chamber B20b.
Oil is exchanged with the orbiting motion of the orbiting scroll.
Back pressure through passages that are open to each other and
After flowing into the chamber A20a, the back pressure chamber A20a has a uniform temperature.
It becomes the lubricating oil atmosphere of the cloth. This lubricating oil is the lap support disk
Wrap support by lubricating and cooling the outer sliding part of
Non-uniform thermal deformation of the disk is reduced,
Realization of smooth swivel sliding, partial expansion of compression chamber gap and
Silent compression operation with no shrinkage and no collision between sliding parts
Rolls are obtained. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A scroll compressor according to one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a scroll refrigerant compressor according to one embodiment of the present invention,
FIG. 2 is a detailed explanatory view of a portion B in FIG. In FIG. 1, 1 is a closed shell, 2 is a body frame press-fitted and fixed in the closed shell 1, 3 and 4 are bearings provided at the center of the body frame 2, and 5 are bearings 3 and 4.
A drive shaft provided with an oil hole 7 in communication with the oil hole 6 at a position opposite to the oil hole 6 supported and penetrated by the oil hole 6, an eccentric shaft portion 8 is provided at an upper end thereof, and a closed shell 1 is provided at a lower end thereof. Extends to the bottom of the oil reservoir 9 and is immersed. As shown in FIG. 2, the upper end of the oil hole 6 has
A balance passage 50 having a throttle portion is provided. In the balance passage 50, a steel ball 41 and a coil spring 42 c which constantly urges the steel ball 41 toward the opening end of the oil hole 6 and a narrower hole than the oil hole 6. An oil supply passage control device including a cap 51 having a passage is disposed, and is configured to narrow the opening at both ends of the balance passage 50. A motor 10 has a rotor 11 fixed to the drive shaft 5 and a stator 12 fixed to the closed shell 1 by press fitting. An eccentric shaft 8 is connected to the center of the bearing 1.
3, the eccentric shaft portion 8 and the bearing portion 13 provide a back pressure chamber C20c.
The orbiting scroll disk 16 of the orbiting scroll 14 is integrally formed with an orbiting scroll wrap 16 standing upright on the upper surface thereof, and the lower surface thereof is supported by a thrust bearing seat 17 protruding from an opening at the upper end of the main body frame 2. . The orbiting scroll wrap 16 has a spiral planar shape, and its longitudinal section is rectangular, and is parallel to adjacent orbiting scroll wraps 16. The Oldham ring 18 for preventing rotation is provided with parallel key-shaped keys orthogonal to each other on both surfaces of a flat ring, and is provided between the lap support disk 15 and the thrust bearing seat 17. . This Oldham ring 18
The key portion on the upper surface side is fitted in a key groove (not shown) provided on the back surface of the lap support disk 15, and the key portion on the lower surface side is fitted in a key groove 19 provided on the thrust bearing seat 17. Due to the rotation of the shaft 5, the bearing portion 13 of the lap support disk 15 makes a circular motion around the axis of the drive shaft 5, and the orbiting scroll wrap 16 makes an orbiting motion. On the upper end surface of the main body frame 2, the end plate 21 of the fixed scroll 34 which covers the upper end opening hole and serves as the back pressure chamber 20 of the lap support disk 15 is provided with a thrust bearing seat 17.
At the same time, the wrap support disk 15 of the orbiting scroll 14 is mounted so as to be sandwiched by the minute gap, and forms a back pressure chamber 20 of the orbiting scroll 14. The back pressure chamber 20 is partitioned by a lap support disk 15, and is divided into a back pressure chamber A20a on the outer peripheral surface side and a back pressure chamber B20b on the back side. An annular suction chamber 22 is provided inside the head plate 21.
Is provided. A discharge port 25 having a discharge space 24 inside the closed shell 1 is provided inside the suction chamber 22 at the center of the spiral of the fixed scroll wrap 23 having the same shape and dimensions parallel to the orbiting scroll wrap 16. A balance passage 26 of a small hole opened on the sliding surface with the lap support disk 15 and communicating the suction chamber 22 and the back pressure chamber A20a, and a balance of a small hole communicating the back pressure chamber A20a and the back pressure chamber B20b. A passage 27 is provided in the end plate 21 and the thrust bearing seat 17, and the lap support disk 15 is moved in a predetermined turning angle range (in the process of increasing the suction volume of the outermost compression chamber).
Passage 26 and balance passage 27 only when
The balance passage 27a provided in the thrust bearing seat 17 is closed so that the
And the balance passage 27a are connected to the back pressure chamber A20a or B20
b are disposed at positions substantially opposite to each other with respect to the center of either one . As shown in FIG. 2, a case 40 is press-fitted into the end plate 21 in the middle of the balance passage 26 so as to sandwich the openings at both ends of the balance passage 26, and is provided upstream of the center of the passage. A steel ball 41 is mounted on the downstream side, and a coil spring 42 is mounted on the downstream side to form an oil supply passage control device 43. The coil spring 42 acts on the steel ball 41 based on a pressure difference between the back pressure chamber 20 and the suction chamber 22. Steel ball 41 against back pressure
And the steel ball 41 is constantly urged to continuously change the opening degree of the balance passage 26. A suction pipe 28 penetrating the sealing shell 1 from the side is connected to the annular suction chamber 22, and a discharge pipe 29 opening toward the inner surface of the sealing shell 1 is provided on the upper surface of the sealing shell 1. It is connected. A groove 30 is provided on the outer surface of the main body frame 2 which is press-fitted and fixed to the closed shell 1. The groove 30 connects the discharge space 24 on the end plate 21 side of the closed shell 1 to the motor 10. ing. The operation of the scroll refrigerant compressor configured as described above will be described below with reference to FIGS. 1 and 2. FIG. 1 is a longitudinal sectional view of a scroll refrigerant compressor,
FIG. 2 is a detailed view of a portion B in the vicinity of the balance passage 50 in FIG. 1. When the rotor 11 of the motor 10 rotates and the drive shaft 5 is driven to rotate, the orbiting scroll 14 makes a orbiting motion, The refrigerant gas is sucked into the suction chamber 22 through 28, and the refrigerant gas is confined in a compression chamber formed between the orbiting scroll wrap 16 and the fixed scroll wrap 23, and is compressed with the orbiting movement of the orbiting scroll wrap 16, A part of the lubricating oil discharged from the discharge port 25 into the discharge space 24 and separated from the refrigerant gas by its own weight or the like is separated from the refrigerant gas by way of the groove 30 between the closed shell 1 and the main body frame 2 and the like. The remaining lubricating oil is discharged to the external refrigeration cycle through the discharge pipe 29 together with the discharged refrigerant gas. On the other hand, the difference between the oil reservoir 9 on the high pressure side and the suction chamber 22 on the low pressure side via the back pressure chamber 20 formed separately from the discharge space 24 by the end plate 21 of the fixed scroll 34 and the body frame 2. Pressure lubrication is performed as follows. That is, for a while after the cold start of the compressor, the pressure differences between the back pressure chamber 20 and the suction chamber 22 and between the oil reservoir 9 and the back pressure chamber 20 are small. The opening of the passage 50 is narrowed to the minimum state. On the other hand, the highly viscous lubricating oil in the oil reservoir 9 at the bottom of the closed shell 1 filled with the discharged refrigerant gas supports the oil holes 6, 7 provided in the drive shaft 5, the balance passage 50, and the drive shaft 5. The differential pressure is supplied to the back pressure chambers 20b and 20c via the minute gaps between the bearings 3 and 4 and the bearing 13 of the eccentric shaft 8. After passing through the balance passage 50, the pressure is reduced and flows into the back pressure chamber 20c.
The lubricating oil that is depressurized again when passing through the sliding gap 3 and the lubricating oil that is depressurized when passing through the sliding gap between the bearings 3 and 4 are joined to form a discharge pressure and suction pressure. Inflow at intermediate pressure. Further, the lubricating oil is depressurized through alternately opening and closing narrow passages 27 , 27a intermittently opened and closed by the orbiting motion of the lap support disk 15 of the orbiting scroll 14, and is intermittently supplied to the back pressure chamber A20a. The lubricating oils are provided at positions opposite to each other.
Flows alternately into the back pressure chamber A0a from the impedance passages 27 and 27a .
By doing so, the back pressure chamber A20a and the back pressure chamber B20b
Lubricating oil is evenly distributed and cools the sliding surface evenly.
The temperature distribution of the lap support disk 15 is averaged
become. As the pressure in the back pressure chamber A20a rises, the opening of the balance passage 26 gradually widens, and the lubricating oil in the back pressure chamber A20a is intermittently supplied to the suction chamber 22 little by little, and is again discharged together with the suction refrigerant gas. You. As time elapses after the start of the compressor, the discharge pressure increases, the compression chamber pressure also increases, and the thrust load acting on the orbiting scroll 14 increases during gas compression. Back pressure chamber 20 via bearing 13
The amount of lubricating oil flowing into the orifice increases, the pressure in the back pressure chamber 20 increases, the back pressure chamber biasing force on the orbiting scroll 14 is increased, and the thrust force acting on the orbiting scroll 14 is reduced.
The orbiting scroll 14 is pressed against the fixed scroll 34 with an appropriate force. The oil supply passage control device 43c provided in the balance passage 50 has a steel ball 41 attached to the coil spring 42c by the pressure difference between the oil hole 6 and the back pressure chamber 20c following the rise of the discharge pressure. It moves in the direction away from the opening end of the oil hole 6 against the force, widens the opening of the passage, reduces the degree of pressure reduction of the lubricating oil, and increases the back pressure of the back pressure chambers 20c and 20b. The thrust load acting on the orbiting scroll 14 is reduced against the compression chamber pressure that increases following the increase in the discharge pressure (the discharge gas flows back into the compression chamber and increases the compression chamber distribution pressure). The maximum opening degree of the passage of the oil supply passage control device 43 is limited by the narrow passage provided in the central portion of the cap 51, and excessive lubricating oil flows from the oil reservoir 9 into the back pressure chamber 20. Is preventing. In the event that clogging or the like occurs in the piping system of the refrigeration cycle, the suction pressure drops abnormally, and the discharge pressure rises abnormally, the pressure in the back pressure chamber 20 is excessive compared to the pressure in the compression chamber. In such a case, the opening degree of the throttle passage of the oil supply passage control device 43c is increased to control the pressure of the back pressure chamber 20 within an appropriate range. Naturally, even during a normal operation in which the suction pressure and the discharge pressure are normal, the oil supply passage control device 43c controls the throttle opening of the oil supply passage between the oil reservoir 9 and the back pressure chamber 20, and the back pressure chamber The opening degree of the throttle passage of the oil supply passage between the oil supply passage 20 and the suction chamber 22 is controlled by the oil supply passage control device 43c, whereby the pressure in the back pressure chamber 20 is set according to the suction pressure and the discharge pressure. Also, the scroll refrigerant compressor is incorporated in a heat pump type refrigerating cycle, and immediately after switching from the heating refrigerating cycle to the defrosting refrigerating cycle, the discharge chamber pressure becomes low and the suction chamber pressure becomes high. From this relationship, the refrigerant gas tends to flow backward from the suction chamber 22 to the back pressure chamber 20 via the balance passages 26 , 27 and 27a , but the passage is formed by the check valve action of the steel ball 41 provided in the balance passage 26. It is closed to prevent the refrigerant gas from flowing back to the oil reservoir 9 via the back pressure chamber 20, and to prevent the lubricating oil from flowing out of the back pressure chamber 20 and the bearing sliding surface and seizure of the sliding surface. In the above-described embodiment, the opening on the downstream side of the balance passage 26 is configured to communicate with the end of the coil spring 42. However, as shown in FIG. A configuration in which the fuel supply passage control device 43b is provided in the balance passage 27 as shown in FIG. 5, or a combination thereof, may be used. According to this differential pressure oil supply system, the pressure in the back pressure chamber 20 on the back of the lap support disk 15 can be freely set from a state close to the discharge pressure to a state close to the suction pressure by adjusting the passage resistance of the oil supply passage. . Therefore, the load difference between the back urging force acting on the back of the lap support disk 15 and the gas pressure load in the compression chamber can be freely adjusted, whereby the lap support disk 15 can be pressed against the end plate 21 side. Further, it can be pressed away from the end plate 21 toward the thrust bearing seat 17. In the above embodiment, the lubricating oil has good fluidity, such as during steady operation, and when the required amount of lubricating oil is supplied from the back pressure chamber 20c to the suction chamber 22, the lap supporting disk 15 slides constantly with the end plate 21. When the lubricating oil temperature is low and the fluidity is poor, such as immediately after a cold start, and the required amount of lubricating oil is not supplied from the back pressure chamber 20c to the suction chamber 22, the lap support disk 15 is provided with a thrust bearing seat. The area and the pressure of the back pressure chamber 20 are set so as to always make sliding contact with 17, and the passage openings of the oil supply passage control devices 43 and 43c are set to realize the pressure and the oil supply amount. If the axial clearance of the compression chamber is very small and no special consideration is required for sealing the compression chamber, as apparent from the above description, the passage resistance adjustment of the oil supply passage control devices 43 and 43c is performed. Accordingly, each lubricating oil pressure of the back pressure chamber 20 and each region are set so as to constantly contact the thrust bearing seat 17 so that the orbiting scroll 14 can perform a stable orbiting motion without tilting or axial contact with the fixed scroll 34. Can also be partitioned. Even when the differential pressure between the discharge pressure and the suction pressure is small and the differential pressure oil supply amount is small, the orbiting scroll 14 constantly contacts the thrust bearing seat 17 to perform a stable orbiting motion. Thrust bearing seat 17
, And between the orbiting scroll 14 and the eccentric shaft portion 8 of the drive shaft 5, collision of the sliding surface and intermittent sliding are avoided, and the destruction of the lubricating oil film is prevented, and the durability is improved. In addition, vibration and noise generation are suppressed by the buffering action of the lubricating oil film. In particular, in order to simplify the back pressure chamber 20 and the oil supply passage, the back pressure chamber 20b and the back pressure chamber 20a are set to the suction pressure, and the back pressure chamber 20c is set to the lubricating oil area corresponding to the discharge pressure. Can be set easily. As described above, according to the present invention, the back pressure chamber of the orbiting scroll is disposed at the center of the lap support disk of the orbiting scroll, and the back pressure chamber C20c of the lubricating oil area corresponding to the discharge pressure is provided.
And a back pressure chamber B20b and a back pressure chamber A20a, which are arranged outside the back pressure chamber C20c and are in the lubricating oil area corresponding to the suction pressure, are communicated so that the lubricating oil passes through the back pressure chamber B20b and the back pressure chamber which communicates with the suction chamber. The chamber A20a is arranged between the end plate of the fixed scroll and the thrust bearing seat of the main body frame to accommodate the lap support disk, and the back pressure chamber B20b is arranged to secure the lubricating oil supplied to the thrust bearing seat from the inside, The back pressure chamber B20b and the back pressure chamber A20a are communicated with each other by a plurality of balance passages that are alternately opened by the swirling motion of the lap support disk, and the balance passage is one of the back pressure chambers A20a and B20b.
By disposed in the approximate opposite positions to each other with respect to the center, the lubricating oil from the back pressure chamber C20c which has flowed to the back pressure chamber B20b is reduced to the suction pressure equivalent, along with the orbiting motion of the orbiting scroll alternately And flows into the back pressure chamber A20a through the passages arranged on the opposite sides, so that the back pressure chamber A20a has a lubricating oil atmosphere having a uniform temperature distribution. This lubricating oil lubricates and cools the outer peripheral sliding portion of the lap support disk, thereby reducing uneven thermal deformation of the lap support disk, realizing smooth orbital sliding of the orbiting scroll and partially expanding the compression chamber gap. And shrinkage can be avoided. As a result, there is an effect that the compression chamber is maintained at a small gap to improve compression efficiency and reduce noise and vibration without collision between the sliding parts.

【図面の簡単な説明】 【図1】本発明の第1の実施例におけるスクロール冷媒
圧縮機の縦断面図 【図2】図1におけるB部の断面図 【図3】本発明におけるそれぞれ異なる他の実施例を示
すスクロール冷媒圧縮機の部分断面図 【図4】本発明におけるそれぞれ異なる他の実施例を示
すスクロール冷媒圧縮機の部分断面図 【図5】本発明におけるそれぞれ異なる他の実施例を示
すスクロール冷媒圧縮機の部分断面図 【図6】それぞれ異なる従来のスクロール圧縮機の縦断
面図 【符号の説明】 1 密閉シェル 2 本体フレーム 5 駆動軸 10 モータ 14 旋回スクロール 15 ラップ支持円盤 16 旋回スクロールラップ 20 背圧室 21 鏡板 22 吸入室 23 固定スクロールラップ 25 吐出ポート 26、27 バランス通路 34 固定スクロール 41 鋼玉 42 コイルバネ 43 給油通路制御装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a scroll refrigerant compressor according to a first embodiment of the present invention. FIG. 2 is a sectional view of a portion B in FIG. 1. FIG. FIG. 4 is a partial cross-sectional view of a scroll refrigerant compressor showing another embodiment of the present invention. FIG. 5 is a partial cross-sectional view of a scroll refrigerant compressor showing another different embodiment of the present invention. FIG. 6 is a longitudinal sectional view of a different conventional scroll compressor. [Description of References] 1 Sealed shell 2 Body frame 5 Drive shaft 10 Motor 14 Orbiting scroll 15 Wrap support disk 16 Orbiting scroll Wrap 20 Back pressure chamber 21 End plate 22 Suction chamber 23 Fixed scroll wrap 25 Discharge ports 26, 27 Balance passage 34 Fixed scroll 41 Steel 42 coil spring 43 oil passage control device

Claims (1)

(57)【特許請求の範囲】 1.固定スクロールの一部をなす鏡板の一面に形成され
たうず巻状の固定スクロールラップに対して旋回スクロ
ールの一部をなすラップ支持円盤上の旋回スクロールラ
ップを搖動自在にかみ合わせ、両スクロール間にうず巻
形の圧縮空間を形成し、前記固定スクロールラップの中
心部には吐出ポートを設け、前記固定スクロールラップ
の外側には吸入室を形成し、前記ラップ支持円盤は、駆
動軸を支承する本体フレームに設けられたスラスト軸受
座と前記鏡板との間に遊合状態で配置され、且つ前記旋
回スクロールを前記固定スクロールの側に付勢するため
の背圧室に隣接し、前記旋回スクロールが自転阻止機構
に係合して前記固定スクロールラップと前記旋回スクロ
ールラップとの間に形成される圧縮室の容積変化を利用
して流体を圧縮するようにしたスクロール式圧縮機構を
形成し、前記吐出ポートに通じる油溜、前記背圧室、前
記吸入室を順次経由する絞り部を有する給油通路を備え
た構成において、前記背圧室は前記ラップ支持円盤の中
心部に配置されて吐出圧力相当の潤滑油領域の背圧室C
20cと、前記背圧室C20cの外側に配置されて吸入圧力
相当の潤滑油領域の背圧室B20bおよび背圧室A20aか
ら成って潤滑油が順次経由すべく連通されると共に、前
記吸入室に通じる前記背圧室A20aは前記ラップ支持円
盤を収納すべく前記鏡板と前記本体フレームのスラスト
軸受座との間に配置され、前記背圧室B20bは前記スラ
スト軸受座に内側から給油する潤滑油を確保すべく配置
され、前記背圧室B20bと前記背圧室A20aとの間は前
記ラップ支持円盤の旋回運動によって交互に開通する複
数のバランス通路で連通され、前記バランス通路は前記
背圧室A20aまたはB20bのいずれか一方の中心に対し
互いに反対の位置に配置されたスクロール圧縮機。
(57) [Claims] The orbiting scroll wrap on the wrap support disk that forms part of the orbiting scroll oscillates with the spiral scroll wrap that is formed on one surface of the end plate that forms part of the fixed scroll, and the vortex is formed between the two scrolls. A fixed compression wrap is formed at the center of the fixed scroll wrap, a discharge port is provided, a suction chamber is formed outside the fixed scroll wrap, and the wrap support disk is configured to support a drive shaft. The thrust bearing seat provided on the end plate and the end plate are arranged in a play state, and are adjacent to a back pressure chamber for biasing the orbiting scroll toward the fixed scroll, and the orbiting scroll is prevented from rotating. By engaging with a mechanism, the fluid is compressed using a change in volume of a compression chamber formed between the fixed scroll wrap and the orbiting scroll wrap. A scroll-type compression mechanism having an oil supply passage having an oil reservoir communicating with the discharge port, a back pressure chamber, and a throttle portion sequentially passing through the suction chamber, wherein the back pressure chamber is provided with the lap support. Back pressure chamber C located in the center of the disk and in the lubricating oil area equivalent to the discharge pressure
20c, a back pressure chamber B20b and a back pressure chamber A20a, which are disposed outside the back pressure chamber C20c and are in a lubricating oil area corresponding to the suction pressure, are communicated so that the lubricating oil passes through the suction chamber sequentially. The communicating back pressure chamber A20a is disposed between the end plate and the thrust bearing seat of the main body frame to accommodate the lap support disk, and the back pressure chamber B20b is provided with lubricating oil for supplying the thrust bearing seat from the inside. is arranged to ensure, during said back pressure chamber B20b and the back pressure chamber A20a is communicated with a plurality of balance passage for opening alternately by pivoting movement of the lap supporting disk, said balance passage wherein
To the center of either back pressure chamber A20a or B20b
Scroll compressors located approximately opposite to each other.
JP4175186A 1992-07-02 1992-07-02 Scroll compressor Expired - Lifetime JP2730659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4175186A JP2730659B2 (en) 1992-07-02 1992-07-02 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4175186A JP2730659B2 (en) 1992-07-02 1992-07-02 Scroll compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14874485A Division JPH0778391B2 (en) 1985-07-05 1985-07-05 Scroll gas compressor

Publications (2)

Publication Number Publication Date
JPH0650274A JPH0650274A (en) 1994-02-22
JP2730659B2 true JP2730659B2 (en) 1998-03-25

Family

ID=15991788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4175186A Expired - Lifetime JP2730659B2 (en) 1992-07-02 1992-07-02 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2730659B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404871C (en) * 2004-09-14 2008-07-23 松下电器产业株式会社 Compressor
JP4609496B2 (en) * 2008-01-18 2011-01-12 ダイキン工業株式会社 Rotary fluid machine
JP4614009B1 (en) 2009-09-02 2011-01-19 ダイキン工業株式会社 Scroll compressor
CN102650604A (en) 2011-09-26 2012-08-29 北京京东方光电科技有限公司 Airflow distribution testing method and apparatus system for clean room

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148994A (en) * 1979-05-09 1980-11-19 Hitachi Ltd Closed scroll fluid device
JPS5776291A (en) * 1980-10-31 1982-05-13 Hitachi Ltd Scroll fluid machine

Also Published As

Publication number Publication date
JPH0650274A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
JP2956509B2 (en) Scroll gas compressor
KR20030021117A (en) Compressor discharge valve
JPH0553953B2 (en)
JP2007138868A (en) Scroll compressor
KR920003593B1 (en) Scroll fluid machine with bearing lubrication
JP2000249086A (en) Scroll type compressor
JP2730659B2 (en) Scroll compressor
JPH09228968A (en) Scroll compressor
JPH0826861B2 (en) Scroll gas compressor
JPH07117049B2 (en) Scroll compressor
JPS63131889A (en) Scroll gas compressor
JPH0435636B2 (en)
JPH0778391B2 (en) Scroll gas compressor
JP3584533B2 (en) Scroll compressor
JP3924834B2 (en) Positive displacement fluid machinery
JP2605688B2 (en) Scroll gas compressor
JP2574599B2 (en) Scroll compressor
KR100557061B1 (en) Scroll compressor
JP2511863B2 (en) Scroll gas compressor
JPH08232863A (en) Shaft-through scroll compressor
JPH0735062A (en) Enclosed scroll compressor
JPH02227583A (en) Scroll compressor
JP2003176793A (en) Scroll compressor
JP3111785B2 (en) Scroll compressor
JP2002310076A (en) Scroll compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term