JP2959457B2 - Scroll gas compressor - Google Patents

Scroll gas compressor

Info

Publication number
JP2959457B2
JP2959457B2 JP33299295A JP33299295A JP2959457B2 JP 2959457 B2 JP2959457 B2 JP 2959457B2 JP 33299295 A JP33299295 A JP 33299295A JP 33299295 A JP33299295 A JP 33299295A JP 2959457 B2 JP2959457 B2 JP 2959457B2
Authority
JP
Japan
Prior art keywords
compression
scroll
chamber
bypass
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33299295A
Other languages
Japanese (ja)
Other versions
JPH09170574A (en
Inventor
勝晴 藤尾
潔 佐野
敬 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33299295A priority Critical patent/JP2959457B2/en
Priority claimed from MYPI96005076A external-priority patent/MY119499A/en
Publication of JPH09170574A publication Critical patent/JPH09170574A/en
Application granted granted Critical
Publication of JP2959457B2 publication Critical patent/JP2959457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスクロール気体圧縮
機のバイパス弁装置に関するものである。
The present invention relates to a bypass valve device for a scroll gas compressor.

【0002】[0002]

【従来の技術】低振動、低騒音特性を備えたスクロール
圧縮機は、吸入室が圧縮空間を形成する渦巻きの外周部
に有り、吐出口が渦巻きの中心部に設けられ、吸入容積
と最終圧縮室容積とで決定する容積比が一定である。特
に、吸入圧力と吐出圧力とで定まる圧縮比の変動が少な
い場合は、それに合わせた容積比を設定することによっ
て、往復動圧縮機や回転式圧縮機のような流体を圧縮す
るための吐出弁装置を必要とせず、高効率な圧縮ができ
る。
2. Description of the Related Art In a scroll compressor having low vibration and low noise characteristics, a suction chamber is provided at an outer peripheral portion of a spiral forming a compression space, a discharge port is provided at a central portion of the spiral, and a suction volume and a final compression ratio are reduced. The volume ratio determined by the chamber volume is constant. In particular, when the fluctuation of the compression ratio determined by the suction pressure and the discharge pressure is small, a discharge valve for compressing a fluid such as a reciprocating compressor or a rotary compressor by setting a volume ratio corresponding to the fluctuation. Highly efficient compression is possible without the need for a device.

【0003】このスクロール圧縮機を空調用冷媒圧縮機
として使用する場合は、可変速運転や空調負荷変動によ
って冷媒の吸入圧力と吐出圧力が変化する。そして、実
際の圧縮比と設定圧縮比との間の差によって、不足圧縮
や過圧縮運転が生じる。不足圧縮時には、吐出室の高圧
冷媒ガスが吐出口から圧縮室に間欠的に逆流し、圧縮入
力の増加を招く。また、液冷媒や多量の潤滑油を圧縮す
る、いわゆる液圧縮現象が生じた場合には、超過圧縮状
態となり、圧縮入力の異常上昇・過大な振動と騒音、圧
縮機破損を招くことがある。
When this scroll compressor is used as a refrigerant compressor for air conditioning, the suction pressure and discharge pressure of the refrigerant change due to variable speed operation and fluctuations in air conditioning load. The difference between the actual compression ratio and the set compression ratio causes under-compression or over-compression operation. During insufficient compression, the high-pressure refrigerant gas in the discharge chamber intermittently flows backward from the discharge port into the compression chamber, causing an increase in compression input. In addition, when a so-called liquid compression phenomenon occurs in which a liquid refrigerant or a large amount of lubricating oil is compressed, an excessive compression state occurs, which may cause an abnormal increase in compression input, excessive vibration and noise, and damage to the compressor.

【0004】このような圧縮不足に起因する圧縮流体の
逆流を防ぐ方策として、吐出口の出口側に逆止弁装置を
設けることもある。また、液圧縮を軽減する方策とし
て、特公平5−49830号公報に記載されているよう
に、特に、吸入室にも吐出室にも間欠的に通じない常時
密閉空間となる圧縮室を有する圧縮空間の場合には、超
過圧縮発生頻度の高い常時密閉空間となる圧縮室から吐
出室に通じる対称位置に配置されたバイパス穴を設け、
バイパス穴の出口側に吐出室への流体流出のみを許容す
るバイパス弁装置を設けて液圧縮や過圧縮に起因する圧
縮機破損を防止する手段が知られている。
As a measure for preventing the backflow of the compressed fluid due to the insufficient compression, a check valve device may be provided at the outlet side of the discharge port. As a measure for reducing the liquid compression, as described in Japanese Patent Publication No. 5-49830, in particular, a compression chamber having a compression chamber which is always a closed space which does not intermittently communicate with both the suction chamber and the discharge chamber. In the case of a space, a bypass hole is provided at a symmetrical position leading to the discharge chamber from the compression chamber, which is a constantly closed space with a high frequency of excessive compression,
Means for preventing a compressor from being damaged due to liquid compression or overcompression by providing a bypass valve device on the outlet side of the bypass hole, which allows only fluid outflow to the discharge chamber, is known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、超過圧縮となる液圧縮や通常の過圧縮は
上述の常時密閉空間に限らず、圧縮途中の任意の圧縮室
でも生じる可能性がある。また、スクロール圧縮機の構
成によっては常時密閉空間となる圧縮室が存在しない容
積比を備える場合もある。したがって、バイパス穴を設
置することは圧縮途中ガスの圧縮室内残留を生じさせ、
その結果、圧縮効率低下を招き易いことから、特に、常
時密閉空間となる圧縮室が存在しない容積比を備える構
成のスクロール気体圧縮機の場合は、バイパス穴位置設
定の指針か少ないという課題があった。また、圧縮機破
損防止のために設けられるバイパス穴の位置が、吐出口
を開閉する逆止弁装置と関係してバイパス弁装置の配置
構成から決められることが多かった。当然のことなが
ら、スクロール気体圧縮機の幅広い圧縮比運転領域での
圧縮効率向上のためにバイパス穴とバイパス弁装置を積
極的に導入する考え方が少なく、圧縮効率向上のための
効果的なバイパス機能を備えたスクロール気体圧縮機の
実現が望まれていた。
However, in the above-described conventional configuration, the liquid compression or the normal over-compression that causes over-compression may not only occur in the above-mentioned constantly closed space but also in any compression chamber during compression. is there. Further, depending on the configuration of the scroll compressor, the scroll compressor may have a volume ratio in which there is no compression chamber that is always a closed space. Therefore, the installation of the bypass hole causes the gas in the middle of compression to remain in the compression chamber,
As a result, since the compression efficiency tends to be reduced, there is a problem that there is little guideline for setting the bypass hole position, particularly in the case of a scroll gas compressor having a volume ratio in which there is no compression chamber that is always a closed space. Was. Further, the position of the bypass hole provided for preventing damage to the compressor is often determined from the arrangement of the bypass valve device in relation to the check valve device that opens and closes the discharge port. Naturally, there is little idea to actively introduce bypass holes and bypass valve devices in order to improve the compression efficiency of the scroll gas compressor in a wide compression ratio operation region, and an effective bypass function for improving the compression efficiency It has been desired to realize a scroll gas compressor equipped with a scroll gas compressor.

【0006】本発明はこのような従来の課題を解決する
ものであり、圧縮比が大きい運転状態での性能を損なう
ことなく、圧縮比が中以下の運転状態での性能向上を図
ることを目的とする。
An object of the present invention is to solve such a conventional problem and to improve performance in an operating state where the compression ratio is medium or lower without impairing the performance in an operating state where the compression ratio is large. And

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、吐出口に最も近い圧縮室の特定の範囲にバ
イパス穴を設けたものである。上記バイパス穴開設によ
って、運転圧縮比が設定圧縮比より大きい場合と小さい
場合とを含めた全運転圧縮比領域を通した全体の圧縮効
率を高めることができる。
According to the present invention, a bypass hole is provided in a specific area of a compression chamber closest to a discharge port. The opening of the bypass hole can increase the overall compression efficiency through the entire operation compression ratio region including the case where the operation compression ratio is larger than the set compression ratio and the case where the operation compression ratio is smaller.

【0008】[0008]

【発明の実施の形態】上記の課題を解決するための請求
項1記載の発明は、渦巻状の圧縮空間には吐出室にも吸
入室にも間欠的に連通しない空間が存在せず、吐出口に
最も近い圧縮室が吐出口に連通する直前の状態と、吐出
口に最も近い圧縮室がその状態から150度前進した状
態とで、旋回スクロールラップによってバイパス穴の一
部が閉塞されない位置に、圧縮室と吐出室との間を連通
するバイパス穴を設けたものである。そして、この構成
によれば運転圧縮比が設定圧縮比より大きい場合にも、
吐出口に開口直前の圧縮室内気体の吐出室への一部排出
を促進させて吐出口から気体を排出する際の過圧縮を抑
制することができる。また運転圧縮比が設定圧縮比より
小さい場合には、圧縮途中気体を吐出室に一部排出して
過圧縮を防止することができる。
According to the first aspect of the present invention, there is provided a spiral compression space in which no space intermittently communicates with neither a discharge chamber nor a suction chamber. In the state immediately before the compression chamber closest to the outlet communicates with the discharge port, and in the state where the compression chamber closest to the discharge port has advanced 150 degrees from that state, the orbiting scroll wrap is in a position where a part of the bypass hole is not closed. , A bypass hole communicating between the compression chamber and the discharge chamber is provided. According to this configuration, even when the operating compression ratio is larger than the set compression ratio,
Partial discharge of the gas in the compression chamber immediately before opening to the discharge port to the discharge chamber can be promoted to suppress over-compression when discharging the gas from the discharge port. When the operating compression ratio is smaller than the set compression ratio, the gas in the middle of compression can be partially discharged to the discharge chamber to prevent over-compression.

【0009】請求項2記載の発明は、単一のバイパス弁
装置が複数のバイパス穴を同時に開閉すべくバイパス穴
を接近させて配置するもので、バイパス穴を分散して圧
縮途中気体を継続的に吐出室に排出させるとともに、バ
イパス穴の通路を確保することができる。
According to a second aspect of the present invention, a single bypass valve device arranges the bypass holes close to each other so as to simultaneously open and close a plurality of bypass holes. In addition to discharging to the discharge chamber, the passage of the bypass hole can be secured.

【0010】請求項3記載の発明は、吐出口を開閉する
逆止弁装置がバイパス弁装置を兼ねたもので、バイパス
穴開設位置の自由度を広げるとともに、バイパス弁装置
を省くことができる。
According to the third aspect of the present invention, the check valve device for opening and closing the discharge port also serves as the bypass valve device, so that the degree of freedom of the opening position of the bypass hole can be increased and the bypass valve device can be omitted.

【0011】請求項4記載の発明は、吐出口に最も近い
バイパス穴から360度以内に後退した位置で且つ圧縮
開始から360度以内の位置に別の補助バイパス穴と補
助バイパス穴を開閉する補助バイパス弁装置を鏡板に配
置するもので、閉塞した圧縮空間の領域を少なくし、過
圧縮発生領域を少なくできる。
According to a fourth aspect of the present invention, there is provided an auxiliary opening and closing position for opening and closing another auxiliary bypass hole and an auxiliary bypass hole at a position retracted within 360 degrees from the bypass hole closest to the discharge port and within 360 degrees from the start of compression. By arranging the bypass valve device on the end plate, the area of the closed compression space can be reduced, and the over-compression generation area can be reduced.

【0012】請求項5記載の発明は、バイパス穴と補助
バイパス穴との間の圧縮室に旋回スクロールラップで全
開全閉される状態で開口し且つ他端が冷凍サイクルの減
圧装置の途中に通じたインジェクション穴を鏡板に設け
たもので、圧縮機運転圧縮比が設定圧縮比よりも大きい
時(圧縮不足状態)に、未蒸発冷媒(液と気体の混合冷
媒)の一部は圧縮途中の圧縮室に流入して圧縮部を冷却
するとともに、圧縮完了圧力を高めて圧縮不足状態を解
消し、吐出圧力を上昇させることができる。
According to a fifth aspect of the present invention, the compression chamber between the bypass hole and the auxiliary bypass hole is opened by the orbiting scroll wrap in a fully open and fully closed state, and the other end is connected to the middle of the pressure reducing device of the refrigeration cycle. When the compressor operating compression ratio is greater than the set compression ratio (under-compression state), some of the unevaporated refrigerant (mixed refrigerant of liquid and gas) is compressed during compression. While flowing into the chamber to cool the compression section, the compression completion pressure is increased to eliminate the insufficient compression state, and the discharge pressure can be increased.

【0013】請求項6記載の発明は、冷凍サイクルの減
圧装置とインジェクション穴との間の冷媒インジェクシ
ョン配管の途中に開閉弁を設け、圧縮機運転圧縮比が設
定圧縮比よりも大きい時に、開閉弁を開通せしめ、それ
以外の圧縮機運転時に開閉弁を遮断すべく制御する冷凍
サイクルに接続したもので、圧縮機起動直後の冷媒液圧
縮を阻止して起動負荷を軽減することができる。
According to a sixth aspect of the present invention, an on-off valve is provided in the refrigerant injection pipe between the pressure reducing device of the refrigeration cycle and the injection hole, and the on-off valve is provided when the compressor operating compression ratio is larger than the set compression ratio. The compressor is connected to a refrigeration cycle that controls to shut off the on-off valve during the other compressor operation, so that refrigerant liquid compression immediately after the compressor is started can be prevented and the starting load can be reduced.

【0014】[0014]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】(実施例1)図1において、横置形スクロ
ール冷媒圧縮機の部分縦断面図を示す鉄製の密閉容器1
の内部全体は吐出管(図示なし)に連通する高圧雰囲気
となり、その中央部にモータ3、右部に圧縮部が配置さ
れ、モータ3の回転子3aに固定された駆動軸4の一端
を支承する圧縮部の本体フレーム5が密閉容器1に固定
されており、その本体フレーム5に固定スクロール7が
取り付けられている。駆動軸4に設けられた主軸方向の
油穴12は、その一端が給油ポンプ装置(図示なし)に
通じ、他端が最終的に主軸受8に通じている。固定スク
ロール7と噛み合って圧縮室2を形成する旋回スクロー
ル13は、渦巻き状の旋回スクロールラップ13aと旋
回軸13cとを直立させたラップ支持円盤13bとから
成り、固定スクロール7と本体フレーム5との間に配置
されている。固定スクロール7は、鏡板7aと渦巻き状
の固定スクロールラップ7bとから成り、固定スクロー
ルラップ7aの中央部に吐出口30、外周部に吸入室3
1が配置されている。吐出口30は、隣接する吐出室3
2を介してモータ3が配置された高圧空間に通じてい
る。吸入室31は、密閉容器1の端壁を貫通する吸入管
33に通じている。駆動軸4の主軸から偏芯して駆動軸
4の右端穴部に配置された旋回軸受14は、旋回スクロ
ール13の旋回軸13cと係合摺動すべく構成されてい
る。旋回スクロール13のラップ支持円板13bと本体
フレーム5に設けられたスラスト軸受19との間は、油
膜形成可能な微小隙間が設けられている。ラップ支持円
板13bには旋回軸13cとほぼ同芯の環状シール部材
18が遊合状態で装着されており、その環状シール部材
18はその内側の背面室A20と外側とを仕切ってい
る。背面室A20は、隣接する主軸受8に通じる一方、
旋回軸受14の摺動面を介して駆動軸4の油穴12にも
通じている。旋回軸受14の底部の油室15と、ラップ
支持円板13bの外周部空間の背面室C16との間は、
ラップ支持円板13bに設けられた油通路21を介して
通じている。油通路21は、その両端に絞り部A22と
絞り部B23を、その中間にバイパス油穴24を有して
いる。バイパス油穴24は、旋回スクロール13の旋回
運動に伴って、スラスト軸受19面に設けられた環状の
油溝25に間欠的に通じるべく配置されている。環状の
油溝25と背面室C16とは、環状の油溝25の一部に
設けられた排出油通路26を介して通じている。スラス
ト軸受19の環状溝25は、自転阻止部材(図示なし)
と係合する旋回スクロール13の係止溝(図示なし)に
も間欠的に連通すべく配置されている。背面室C16と
吸入室31との間は、ラップ支持円板13bと摺接する
鏡板7aの表面に設けられた油溝50(図2,図3参
照)を介して連通している。吐出口30の出口側を開閉
する逆止弁装置35が固定スクロール7の鏡板7aの平
面上に取り付けられており、その逆止弁装置35は薄鋼
板製のリード弁35aと弁押え35bとから成る。鏡板
7aの中央部には、吐出口30と間欠的に連通する第2
圧縮室2bと吐出室32とに開口し、且つ、第2圧縮室
2bへの開口部が旋回スクロールラップ13aの幅より
も小さい二対の第1バイパス穴30a,第2バイパス穴
39bが旋回スクロールラップ13aの壁面に沿って圧
縮進行方向に追従する形態で順次対称配置されており、
第1バイパス穴39a,第2バイパス穴39bの出口側
を開閉するバイパス弁装置40が鏡板7a上に配置され
ている。また、吸入室31と間欠的に連通する第1圧縮
室2aと吐出室32とに開口し且つ第1圧縮室2aへの
開口部が旋回スクロールラップ13aの幅よりも小さい
一対の補助バイパス穴49が旋回スクロールラップ13
aの壁面近傍に対称配置され、補助バイパス穴49の出
口側を開閉する補助バイパス弁装置42が鏡板7a上に
配置されている。
(Embodiment 1) In FIG. 1, an iron hermetic container 1 showing a partial vertical sectional view of a horizontal scroll refrigerant compressor.
The entire interior is a high-pressure atmosphere communicating with a discharge pipe (not shown). A motor 3 is disposed at the center and a compression section is disposed at the right side, and one end of a drive shaft 4 fixed to a rotor 3a of the motor 3 is supported. The main body frame 5 of the compression section to be fixed is fixed to the closed container 1, and the fixed scroll 7 is attached to the main body frame 5. One end of the main shaft direction oil hole 12 provided in the drive shaft 4 communicates with an oil supply pump device (not shown), and the other end finally communicates with the main bearing 8. The orbiting scroll 13 which meshes with the fixed scroll 7 to form the compression chamber 2 is composed of a spiral orbiting scroll wrap 13a and a wrap support disk 13b in which an orbiting shaft 13c is upright. It is located between them. The fixed scroll 7 includes a head plate 7a and a spiral fixed scroll wrap 7b. The discharge port 30 is provided at the center of the fixed scroll wrap 7a, and the suction chamber 3 is provided at the outer periphery.
1 is arranged. The discharge port 30 is connected to the adjacent discharge chamber 3
2 leads to a high-pressure space in which the motor 3 is arranged. The suction chamber 31 communicates with a suction pipe 33 that penetrates the end wall of the closed container 1. The orbiting bearing 14 eccentrically arranged from the main shaft of the drive shaft 4 and disposed in the right end hole of the drive shaft 4 is configured to engage and slide with the orbital shaft 13 c of the orbiting scroll 13. Between the lap support disk 13b of the orbiting scroll 13 and the thrust bearing 19 provided on the main body frame 5, there is provided a minute gap capable of forming an oil film. An annular seal member 18, which is substantially concentric with the turning shaft 13c, is mounted on the lap support disk 13b in a loose state, and the annular seal member 18 separates the inside rear chamber A20 from the outside. The rear chamber A20 communicates with the adjacent main bearing 8, while
It also communicates with the oil hole 12 of the drive shaft 4 through the sliding surface of the slewing bearing 14. Between the oil chamber 15 at the bottom of the slewing bearing 14 and the rear chamber C16 in the outer peripheral space of the lap support disk 13b,
It communicates through an oil passage 21 provided in the lap support disk 13b. The oil passage 21 has a narrowed portion A22 and a narrowed portion B23 at both ends thereof, and a bypass oil hole 24 in the middle. The bypass oil hole 24 is arranged to intermittently communicate with an annular oil groove 25 provided on the thrust bearing 19 surface in accordance with the turning movement of the turning scroll 13. The annular oil groove 25 and the rear chamber C16 communicate with each other via a drain oil passage 26 provided in a part of the annular oil groove 25. The annular groove 25 of the thrust bearing 19 is a rotation preventing member (not shown).
It is also arranged to intermittently communicate with a locking groove (not shown) of the orbiting scroll 13 which engages with. The rear chamber C16 and the suction chamber 31 communicate with each other via an oil groove 50 (see FIGS. 2 and 3) provided on the surface of the end plate 7a which is in sliding contact with the lap support disk 13b. A check valve device 35 for opening and closing the outlet side of the discharge port 30 is mounted on the plane of the end plate 7a of the fixed scroll 7, and the check valve device 35 is formed by a thin steel sheet reed valve 35a and a valve presser 35b. Become. A second portion intermittently communicating with the discharge port 30 is provided at the center of the end plate 7a.
Two pairs of the first bypass hole 30a and the second bypass hole 39b which open to the compression chamber 2b and the discharge chamber 32 and whose opening to the second compression chamber 2b is smaller than the width of the orbiting scroll wrap 13a. The wraps 13a are sequentially symmetrically arranged along the wall surface of the wrap 13a in a form following the compression progress direction,
A bypass valve device 40 for opening and closing the outlet side of the first bypass hole 39a and the second bypass hole 39b is disposed on the end plate 7a. In addition, a pair of auxiliary bypass holes 49 opening to the first compression chamber 2a and the discharge chamber 32 intermittently communicating with the suction chamber 31 and having an opening to the first compression chamber 2a smaller than the width of the orbiting scroll wrap 13a. Is orbiting scroll wrap 13
An auxiliary bypass valve device 42 that is symmetrically arranged near the wall surface of a and that opens and closes the outlet side of the auxiliary bypass hole 49 is disposed on the end plate 7a.

【0016】図2は図1におけるA−A線に沿った断面
を示した図で、吐出口30と間欠的に連通する第2圧縮
室2bが吐出口32と開通する直前の圧縮空間の状態を
示す。第1バイパス穴39a,第2バイパス穴39bは
旋回スクロールラップ13aによって、その一部を遮閉
されることのない位置に配置されている。
FIG. 2 is a view showing a section taken along the line AA in FIG. 1. The state of the compression space immediately before the second compression chamber 2b intermittently communicating with the discharge port 30 opens to the discharge port 32. Is shown. The first bypass hole 39a and the second bypass hole 39b are arranged at positions where a part of the first bypass hole 39a and the second bypass hole 39b is not blocked by the orbiting scroll wrap 13a.

【0017】図3は図2における旋回スクロールラップ
13aが150度前進した時の圧縮空間の状態を示す。
この状態において、第1バイパス穴39a,第2バイパ
ス穴39bは旋回スクロールラップ13aによって、そ
の一部を遮閉されることのない位置に配置され、第1バ
イパス穴39a,第2バイパス穴39bの通路を確保し
ている。
FIG. 3 shows the state of the compression space when the orbiting scroll wrap 13a in FIG. 2 has advanced 150 degrees.
In this state, the first bypass hole 39a and the second bypass hole 39b are arranged at positions where a part of the first bypass hole 39a and the second bypass hole 39b are not blocked by the orbiting scroll wrap 13a. A passage is secured.

【0018】図4は図2および図3における第1バイパ
ス穴39a,第2バイパス穴39bおよび補助バイパス
穴49が旋回スクロールラップ13aの旋回移動に伴っ
て順次開閉されていく状態を示す図で、特に、(a)は
図2と図3の中間の状態を示している。(b)〜(d)
は、それ以外の旋回スクロールラップ13aと第1バイ
パス穴39a,第2バイパス穴39bおよび補助バイパ
ス穴49の位置関係を示す。
FIG. 4 is a view showing a state in which the first bypass hole 39a, the second bypass hole 39b and the auxiliary bypass hole 49 in FIGS. 2 and 3 are sequentially opened and closed with the turning movement of the turning scroll wrap 13a. In particular, (a) shows a state intermediate between FIG. 2 and FIG. (B)-(d)
Indicates the positional relationship between the orbiting scroll wrap 13a, the first bypass hole 39a, the second bypass hole 39b, and the auxiliary bypass hole 49.

【0019】図5は図1における逆止弁装置35,バイ
パス弁装置40,補助バイパス弁装置42を鏡板7a上
に取り付けた配置を示した図である。
FIG. 5 is a view showing an arrangement in which the check valve device 35, the bypass valve device 40, and the auxiliary bypass valve device 42 in FIG. 1 are mounted on the end plate 7a.

【0020】図6は、横軸に圧縮機運転速度を、縦軸に
圧力と圧縮比を表し、空調装置運転時の圧縮機運転速度
と吸入圧力,吐出圧力,圧縮比の関係を示す実負荷特性
を示す図である。
FIG. 6 shows the compressor operating speed on the horizontal axis and the pressure and compression ratio on the vertical axis, and shows the relationship between the compressor operating speed and the suction pressure, discharge pressure, and compression ratio when the air conditioner is operating. It is a figure showing a characteristic.

【0021】図7は、横軸に圧縮室の容積変化を、縦軸
に圧縮室の圧力変化を表した従来スクロール冷媒圧縮機
のP−V線図である。
FIG. 7 is a PV diagram of a conventional scroll refrigerant compressor in which the horizontal axis represents the change in volume of the compression chamber and the vertical axis represents the change in pressure in the compression chamber.

【0022】以上のスクロール冷媒圧縮機の構成におい
て、モータ3によって駆動軸4が回転駆動すると本体フ
レーム5のスラスト軸受19に支持された旋回スクロー
ル13が旋回運動をし、圧縮機に接続した冷凍サイクル
から潤滑油を含んだ吸入冷媒ガスが、吸入管33を経由
して吸入室31に流入し、旋回スクロール13と固定ス
クロール7との間に形成された圧縮室2へと圧縮移送さ
れ、中央部の吐出口30,吐出室32を経てモータ3を
冷却しながら吐出管(図示なし)から圧縮機外部に排出
される。潤滑油を含んだ吐出冷媒ガスは、吐出室32か
ら吐出管(図示なし)までの通路途中で分離され、油溜
11に収集する。吐出圧力が作用する潤滑油は、駆動軸
4の一端に連結された給油ポンプ装置(図示なし)によ
り、駆動軸4の油穴12を経由して油室15に送られ、
その大部分が旋回軸受14と主軸受8の摺動面を経由し
て油溜11に帰還する一方、残りの潤滑油が旋回スクロ
ール13に設けられた油通路21を経由して最終的に背
面室C16に流入する。油通路21を流れる潤滑油は、
その入口部の絞り部A22で一次減圧され、その一部の
潤滑油がバイパス穴24を通じてスラスト軸受19に設
けられた環状油溝25に流入し、残りの潤滑油が絞り部
B23で二次減圧された後、両経路を経た潤滑油は吸入
室31に通じている背面室C16で合流する。油通路2
1の潤滑油は、旋回スクロール13の旋回運動に伴って
バイパス穴24が環状油溝25に間欠的に連通する際の
通路抵抗の影響を受ける。すなわち、旋回速度が遅い時
には油通路21の潤滑油が環状油溝25に多く流入し、
旋回速度が速い時には油通路21の潤滑油が環状油溝2
5に少なく流入するように調整される。圧縮室2の冷媒
ガス圧力は、駆動軸4の主軸方向に旋回スクロール13
を固定スクロール7から離反させようと作用する。一
方、旋回スクロール13のラップ支持円板13bが吐出
圧力の作用する背面室A20(環状シール部材18で囲
まれた内側部分)からの背圧を受けている。したがっ
て、旋回スクロール13を固定スクロール7から離反さ
せようとする力と背圧力とが相殺される。その結果、旋
回スクロール13の離反力よりも背圧力が大きい場合に
は、ラップ支持円板13bは固定スクロール7の鏡板7
aに支持され、反対の場合にはスラスト軸受19に支持
される。上述のいずれの場合にもラップ支持円板13b
とその摺動面の間は微小隙間が保持されて、その摺動面
に供給された潤滑油によって油膜形成されており、その
摺動抵抗が軽減されている。旋回スクロール13のラッ
プ支持円板13bが固定スクロール7の鏡板7aまたは
スラスト軸受19のいずれに支持される場合でも、圧縮
室2の隙間は微小で、背面室C16,吸入室31を順次
経て圧縮室2に流入した潤滑油の油膜で密封されてい
る。一方、スクロール圧縮機は圧縮比が一定なことか
ら、圧縮機冷時始動初期には多量の冷媒液が吸入管33
を介して冷凍サイクルから帰還し、圧縮室2に流入して
液圧縮が生じることが有り、圧縮室2が異常圧力上昇し
て吐出室32の圧力より高くなる。吸入室31と間欠的
に連通する第1圧縮室2a(図2,図3参照)で液圧縮
が生じた場合には、図5で示すように、鏡板7aに設け
た補助バイパス穴49の出口側を閉塞する補助バイパス
弁装置42および第1バイパス穴39a,第2バイパス
穴39bの出口側を閉塞するバイパス弁40が順次開い
て冷媒を吐出室32に流出させ、圧縮室圧力を降下させ
る。また、吐出口30と間欠的に連通する第2圧縮室2
b(図2,図3参照)で液圧縮が生じた場合には、鏡板
7aに設けた第1バイパス穴39a,第2バイパス穴3
9bの出口側を閉塞するバイパス弁40が開き冷媒を吐
出室32に流出させ、圧縮室圧力を降下させる。なお、
第1バイパス穴39a,第2バイパス穴39bおよび補
助バイパス穴49は、いずれの圧縮室2で液圧縮が生じ
ても、第1バイパス穴39a,第2バイパス穴39bお
よび補助バイパス穴49のうち、いずれかと開通するよ
うに各バイパス穴が配置されているので、補助バイパス
弁装置42とバイパス弁装置40のうち少なくとも一方
が必ず開通作動する。また、補助バイパス弁装置42お
よびバイパス弁40が開通作動するのは、圧縮室2で液
圧縮が生じる場合に限らない。すなわち、図6に示す如
く、通常の冷凍サイクル運転における吸入圧力は、圧縮
機が低速〜高速運転に変化するのに追従して低下する。
一方、吐出圧力は上昇して、圧縮比が上昇するのが一般
的である。したがって、補助バイパス弁装置42および
バイパス弁40が設置されない場合の圧縮機低速運転時
などの圧縮比は、定格負荷運転状態で設定された圧縮比
よりも小さくなって図7の斜線部分で示す如く過圧縮状
態となる。このような場合には上述と同様に、第1バイ
パス穴39a,第2バイパス穴39bの出口側を閉塞す
るバイパス弁40のリード部40bが開いて冷媒を吐出
室32に流出させ、2点鎖線99で示す如く、圧縮室圧
力が途中降下して圧縮負荷が軽減する。なお、一般的に
は、対称位置に配置された圧縮室2(圧縮室A,圧縮室
B)の各圧力は、圧縮室隙間密封程度の差から互いに相
違する。この圧縮室2の圧力差は旋回スクロール13に
自転力を与えて旋回スクロール13の自転阻止部材(図
示なし)に回転力を与えることになる。しかし、補助バ
イパス弁装置42およびバイパス弁40が開通して圧縮
負荷軽減する場合に、圧縮室2(圧縮室A,圧縮室B)
の圧力が吐出室32を介して圧縮行程途中で瞬時的に均
圧されて、圧縮室圧力差が小さくなる。一方、圧縮機高
速運転時は吸入室31の圧力が低下、吐出室32の圧力
が上昇する結果、実際の冷凍サイクル運転圧縮比がスク
ロール圧縮機設定圧縮比よりも大きい圧縮状態(圧縮不
足状態)となって、第2圧縮室2bの容積が拡大する過
程で、しかも逆止弁装置35が吐出口30を閉塞するま
での間に吐出室32の冷媒ガスが吐出口30を介して第
2圧縮室2bに間欠的に逆流する。この逆流冷媒ガスは
第2圧縮室2bで再圧縮されて過圧縮状態となる。この
場合も上述と同様に、第1バイパス穴39a,第2バイ
パス穴39bを通してバイパス弁装置40を開通させ、
過圧縮冷媒ガスが吐出室32に部分排出されて圧縮室圧
力を降下させる。なお、第1バイパス穴39aを通じバ
イパス弁装置40が開くことによって、第2バイパス穴
39bから吐出室32への冷媒ガス排出タイミングが早
くなり、圧縮室圧力降下が速くなり、過圧縮損失が少な
くなる。なお、第1バイパス穴39aと第2バイパス穴
39bは、吐出口30に最接近した位置に開設されてい
ないので、第2圧縮室2bが吐出口32に開通直前でも
旋回スクロールラップ13aによって閉塞されずに、吐
出室32へのバイパス作用として機能する。また、第1
バイパス穴39aと第2バイパス穴39bは、第2圧縮
室2bが吐出口32に開通する直前の状態から150度
進行した状態でも旋回スクロールラップ13aによって
閉塞されない位置に開設されているので、旋回スクロー
ルラップ13aが第1バイパス穴39a,第2バイパス
穴39bを通過後に、第2圧縮室2bが一部閉塞される
こともなく、圧縮室2で生じる過圧縮現象に対して、常
時、有効なバイパス作用を発揮することができる。ま
た、第1バイパス穴39aと第2バイパス穴39bとが
適度な間隔を有して配置されているので、第1バイパス
穴39aと第2バイパス穴39bが旋回スクロールラッ
プ13aによって同時に閉塞される時間を短くすること
ができ、バイパス作用の有効性を長くしている。すなわ
ち、第1バイパス穴39a,第2バイパス穴39bから
のバイパス作用を継続することによって、第2圧縮室2
bが吐出口32に開通した時の第2圧縮室2bの圧力変
化が小さくなり、吐出室32への流出音,逆止弁装置3
2からの発生音および吐出脈動が小さくなる。
In the above configuration of the scroll refrigerant compressor, when the drive shaft 4 is rotationally driven by the motor 3, the orbiting scroll 13 supported by the thrust bearing 19 of the main body frame 5 makes an orbiting motion, and the refrigerating cycle connected to the compressor. The suction refrigerant gas containing the lubricating oil flows into the suction chamber 31 via the suction pipe 33 and is compressed and transferred to the compression chamber 2 formed between the orbiting scroll 13 and the fixed scroll 7. While cooling the motor 3 through the discharge port 30 and the discharge chamber 32, it is discharged from the discharge pipe (not shown) to the outside of the compressor. The discharged refrigerant gas containing the lubricating oil is separated on the way from the discharge chamber 32 to a discharge pipe (not shown) and collected in the oil reservoir 11. The lubricating oil on which the discharge pressure acts is sent to the oil chamber 15 via the oil hole 12 of the drive shaft 4 by an oil supply pump device (not shown) connected to one end of the drive shaft 4.
Most of the oil returns to the oil reservoir 11 via the sliding surface of the orbiting bearing 14 and the main bearing 8, while the remaining lubricating oil finally passes through the oil passage 21 provided in the orbiting scroll 13 and finally returns to the rear surface. It flows into the chamber C16. The lubricating oil flowing through the oil passage 21 is
The primary pressure is reduced at the throttle portion A22 at the inlet, a part of the lubricating oil flows into the annular oil groove 25 provided in the thrust bearing 19 through the bypass hole 24, and the remaining lubricating oil is secondary reduced at the throttle portion B23. After that, the lubricating oil passing through both paths joins in the rear chamber C16 communicating with the suction chamber 31. Oil passage 2
The lubricating oil 1 is affected by the passage resistance when the bypass hole 24 intermittently communicates with the annular oil groove 25 with the orbiting movement of the orbiting scroll 13. That is, when the turning speed is low, a large amount of the lubricating oil in the oil passage 21 flows into the annular oil groove 25,
When the turning speed is high, the lubricating oil in the oil passage 21
5 is adjusted to flow less. The pressure of the refrigerant gas in the compression chamber 2 is changed in the direction of the orbiting scroll 13 in the main shaft direction of the drive shaft 4.
Acts so as to be separated from the fixed scroll 7. On the other hand, the wrap support disk 13b of the orbiting scroll 13 receives a back pressure from the back chamber A20 (the inner part surrounded by the annular seal member 18) where the discharge pressure acts. Therefore, the force for moving the orbiting scroll 13 away from the fixed scroll 7 and the back pressure are offset. As a result, when the back pressure is larger than the repulsive force of the orbiting scroll 13, the lap support disk 13 b is attached to the end plate 7 of the fixed scroll 7.
a, and in the opposite case, by the thrust bearing 19. In any of the above cases, the lap support disk 13b
A small gap is held between the sliding surface and the sliding surface, and an oil film is formed by the lubricating oil supplied to the sliding surface, so that the sliding resistance is reduced. Regardless of whether the lap support disk 13b of the orbiting scroll 13 is supported by the end plate 7a of the fixed scroll 7 or the thrust bearing 19, the gap between the compression chambers 2 is very small. 2 is sealed with an oil film of the lubricating oil flowing into the oil tank. On the other hand, since the compression ratio of the scroll compressor is constant, a large amount of refrigerant liquid is supplied to the suction pipe 33 at the beginning of the cold start of the compressor.
The liquid may return from the refrigeration cycle via the refrigeration cycle and flow into the compression chamber 2 to cause liquid compression. The pressure in the compression chamber 2 rises abnormally and becomes higher than the pressure in the discharge chamber 32. When liquid compression occurs in the first compression chamber 2a (see FIGS. 2 and 3) intermittently communicating with the suction chamber 31, the outlet of the auxiliary bypass hole 49 provided in the end plate 7a as shown in FIG. The auxiliary bypass valve device 42 for closing the side and the bypass valve 40 for closing the outlet side of the first bypass hole 39a and the second bypass hole 39b are sequentially opened to allow the refrigerant to flow out to the discharge chamber 32 and reduce the compression chamber pressure. In addition, the second compression chamber 2 that intermittently communicates with the discharge port 30
b (see FIG. 2 and FIG. 3), when the liquid compression occurs, the first bypass hole 39a and the second bypass hole 3
The bypass valve 40 that closes the outlet side of 9b is opened to allow the refrigerant to flow out to the discharge chamber 32 and reduce the compression chamber pressure. In addition,
The first bypass hole 39a, the second bypass hole 39b, and the auxiliary bypass hole 49 are provided in the first bypass hole 39a, the second bypass hole 39b, and the auxiliary bypass hole 49, regardless of the compression chamber 2 in which the liquid is compressed. Since each bypass hole is arranged so as to open with any one, at least one of the auxiliary bypass valve device 42 and the bypass valve device 40 always performs the opening operation. The opening operation of the auxiliary bypass valve device 42 and the bypass valve 40 is not limited to the case where liquid compression occurs in the compression chamber 2. That is, as shown in FIG. 6, the suction pressure in the normal refrigeration cycle operation decreases as the compressor changes from low speed to high speed operation.
On the other hand, the discharge pressure generally rises, and the compression ratio generally rises. Therefore, when the auxiliary bypass valve device 42 and the bypass valve 40 are not installed, the compression ratio at the time of low-speed operation of the compressor or the like is smaller than the compression ratio set in the rated load operation state, as indicated by the hatched portion in FIG. It becomes overcompressed. In such a case, as described above, the lead portion 40b of the bypass valve 40 that closes the outlet side of the first bypass hole 39a and the second bypass hole 39b opens to allow the refrigerant to flow into the discharge chamber 32, and the two-dot chain line As shown by 99, the compression chamber pressure drops on the way and the compression load is reduced. In general, the respective pressures of the compression chambers 2 (compression chambers A and B) arranged at symmetric positions are different from each other due to a difference in the degree of sealing of the compression chamber gap. The pressure difference in the compression chamber 2 applies a rotating force to the orbiting scroll 13 to apply a rotating force to a rotation preventing member (not shown) of the orbiting scroll 13. However, when the auxiliary bypass valve device 42 and the bypass valve 40 are opened to reduce the compression load, the compression chamber 2 (compression chamber A, compression chamber B)
Is instantaneously equalized during the compression stroke via the discharge chamber 32, and the compression chamber pressure difference is reduced. On the other hand, when the compressor operates at high speed, the pressure in the suction chamber 31 decreases and the pressure in the discharge chamber 32 increases. As a result, a compression state in which the actual refrigeration cycle operation compression ratio is larger than the scroll compressor set compression ratio (under-compression state). In the process of increasing the volume of the second compression chamber 2b, and before the check valve device 35 closes the discharge port 30, the refrigerant gas in the discharge chamber 32 flows through the discharge port 30 through the second compression chamber. Backflow intermittently into the chamber 2b. This back-flow refrigerant gas is recompressed in the second compression chamber 2b to be in an overcompressed state. In this case as well, the bypass valve device 40 is opened through the first bypass hole 39a and the second bypass hole 39b, as described above.
The over-compressed refrigerant gas is partially discharged into the discharge chamber 32 to lower the pressure in the compression chamber. When the bypass valve device 40 is opened through the first bypass hole 39a, the timing of discharging the refrigerant gas from the second bypass hole 39b to the discharge chamber 32 is advanced, the pressure drop in the compression chamber is increased, and the excessive compression loss is reduced. . Since the first bypass hole 39a and the second bypass hole 39b are not opened at the position closest to the discharge port 30, the second compression chamber 2b is closed by the orbiting scroll wrap 13a even immediately before the discharge port 32 is opened. Instead, it functions as a bypass to the discharge chamber 32. Also, the first
Since the bypass hole 39a and the second bypass hole 39b are opened at a position where they are not closed by the orbiting scroll wrap 13a even when the second compression chamber 2b advances 150 degrees from a state immediately before opening to the discharge port 32, the orbiting scroll is formed. After the wrap 13a passes through the first bypass hole 39a and the second bypass hole 39b, the second compression chamber 2b is not partially closed, and the bypass is always effective against the overcompression phenomenon that occurs in the compression chamber 2. The effect can be exerted. In addition, since the first bypass hole 39a and the second bypass hole 39b are arranged with an appropriate interval, the time when the first bypass hole 39a and the second bypass hole 39b are simultaneously closed by the orbiting scroll wrap 13a. Can be shortened and the effectiveness of the bypass action is lengthened. That is, by continuing the bypass action from the first bypass hole 39a and the second bypass hole 39b, the second compression chamber 2
The pressure change in the second compression chamber 2b when b is opened to the discharge port 32 is reduced, and the sound flowing out to the discharge chamber 32 and the check valve device 3
2 and the discharge pulsation are reduced.

【0023】圧縮機停止直後の残存差圧によって、油溜
11の潤滑油が油穴12,油通路21,背面室C16,
吸入室31を順次介して第1圧縮室2aに流入する。圧
縮機再起動時に第1圧縮室2aで油圧縮が生じる。当然
のことながら、この潤滑油は、補助バイパス穴49を通
じ吐出室32に排出され、その後、円滑な圧縮機運転が
継続する。なお、吸入室31に通じる背面室C16の圧
力は、吸入室31と背面室C16の間の通路抵抗によっ
て吸入圧力相当にも、また、吸入圧力と吐出圧力との中
間圧力にも設定することができる。
Due to the residual pressure difference immediately after the compressor is stopped, the lubricating oil in the oil reservoir 11 is supplied to the oil hole 12, the oil passage 21, the rear chamber C16,
The gas flows into the first compression chamber 2a via the suction chamber 31 sequentially. Oil compression occurs in the first compression chamber 2a when the compressor is restarted. Naturally, this lubricating oil is discharged to the discharge chamber 32 through the auxiliary bypass hole 49, and thereafter, the smooth compressor operation continues. The pressure of the rear chamber C16 communicating with the suction chamber 31 can be set to a pressure equivalent to the suction pressure or an intermediate pressure between the suction pressure and the discharge pressure by the passage resistance between the suction chamber 31 and the rear chamber C16. it can.

【0024】また、上記実施例では補助バイパス穴を各
1個対称配置したが、各複数個を対称配置しても良く、
単一の補助バイパス弁装置で複数個の補助バイパス穴を
開閉しても良い。
In the above embodiment, one auxiliary bypass hole is symmetrically arranged, but a plurality of auxiliary bypass holes may be symmetrically arranged.
A plurality of auxiliary bypass holes may be opened and closed by a single auxiliary bypass valve device.

【0025】(実施例2)図8は、図5における逆止弁
装置35とバイバス弁装置40とを一体にした逆止弁装
置35aの形状を示した図である。
(Embodiment 2) FIG. 8 is a view showing the shape of a check valve device 35a in which the check valve device 35 and the bypass valve device 40 in FIG. 5 are integrated.

【0026】上記の構成において、第2圧縮室2bの圧
縮途中冷媒ガスが第1バイパス穴39a,第2バイパス
穴39bを通じて吐出室32に一部排出することによっ
て吐出口32を塞ぐ逆止弁装置40aが開き始めてお
り、第2圧縮室2bが吐出口32に開通直後から圧縮完
了冷媒ガスを遅延することなく、吐出口32を通じて吐
出室32に排出される。このため、圧縮完了後の吐出口
32の圧力が過剰に上昇することなく、圧縮入力が低減
する。なお図8では、逆止弁装置35aと補助バイパス
弁装置42とが別構成であるが、これら全てを連結した
構成でも、上述の作用は同じである。
In the above configuration, the non-return valve device for closing the discharge port 32 by partially discharging the refrigerant gas during compression in the second compression chamber 2b to the discharge chamber 32 through the first bypass hole 39a and the second bypass hole 39b. 40a has begun to open, and immediately after the second compression chamber 2b opens to the discharge port 32, the compression-completed refrigerant gas is discharged to the discharge chamber 32 through the discharge port 32 without delay. Therefore, the compression input is reduced without excessively increasing the pressure of the discharge port 32 after the completion of the compression. In FIG. 8, the check valve device 35a and the auxiliary bypass valve device 42 have different configurations, but the above-described operation is the same even in a configuration in which all of them are connected.

【0027】また、上記実施例では冷媒圧縮機について
説明したが、窒素,酸素,ヘリウム等、他の気体圧縮機
についても同様の作用をする。
In the above embodiment, the refrigerant compressor has been described. However, the same operation can be applied to other gas compressors such as nitrogen, oxygen and helium.

【0028】(実施例3)図9は、冷凍サイクル配管系
の減圧装置103の途中とスクロール冷媒圧縮機101
の圧縮室とを冷媒インジェクション管105で連通さ
せ、その途中に開閉弁106を設けて、圧縮機運転圧縮
比が設定圧縮比よりも大きい時(圧縮不足状態)に、開
閉弁106を開通させて凝縮器102で液化した冷媒を
吐出圧力と吸入圧力との中間圧力に一次減圧させた未蒸
発冷媒(液と気体の混合冷媒)を、圧縮室に冷媒インジ
ェクションする冷凍サイクルを示す図である。冷媒イン
ジェクション管105は、図4の(3)で示した第2圧
縮室2bに対称配置で開口(第1バイパス穴39aと補
助バイパス穴49との間で開口)し且つ鏡板7aに設け
られたインジェクション穴98を通じて、第2圧縮室2
bに通じている。インジェクション穴98は、旋回スク
ロールラップ13aの壁面に沿って開口しており、開口
部の大きさは旋回スクロールラップ13aによって開閉
されるべく設定されている。
(Embodiment 3) FIGS. 9A and 9B show the middle of a pressure reducing device 103 in a refrigeration cycle piping system and a scroll refrigerant compressor 101.
The refrigerant is communicated with the compression chamber by a refrigerant injection pipe 105, and an on-off valve 106 is provided in the middle thereof. When the compressor operating compression ratio is larger than the set compression ratio (in a state of insufficient compression), the on-off valve 106 is opened. FIG. 3 is a diagram showing a refrigeration cycle in which a non-evaporated refrigerant (a mixed refrigerant of liquid and gas) in which a refrigerant liquefied by a condenser 102 is primarily reduced to an intermediate pressure between a discharge pressure and a suction pressure is refrigerant-injected into a compression chamber. The refrigerant injection pipe 105 is symmetrically arranged and opened (opened between the first bypass hole 39a and the auxiliary bypass hole 49) in the second compression chamber 2b shown in (3) of FIG. 4 and provided on the end plate 7a. Through the injection hole 98, the second compression chamber 2
b. The injection hole 98 is open along the wall surface of the orbiting scroll wrap 13a, and the size of the opening is set to be opened and closed by the orbiting scroll wrap 13a.

【0029】上記の構成において、圧縮機運転圧縮比が
設定圧縮比よりも大きい時(圧縮不足状態)に、未蒸発
冷媒(液と気体の混合冷媒)の一部は第2圧縮室2bに
流入して吸入室31経由の圧縮途中冷媒ガスと合流して
圧縮部を冷却するとともに、圧縮完了圧力を高めて圧縮
不足状態を解消し、吐出室32の圧力を上昇させる。吐
出室32を経由した冷媒ガスがモータ3の温度を下げ
て、モータ3の効率を高めることもできる。この冷凍サ
イクルを空調装置の暖房運転に使用する時、室内吹き出
し空気温度を高めて暖房能力を向上することができる。
圧縮途中冷媒ガス圧力が吐出室32の圧力よりも高くな
る場合は、上述と同様に第1バイパス穴39a,第2バ
イパス穴39bを通じて圧縮途中冷媒ガスが吐出室32
へ一部排出して過圧縮を防止することができる。圧縮機
運転圧縮比が設定圧縮比以下の時、開閉弁106が遮断
されて冷媒インジェクション作用は停止する。当然のこ
とながら、圧縮機起動直後および圧縮機停止後は、開閉
弁106が遮断され、圧縮機起動直後の冷媒液圧縮を阻
止して起動負荷を軽減する。
In the above configuration, when the compressor operating compression ratio is larger than the set compression ratio (under-compression state), a part of the unevaporated refrigerant (mixed refrigerant of liquid and gas) flows into the second compression chamber 2b. Then, the refrigerant mixes with the refrigerant gas in the course of compression via the suction chamber 31 to cool the compression section, and at the same time, increases the compression completion pressure to eliminate the insufficient compression state and increases the pressure in the discharge chamber 32. The refrigerant gas passing through the discharge chamber 32 can lower the temperature of the motor 3 and increase the efficiency of the motor 3. When this refrigeration cycle is used for the heating operation of the air conditioner, the indoor blowing air temperature can be raised to improve the heating capacity.
When the refrigerant gas pressure during compression becomes higher than the pressure in the discharge chamber 32, the refrigerant gas during compression passes through the first bypass hole 39a and the second bypass hole 39b as described above.
To prevent over-compression. When the compressor operating compression ratio is equal to or lower than the set compression ratio, the on-off valve 106 is shut off and the refrigerant injection operation stops. As a matter of course, immediately after the compressor is started and after the compressor is stopped, the on-off valve 106 is shut off to prevent refrigerant liquid compression immediately after the compressor is started, thereby reducing the starting load.

【0030】[0030]

【発明の効果】上記実施例から明らかなように、請求項
1記載の発明は、吐出室にも吸入室にも間欠的に連通し
ない空間が存在しない渦巻状の圧縮空間の形態におい
て、吐出口に最も近い圧縮室が吐出口に連通する直前の
状態と、吐出口に最も近い圧縮室がその状態から150
度前進した状態とで、旋回スクロールラップによってバ
イパス穴の一部が閉塞されない位置に、圧縮室と吐出室
との間を連通するバイパス穴を設けたもので、この構成
によれば運転圧縮比が設定圧縮比より大きい場合には、
吐出口に開口直前の圧縮室内気体の吐出室への一部排出
を促進させて吐出口から気体を排出する際の過圧縮を抑
制して圧縮入力を低減することができる。また運転圧縮
比が設定圧縮比より小さい場合には、圧縮途中気体を吐
出室に一部排出して過圧縮を防止して圧縮入力の低減と
圧縮機破損を防止することができる。
As is apparent from the above embodiment, the invention according to the first aspect is characterized in that the discharge port is formed in a spiral compression space in which there is no space that does not intermittently communicate with the discharge chamber or the suction chamber. The state immediately before the compression chamber closest to the discharge port communicates with the discharge port, and the state where the compression chamber closest to the discharge port is
In a state in which a part of the bypass hole is not closed by the orbiting scroll wrap in a state in which the compressor is advanced forward, a bypass hole communicating between the compression chamber and the discharge chamber is provided. If it is larger than the set compression ratio,
Partial discharge of the gas in the compression chamber immediately before opening to the discharge port to the discharge chamber is promoted, and excessive compression when discharging the gas from the discharge port can be suppressed to reduce the compression input. When the operating compression ratio is smaller than the set compression ratio, the gas in the middle of compression is partially discharged to the discharge chamber to prevent over-compression, thereby reducing compression input and preventing compressor damage.

【0031】請求項2記載の発明は、単一のバイパス弁
装置が複数のバイパス穴を同時に開閉すべくバイパス穴
を接近させて配置するもので、この構成によればバイパ
ス穴を分散して圧縮途中気体を継続的に吐出室に排出さ
せて吐出音を低減することができる。また、バイパス穴
の通路を確保してバイパス作用の効果を一層高めること
ができる。
According to a second aspect of the present invention, a single bypass valve device arranges the bypass holes close to each other so as to simultaneously open and close the plurality of bypass holes. According to this configuration, the bypass holes are dispersed and compressed. Gas on the way can be continuously discharged to the discharge chamber to reduce discharge noise. In addition, the passage of the bypass hole can be ensured to further enhance the effect of the bypass action.

【0032】請求項3記載の発明は、吐出口を開閉する
逆止弁装置がバイパス弁装置を兼ねたもので、この構成
によればバイパス穴開設位置の自由度を広げて広い範囲
の運転圧縮比領域に対してバイパス作用を発揮させるこ
とができる。また、バイパス弁装置を省くことによりコ
スト低減を図ることができる。
According to a third aspect of the present invention, the check valve device for opening and closing the discharge port also serves as a bypass valve device. According to this configuration, the degree of freedom of the opening position of the bypass hole is increased, and a wide range of operation compression is achieved. A bypass effect can be exerted on the specific region. Further, the cost can be reduced by omitting the bypass valve device.

【0033】請求項4記載の発明は、吐出口に最も近い
バイパス穴から360度以内に後退した位置で且つ圧縮
開始から360度以内の位置に別の補助バイパス穴と補
助バイパス穴を開閉する補助バイパス弁装置を鏡板に配
置するもので、この構成によれば閉塞した圧縮空間の領
域を少なくして過圧縮発生頻度を減少し、圧縮機起動入
力を低減することができる。この結果、圧縮機耐久性の
向上と圧縮機の小型化を図ることができる。
According to a fourth aspect of the present invention, there is provided an auxiliary opening and closing position for opening and closing another auxiliary bypass hole and an auxiliary bypass hole at a position retracted within 360 degrees from the bypass hole closest to the discharge port and within 360 degrees from the start of compression. By arranging the bypass valve device on the end plate, according to this configuration, the area of the closed compression space is reduced, the frequency of occurrence of overcompression is reduced, and the compressor start input can be reduced. As a result, the compressor durability can be improved and the compressor can be downsized.

【0034】請求項5記載の発明は、バイパス穴と補助
バイパス穴との間の圧縮室に旋回スクロールラップで全
開全閉される状態で開口し且つ他端が冷凍サイクルの減
圧装置の途中に通じたインジェクション穴を鏡板に設け
たもので、この構成によれば圧縮機運転圧縮比が設定圧
縮比よりも大きい時(圧縮不足状態)に、未蒸発冷媒
(液と気体の混合冷媒)の一部を圧縮途中の圧縮室に流
入させて圧縮部を冷却するとともに、圧縮完了圧力を高
めて圧縮不足状態を解消し、吐出圧力を上昇させること
ができるので、この冷凍サイクルを空調装置の暖房運転
に使用する時、室内吹き出し空気温度を高めて暖房能力
を向上することができる。また、冷媒インジェクション
穴を通じて圧縮途中圧縮室に多少過剰に流入する場合で
も、バイパス弁装置を介する吐出室へのバイパス作用に
よって過剰な過圧縮を生じることがないので、冷媒イン
ジェクション効果を有効発揮させるための微量な冷媒イ
ンジェクション調整をする必要がない。この結果、運転
圧縮比の広い領域で冷媒インジェクション効果を発揮さ
せることができる。
According to a fifth aspect of the present invention, the orbiting scroll wrap opens the compression chamber between the bypass hole and the auxiliary bypass hole in a state of being fully opened and fully closed, and the other end communicates with the decompression device of the refrigeration cycle. According to this configuration, when the compressor operating compression ratio is larger than the set compression ratio (under-compression state), a part of the unevaporated refrigerant (mixed refrigerant of liquid and gas) is provided. Into the compression chamber in the middle of compression to cool the compression section, increase the compression completion pressure to eliminate the insufficient compression state, and increase the discharge pressure. When used, the indoor air temperature can be raised to improve the heating capacity. In addition, even when the refrigerant flows into the compression chamber in the middle of the compression through the refrigerant injection hole, excessive over-compression does not occur due to the bypass action to the discharge chamber through the bypass valve device, so that the refrigerant injection effect can be effectively exhibited. It is not necessary to adjust a small amount of refrigerant injection. As a result, the refrigerant injection effect can be exerted in a wide operating compression ratio region.

【0035】請求項6記載の発明は、冷凍サイクルの減
圧装置とインジェクション穴との間の冷媒インジェクシ
ョン配管の途中に開閉弁を設け、圧縮機運転圧縮比が設
定圧縮比よりも大きい時に、開閉弁を開通せしめ、それ
以外の圧縮機運転時に開閉弁を遮断すべく制御する冷凍
サイクルに接続したもので、この構成によれば圧縮機起
動直後の冷媒液圧縮を阻止して圧縮機の耐久性向上と起
動負荷を軽減することができるという効果を奏する。
According to a sixth aspect of the present invention, an on-off valve is provided in the refrigerant injection pipe between the pressure reducing device of the refrigeration cycle and the injection hole, and the on-off valve is provided when the compressor operating compression ratio is larger than the set compression ratio. The compressor is connected to a refrigeration cycle that controls to shut off the on-off valve during other compressor operations. This configuration prevents refrigerant liquid compression immediately after starting the compressor and improves the durability of the compressor. This has the effect of reducing the starting load.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すスクロール冷媒圧縮機
の部分縦断面図
FIG. 1 is a partial longitudinal sectional view of a scroll refrigerant compressor showing one embodiment of the present invention.

【図2】図1におけるA−A線に沿った断面図FIG. 2 is a sectional view taken along line AA in FIG.

【図3】図2における圧縮空間が150度前進した時の
状態図
FIG. 3 is a state diagram when the compression space in FIG. 2 is advanced by 150 degrees.

【図4】(a)は図2における圧縮空間の順次変化を示
した状態図 (b)は同状態図 (c)は同状態図 (d)は同状態図
4 (a) is a state diagram showing a sequential change of the compression space in FIG. 2; (b) is the same state diagram; (c) is the same state diagram; and (d) is the same state diagram.

【図5】逆止弁装置とバイパス弁装置と補助バイパス弁
装置の配置図
FIG. 5 is a layout diagram of a check valve device, a bypass valve device, and an auxiliary bypass valve device.

【図6】圧縮機運転速度と圧力の関係を示す特性図FIG. 6 is a characteristic diagram showing a relationship between compressor operating speed and pressure.

【図7】圧縮室の容積変化と圧力変化状態を示す特性図FIG. 7 is a characteristic diagram showing a volume change and a pressure change state of a compression chamber.

【図8】本発明の他の実施例を示す逆止弁装置と補助バ
イパス弁装置の配置図
FIG. 8 is a layout view of a check valve device and an auxiliary bypass valve device showing another embodiment of the present invention.

【図9】本発明のスクロール気体圧縮機を冷凍サイクル
に接続した配管系統図
FIG. 9 is a piping system diagram in which the scroll gas compressor of the present invention is connected to a refrigeration cycle.

【符号の説明】[Explanation of symbols]

4 駆動軸 5 本体フレーム 7 固定スクロール 7a 鏡板 7b 固定スクロールラップ 13 旋回スクロール 13a 旋回スクロールラップ 13b ラップ支持円盤/ラップ支持円板 19 スラスト軸受 30 吐出口 31 吸入室 32 吐出室 35 逆止弁装置 39a 第1バイパス穴 39b 第2バイパス穴 40 バイパス弁装置 42 補助バイパス弁装置 49 補助バイパス穴 98 インジェクション穴 103 減圧装置 105 冷媒インジェクション配管 106 開閉弁 Reference Signs List 4 drive shaft 5 main body frame 7 fixed scroll 7a end plate 7b fixed scroll wrap 13 orbiting scroll 13a orbiting scroll wrap 13b lap support disk / lap support disk 19 thrust bearing 30 discharge port 31 suction chamber 32 discharge chamber 35 check valve device 39a 1 bypass hole 39b second bypass hole 40 bypass valve device 42 auxiliary bypass valve device 49 auxiliary bypass hole 98 injection hole 103 pressure reducing device 105 refrigerant injection piping 106 opening / closing valve

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固定スクロールの一部をなす鏡板の一面に
直立して形成された渦巻き状の固定スクロールラップに
対して、旋回スクロールの一部をなすラップ支持円板上
に直立し且つ前記固定スクロールラップに類似した形状
の旋回スクロールラップを互いに噛み合わせて、両スク
ロール間に渦巻き形の一対の圧縮空間を形成し、前記固
定スクロールラップの中心部に吐出室に通じる吐出口を
設け、前記固定スクロールラップの外側には吸入室を設
け、駆動軸と係合する前記ラップ支持円板と、前記固定
スクロールを締結し且つ前記駆動軸を支持する本体フレ
ームとに係合する前記旋回スクロールの自転阻止部材を
介して、前記旋回スクロールが前記固定スクロールに対
し公転運動を行うことによって、前記各圧縮空間が吸入
側より吐出側に向けて連続移行する複数個の圧縮室に区
画されて流体を圧縮すべく容積変化するスクロール圧縮
機構を形成し、前記ラップ支持円板の反圧縮空間側が前
記本体フレームに設けたスラスト軸受に支持される形
態、または前記旋回スクロールが前記固定スクロールの
側に背圧付勢される形態とし、前記吐出口から前記鏡板
に隣接する吐出室へのみの流体流れを許容する逆止弁装
置を前記鏡板に配置し、圧縮途中の前記圧縮室に前記旋
回スクロールラップで全開全閉される状態で開口し且つ
他端が前記吐出室に通じる少なくとも一対以上のバイパ
ス穴を前記鏡板に対称配置するとともに、前記バイパス
穴を介して前記圧縮室から前記吐出室へのみ流体の排出
を許容するバイパス弁装置を前記鏡板に設けた構成で、
前記圧縮空間は前記吐出室にも前記吸入室にも間欠的に
連通しない空間が存在せず、前記バイパス穴は、前記吐
出口に最も近い圧縮室が前記吐出口に連通する直前の状
態と、前記最も近い圧縮室がその状態から150度前進
した状態とで、前記旋回スクロールラップによって前記
バイパス穴の一部が閉塞されない位置に設けられたスク
ロール気体圧縮機。
1. A spiral fixed scroll wrap, which is formed upright on one surface of a mirror plate forming a part of a fixed scroll, stands upright on a wrap support disk forming a part of an orbiting scroll and is fixed. Orbiting scroll wraps similar in shape to the scroll wraps are meshed with each other to form a pair of spiral compression spaces between the two scrolls, and a discharge port communicating with a discharge chamber is provided in the center of the fixed scroll wrap, and the fixed scroll wrap is provided. A suction chamber is provided outside the scroll wrap to prevent rotation of the orbiting scroll, which engages with the wrap support disk engaged with the drive shaft and the main frame that fastens the fixed scroll and supports the drive shaft. The orbiting scroll makes a revolving motion with respect to the fixed scroll via a member, whereby each compression space is directed from the suction side to the discharge side. A scroll compression mechanism is formed which is divided into a plurality of compression chambers which are continuously shifted to change the volume so as to compress the fluid, and the anti-compression space side of the lap support disk is supported by a thrust bearing provided in the main body frame. A check valve device that allows fluid to flow only from the discharge port to the discharge chamber adjacent to the end plate is disposed on the end plate, and the orbiting scroll is configured to urge the back scroll toward the fixed scroll. At least one pair of bypass holes, which are open in the compression chamber in the middle of compression with the orbiting scroll wrap fully open and fully closed and whose other end communicates with the discharge chamber, are symmetrically arranged in the end plate, and the bypass hole is A configuration in which a bypass valve device that allows discharge of fluid only from the compression chamber to the discharge chamber through the end plate is provided,
The compression space does not have a space that does not intermittently communicate with the discharge chamber or the suction chamber, and the bypass hole has a state immediately before the compression chamber closest to the discharge port communicates with the discharge port, A scroll gas compressor provided at a position where a part of the bypass hole is not closed by the orbiting scroll wrap when the closest compression chamber is advanced 150 degrees from that state.
【請求項2】単一のバイパス弁装置が複数のバイパス穴
を同時に開閉すべく前記バイパス穴を接近して配置した
請求項1記載のスクロール気体圧縮機。
2. The scroll gas compressor according to claim 1, wherein a single bypass valve device is arranged close to said plurality of bypass holes so as to open and close said plurality of bypass holes simultaneously.
【請求項3】逆止弁装置がバイパス弁装置を兼ねた請求
項1または2記載のスクロール気体圧縮機。
3. The scroll gas compressor according to claim 1, wherein the check valve device also functions as a bypass valve device.
【請求項4】吐出口に最も近いバイパス穴から360度
以内に後退した位置で且つ圧縮開始から360度以内の
位置の別の一対以上の補助バイパス穴と前記補助バイパ
ス穴を開閉するバイパス弁装置を鏡板に配置した請求項
1または2記載のスクロール気体圧縮機。
4. A pair of at least one auxiliary bypass hole at a position retracted within 360 degrees from the bypass hole closest to the discharge port and within 360 degrees from the start of compression, and a bypass valve device for opening and closing the auxiliary bypass hole. 3. The scroll gas compressor according to claim 1, wherein the scroll gas compressor is disposed on a head plate.
【請求項5】バイパス穴と補助バイパス穴との間の圧縮
室に旋回スクロールラップで全開全閉される状態で開口
し且つ他端が冷凍サイクルの減圧装置の途中に通じたイ
ンジェクション穴を鏡板に設けた請求項1または4記載
のスクロール気体圧縮機。
5. An injection hole which opens in a compression chamber between a bypass hole and an auxiliary bypass hole in a state where it is fully opened and fully closed by a revolving scroll wrap, and the other end of which is connected to the middle of a decompression device of a refrigeration cycle, is provided on a head plate. 5. The scroll gas compressor according to claim 1, wherein the scroll gas compressor is provided.
【請求項6】冷凍サイクルの減圧装置とインジェクショ
ン穴との間の冷媒インジェクション配管の途中に開閉弁
を設け、圧縮機運転圧縮比が設定圧縮比よりも大きい時
に、前記開閉弁を開通せしめ、それ以外の圧縮機運転時
に前記開閉弁を遮断すべく制御する冷凍サイクルに接続
した請求項5記載のスクロール気体圧縮機。
6. An on-off valve is provided in a refrigerant injection pipe between a pressure reducing device of a refrigeration cycle and an injection hole, and the on-off valve is opened when a compressor operating compression ratio is larger than a set compression ratio. The scroll gas compressor according to claim 5, wherein the scroll gas compressor is connected to a refrigeration cycle that controls the on / off valve to be shut off during a compressor operation other than the above.
JP33299295A 1995-12-21 1995-12-21 Scroll gas compressor Expired - Lifetime JP2959457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33299295A JP2959457B2 (en) 1995-12-21 1995-12-21 Scroll gas compressor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP33299295A JP2959457B2 (en) 1995-12-21 1995-12-21 Scroll gas compressor
MYPI96005076A MY119499A (en) 1995-12-05 1996-12-04 Scroll compressor having bypass valves
US08/761,085 US5855475A (en) 1995-12-05 1996-12-04 Scroll compressor having bypass valves
CN96118600A CN1086778C (en) 1995-12-05 1996-12-05 Eddy gas compressor with by-pass valve
KR1019960064063A KR100210230B1 (en) 1995-12-05 1996-12-05 Scroll compressor having bypass valve

Publications (2)

Publication Number Publication Date
JPH09170574A JPH09170574A (en) 1997-06-30
JP2959457B2 true JP2959457B2 (en) 1999-10-06

Family

ID=18261096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33299295A Expired - Lifetime JP2959457B2 (en) 1995-12-21 1995-12-21 Scroll gas compressor

Country Status (1)

Country Link
JP (1) JP2959457B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399797B2 (en) * 1997-09-04 2003-04-21 松下電器産業株式会社 Scroll compressor
JP4672254B2 (en) * 2003-12-16 2011-04-20 三菱重工業株式会社 Horizontal scroll type compressor
JP4624201B2 (en) * 2005-07-13 2011-02-02 三菱電機株式会社 Scroll compressor
KR100844153B1 (en) * 2006-03-14 2008-07-04 엘지전자 주식회사 Bypass device for scroll compressor
JP4379489B2 (en) 2007-05-17 2009-12-09 ダイキン工業株式会社 Scroll compressor
JP2011047368A (en) * 2009-08-28 2011-03-10 Sanyo Electric Co Ltd Scroll compressor
JP5786130B2 (en) * 2011-05-24 2015-09-30 パナソニックIpマネジメント株式会社 Scroll compressor
JP5777571B2 (en) * 2012-06-11 2015-09-09 三菱電機株式会社 Scroll compressor
JP2016109033A (en) * 2014-12-05 2016-06-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Scroll compressor
JP6948530B2 (en) * 2016-11-24 2021-10-13 パナソニックIpマネジメント株式会社 Asymmetric scroll compressor
US20190309750A1 (en) * 2016-11-24 2019-10-10 Panasonic Intellectual Property Management Co., Ltd. Scroll compressor
WO2020008747A1 (en) * 2018-07-05 2020-01-09 ダイキン工業株式会社 Scroll compressor
JPWO2020162394A1 (en) * 2019-02-08 2021-09-09 パナソニックIpマネジメント株式会社 Scroll compressor
WO2021192238A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 Scroll compressor

Also Published As

Publication number Publication date
JPH09170574A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP3635794B2 (en) Scroll gas compressor
US4475360A (en) Refrigeration system incorporating scroll type compressor
US5855475A (en) Scroll compressor having bypass valves
JP4614441B2 (en) Scroll compressor
US4545747A (en) Scroll-type compressor
JP4519489B2 (en) Scroll compressor
JP2959457B2 (en) Scroll gas compressor
AU5947200A (en) Compressor pulse width modulation
JP2002332974A (en) Scroll type machine
JP3028054B2 (en) Scroll gas compressor
JPH08303361A (en) Scroll c0mpressor
JP4222857B2 (en) Refrigeration equipment
JP3764261B2 (en) Scroll compressor
JP2699723B2 (en) Two-stage compression refrigeration system with check valve device
JPH1037868A (en) Scroll compressor
JP2956555B2 (en) Scroll gas compressor
JP3027930B2 (en) Scroll gas compressor
JP2006009640A (en) Scroll compressor
JPH09217690A (en) Scroll gas compressor
JP2674562B2 (en) Scroll refrigerant compressor with refueling control means
JP2004270667A (en) Scroll compressor
JP2007132257A (en) Scroll compressor
JP3635826B2 (en) Scroll compressor
JP2001041183A (en) Scroll gas compressor
JP5076732B2 (en) Scroll compressor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 15

EXPY Cancellation because of completion of term