JPS63150491A - Scroll gas compressor - Google Patents

Scroll gas compressor

Info

Publication number
JPS63150491A
JPS63150491A JP29947986A JP29947986A JPS63150491A JP S63150491 A JPS63150491 A JP S63150491A JP 29947986 A JP29947986 A JP 29947986A JP 29947986 A JP29947986 A JP 29947986A JP S63150491 A JPS63150491 A JP S63150491A
Authority
JP
Japan
Prior art keywords
chamber
oil
compression
pressure
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29947986A
Other languages
Japanese (ja)
Other versions
JPH073230B2 (en
Inventor
Katsuharu Fujio
藤尾 勝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29947986A priority Critical patent/JPH073230B2/en
Publication of JPS63150491A publication Critical patent/JPS63150491A/en
Publication of JPH073230B2 publication Critical patent/JPH073230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the captioned device having high efficiency and the superior durability by realizing an oil feeding passage controller having a wide application range by utilizing the pressure difference between in a suction chamber and compression chamber which does not communicate to a discharge chamber and the suction chamber. CONSTITUTION:A compressor starts operation, and a swirl scroll 10 performs a turning movement to inhale the gas in a suction chamber 33 into a compression chamber, and said gas is compressed to a certain compression ratio and then discharged into a discharge chamber 5. Further, a differential pressure is generated between the back pressure chambers of an oil feeding passage control valve device 17e installed midway in an oil feeding passage, and an opening/closing valve is opened to communicate to the oil feeding passage, and the lubricating oil in the oil reservoir 18 of the discharge chamber 5 is supplied to a compression chamber B39. When no lubricating oil exists in the discharge chamber oil reservoir 18, a large quantity of the compressed gas having high pressure and high temperature flows into the compression chamber B39 through the oil feeding passage, and the differential pressure between the both back pressure chambers exceeds a set value, and the valve body is closed to close the oil feeding passage. When the compressor stops, the valve body is retreated by a piston spring 38, etc., aud the opening/closing valve is closed. Therefore, the inutile flow out of the lubricating oil in the discharge chamber oil reservoir 18 is prevented, and the effective use of the lubricating oil is permitted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスクロール気体圧縮機に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a scroll gas compressor.

従来の技術 低振動、低騒音特性を備えたスクロール圧縮機は、吸入
室が外周部に有り、吐出ポートが渦巻きの中心部に設け
られ、圧縮流体の流れが一方向で往復動式圧縮機や回転
式圧縮機のような流体を圧縮するための吐出弁を必要と
せず圧縮比が一定で、吐出脈動も比較的小さくて大きな
吐出空間を必要としないことが一般に知られている。
Conventional technology A scroll compressor with low vibration and low noise characteristics has a suction chamber on the outer periphery and a discharge port in the center of the spiral. It is generally known that a rotary compressor does not require a discharge valve for compressing fluid, has a constant compression ratio, has relatively small discharge pulsation, and does not require a large discharge space.

しかし、特に気体を圧縮する場合などは圧縮部の漏れ隙
間を小さくするために渦巻き部の寸法精度を極めて高く
する必要があるが、部品形状の複雑さ、寸法精度のバラ
ツキなどにより、スクロール気体圧縮機のコストが高く
性能のバラツキも大きいという問題があった。
However, especially when compressing gas, it is necessary to make the dimensional accuracy of the scroll part extremely high in order to reduce the leakage gap in the compression part. The problem was that the machine cost was high and performance varied greatly.

そこで、この種の問題解決のための方策として、圧縮途
中の気体漏れ防止のために潤滑油膜を利用したシール効
果により渦巻き部寸法精度の適正化と圧縮機性能の安定
化を期待することが大きく、第12図に示す構成が考え
られ、摺動部に供給し潤 た罐滑油の一部を吸入気体と共に圧縮室に流入させ、圧
縮吐出後に圧縮気体から潤滑油を分離後、油戻し通路を
介して再び潤滑油溜に通じる空間に戻して圧縮機外部へ
の潤滑油流出を少なくするという考え方の下に、吐出空
間582に設けられたキャップ519内の空間520で
圧縮気体から分離された潤滑油が孔522〜孔584の
油戻し通路を通じて吸入通路となる空間580に戻され
、油溜508に集められ、ポンプ装置によって再び摺動
部に供給される構成であった(特開昭60−75795
号公報)。
Therefore, as a measure to solve this type of problem, it is highly expected that the dimensional accuracy of the spiral part will be optimized and the compressor performance will be stabilized by the sealing effect using a lubricating oil film to prevent gas leakage during compression. , the configuration shown in Fig. 12 is considered, in which a part of the lubricating oil supplied to the sliding part and moistened in the can flows into the compression chamber together with the suction gas, and after the lubricating oil is separated from the compressed gas after being compressed and discharged, the oil return passage is Based on the concept of reducing lubricating oil leakage to the outside of the compressor by returning it to the space communicating with the lubricating oil reservoir via the The lubricating oil was returned to the space 580 serving as the suction passage through the oil return passages of the holes 522 to 584, collected in the oil reservoir 508, and supplied to the sliding parts again by the pump device (Japanese Patent Application Laid-Open No. 60-1999). -75795
Publication No.).

また、第1a図の構成も考えられ、吐出室674に設け
られた油分離エレメント672によって圧縮気体に含ま
れる潤滑油を分離して固定スクロール鏡板1303上の
油溜673に潤滑油を収集し、固定スクロール601と
旋回スクロール606との間の摺動面631に差圧給油
の後、吸入室699に潤滑油を流入させて油膜のシール
効果によって圧縮室内での圧縮気体漏れを少なくする構
成であった(特開昭56−165787号公報)。
In addition, the configuration shown in FIG. 1a is also considered, in which the lubricating oil contained in the compressed gas is separated by an oil separation element 672 provided in the discharge chamber 674, and the lubricating oil is collected in an oil reservoir 673 on the fixed scroll end plate 1303. After the sliding surface 631 between the fixed scroll 601 and the orbiting scroll 606 is lubricated with differential pressure, lubricating oil is allowed to flow into the suction chamber 699 to reduce leakage of compressed gas in the compression chamber by the sealing effect of the oil film. (Japanese Unexamined Patent Publication No. 165787/1987).

また、第14図、第15図のよう1を潤滑油を圧縮途中
の圧縮室に直接流入させる構成も考えられ、第14図は
密閉容器701内の上部にモータ703を配置し下部に
圧縮部を配置して密閉容器内空間702を吐出室とした
構造で、吐出室底部の油溜710の潤滑油を油吸い込み
管722を介して圧縮途中の圧縮室723に直接流入さ
せる構成であり(特開昭57−8386号公報)、第1
5図は密閉容器801内の上部に圧縮部を配置し下部に
モータ803を配置して密閉容器内空間802を吐出室
とした構造で、旋回スクロール804の気体圧縮時に作
用するスラスト力を軽減するために旋回スクロール80
4の反圧縮室側背面に設けた中間圧力状態の背圧室80
Bを中継し、その前後に設けた駆動軸802内の油入8
99、給油配管815を通して密閉容器801内底部の
油溜809の潤滑油を圧縮途中の圧縮室823に差圧に
より流入させる構成であった(特開昭59−11089
3号公報)。
Alternatively, a configuration may be considered in which the lubricating oil is directly flowed into the compression chamber during compression as shown in FIGS. 14 and 15. In FIG. It has a structure in which the internal space 702 of the sealed container is used as a discharge chamber, and the lubricating oil in the oil sump 710 at the bottom of the discharge chamber is directly flowed into the compression chamber 723 in the middle of compression via the oil suction pipe 722. Publication No. 57-8386), No. 1
Figure 5 shows a structure in which a compression section is placed in the upper part of a closed container 801 and a motor 803 is placed in the lower part, and the space 802 inside the closed container is used as a discharge chamber, thereby reducing the thrust force that acts when the orbiting scroll 804 compresses gas. Orbiting scroll for 80
A back pressure chamber 80 in an intermediate pressure state provided on the back side of No. 4 on the opposite compression chamber side.
Oil filler 8 in the drive shaft 802 provided before and after the relay B
99, the lubricating oil in the oil reservoir 809 at the inner bottom of the closed container 801 was caused to flow through the oil supply pipe 815 into the compression chamber 823 in the middle of compression by differential pressure (Japanese Patent Laid-Open No. 59-11089).
Publication No. 3).

発明が解決しようとする問題点 しかしながら上記の第12図のような油戻し通路(孔5
22〜孔584)を介して吐出空間582と低圧側の空
間580とが常に連通している構成では、例え常に空間
520や吐出空間582に潤滑油が存在する場合でも圧
縮機駆動軸の回転速度の変化に伴い摺動部給油量などが
変化して、圧縮気体中に含まれる潤滑油量も変化すると
共に吐出空間582と低圧側の空間580との差圧や潤
滑油の粘性も変化するなどして、過不足なく潤滑油を戻
す油戻し通路の設定が極めて困難であり、圧縮機高速運
転時などは潤滑油の吐出量が多くて圧縮機外部への潤滑
油多量流出を防ぐことが不可能である。
Problems to be Solved by the Invention However, if the oil return passage (hole 5
In a configuration in which the discharge space 582 and the low-pressure side space 580 are always in communication through the holes 584), even if lubricating oil is always present in the space 520 and the discharge space 582, the rotational speed of the compressor drive shaft With the change in the amount of oil supplied to the sliding parts, etc., the amount of lubricating oil contained in the compressed gas also changes, and the differential pressure between the discharge space 582 and the low-pressure side space 580 and the viscosity of the lubricating oil also change. Therefore, it is extremely difficult to set up an oil return passage that returns lubricating oil in just the right amount, and when the compressor is operating at high speed, the amount of lubricating oil discharged is large and it is difficult to prevent large amounts of lubricating oil from leaking outside the compressor. It is possible.

また、圧縮機停止中に空間520や吐出空間582の潤
滑油が差圧や自重などで圧縮機底部の油溜508に流入
し、圧縮機再起動後しばらくの間は空間520や吐出空
間582に充分な潤滑油が無く、多量の圧縮気体が油戻
し通路(孔522〜孔584)を通して低圧側の空間5
80に流入して吸入効率、圧縮効率の著しい低下や耐久
性劣化を招くという問題があった。
Furthermore, while the compressor is stopped, lubricating oil in the space 520 and discharge space 582 flows into the oil sump 508 at the bottom of the compressor due to differential pressure and dead weight, and remains in the space 520 and discharge space 582 for a while after the compressor is restarted. There is not enough lubricating oil, and a large amount of compressed gas passes through the oil return passage (holes 522 to 584) to the space 5 on the low pressure side.
There was a problem in that the suction efficiency and compression efficiency were significantly lowered and the durability was deteriorated.

また、上記の第13図のような固定スクロール鏡板60
3上の油溜673の潤滑油を摺動面631を介して吸入
室699に流入させる構成では、第18図の場合と同様
に圧縮機駆動軸が高速回転して気体吐出量が増加すると
油溜673の潤滑油が無い状態もある。このような場合
には吐出室674の圧縮気体が摺動面631を介して吸
入室699に多量流入し、吸入効率、圧縮効率の著しい
低下は勿論のこと摺動面631の摩耗や焼き付きを引き
起こすなどの問題があった。
Furthermore, a fixed scroll end plate 60 as shown in FIG.
In the configuration in which the lubricating oil in the oil reservoir 673 above 3 flows into the suction chamber 699 through the sliding surface 631, when the compressor drive shaft rotates at high speed and the gas discharge amount increases, as in the case of FIG. There is also a state where there is no lubricating oil in the reservoir 673. In such a case, a large amount of compressed gas in the discharge chamber 674 flows into the suction chamber 699 via the sliding surface 631, causing not only a significant decrease in suction efficiency and compression efficiency but also wear and seizure of the sliding surface 631. There were other problems.

また、上記の第14図のような吐出圧力に等しい密閉容
器内空間702の底部の油溜710の潤滑油を圧縮途中
の圧縮室723に差圧により流入させる構成では、冷媒
圧縮機などに使用する際圧縮機停止中にその自重や差圧
などにより圧縮機外部の冷凍サイクルから圧縮機内に帰
還した多量の冷媒が液化状態で油溜710の上部のモー
タ703下面にまで溜まり、冷媒液や潤滑油が油吸い込
み管722などを通じて圧縮室723に流入し充満する
場合もあり、このような状態では圧縮負荷が過大のため
再起動運転不能であり、例えモータ703の起動トルク
が大きくて再起動できるとも圧縮機破損を招く。
In addition, a configuration in which the lubricating oil in the oil reservoir 710 at the bottom of the closed container internal space 702, which is equal to the discharge pressure as shown in FIG. When the compressor is stopped, a large amount of refrigerant that returns into the compressor from the refrigeration cycle outside the compressor due to its own weight and differential pressure accumulates in a liquefied state up to the bottom surface of the motor 703 above the oil sump 710, causing refrigerant liquid and lubricant. In some cases, oil may flow into the compression chamber 723 through the oil suction pipe 722 and fill it, and in such a state, the compression load is too large and restart operation is impossible.Even if the starting torque of the motor 703 is large, restart is possible. Both may cause damage to the compressor.

また、圧縮機運転条件によって油溜710の潤滑油が不
足する場合もあり、このような状態では圧縮室723に
圧縮気体が流入して圧縮効率の著しい低下や圧縮室内異
常圧力上昇に伴う圧縮機破損などを招くという問題があ
った。
Furthermore, depending on the compressor operating conditions, there may be a shortage of lubricating oil in the oil reservoir 710. In such conditions, compressed gas may flow into the compression chamber 723, resulting in a significant decrease in compression efficiency or an abnormal pressure increase in the compression chamber, causing the compressor to malfunction. There was a problem that it caused damage.

また、上記の第15図のような圧縮機底部の油溜809
に通じる中間圧力状態の背圧室808を経由して圧縮途
中の圧縮室823に潤滑油を供給する構成でも、上記の
第20図の場合と同様に油溜809の潤滑油が不足する
場合には圧縮効率の著しい低下や耐久性低下を招くとい
う問題もあった。
In addition, the oil sump 809 at the bottom of the compressor as shown in FIG.
Even with the configuration in which lubricating oil is supplied to the compression chamber 823 in the middle of compression via the back pressure chamber 808 in an intermediate pressure state leading to However, there was also the problem that compression efficiency was significantly lowered and durability was lowered.

また一方、第16図、第17図でも示すように圧縮機運
転時に吐出室910底部の油溜916に通じる給油通路
919を開いて圧縮部に差圧給油し、圧縮機停止時に給
油通路を閉じる構成の発明が特公昭59−44517号
公報によっても知られているが、この発明は吐出ポート
907の下流に吐出弁908を必要とするスライドベー
ン型回転式圧縮機の吐出弁908通過前のシリンダ92
7の圧力と吐出弁908通過後の吐出室910の圧力と
の差圧を利用してプランジャー922を作動させ給油通
路919の開閉弁925を制御する構成である。
On the other hand, as shown in FIGS. 16 and 17, when the compressor is operating, the oil supply passage 919 leading to the oil sump 916 at the bottom of the discharge chamber 910 is opened to supply differential pressure oil to the compression section, and when the compressor is stopped, the oil supply passage is closed. The invention of the structure is also known from Japanese Patent Publication No. 59-44517, and this invention is a slide vane rotary compressor that requires a discharge valve 908 downstream of the discharge port 907. 92
7 and the pressure in the discharge chamber 910 after passing through the discharge valve 908 is used to operate the plunger 922 to control the on-off valve 925 of the oil supply passage 919.

しかし、圧縮機冷時起動運転直後しばらくの間などは、
吐出室910の圧力が低くてシリンダ927内圧線切期
行程から吐出弁908が開き吐出室910とシリンダ9
27との圧力差が小さい。
However, for a while immediately after compressor cold startup operation,
Since the pressure in the discharge chamber 910 is low, the discharge valve 908 opens from the cylinder 927 internal pressure line cutoff stroke, and the discharge chamber 910 and the cylinder 9 open.
The pressure difference with 27 is small.

異音や圧縮効率低下を招くなどの問題が有り、圧縮機運
転条件に影響されない給油通路制御装置の実用化が望ま
れていた。
There are problems such as abnormal noise and reduction in compression efficiency, and it has been desired to put into practical use an oil supply passage control device that is not affected by compressor operating conditions.

そこで、本発明はスクロール圧縮機が圧縮室圧力を上昇
させるための吐出弁を必要とせず圧縮比が一定であるこ
とに着目し、吸入室および吐出室に連通しない圧縮室と
吸入室などとの圧力差を利用して応用範囲の広い給油通
路制御装置を実用化することにより高効率、耐久性に優
れたスクロール気体圧縮機を提供するものである。
Therefore, the present invention focuses on the fact that a scroll compressor does not require a discharge valve to increase the pressure in the compression chamber and has a constant compression ratio. The objective is to provide a scroll gas compressor with high efficiency and excellent durability by putting into practical use a fuel supply passage control device that utilizes pressure differences and has a wide range of applications.

問題点を解決するための手段 上記問題を解決するために本発明のスクロール気体圧縮
機は、吐出室の油溜または吐出室に通じる油溜とその油
溜よりも圧力が低く吐出室にも吸入室にも通じない第2
圧縮室とを給油通路により連通させ、給油通路の途中に
は給油通路を開閉する開閉弁とその開閉弁を制御するア
クチェータとで構成される給油通路制御弁装置を設け、
アクチェータには弁体とその弁体の両側に配置した弁体
の背圧室Aと背圧室日および弁体を付勢するバネ装置を
設け、背圧室Aは吐出室にも吸入室にも連通せず第2圧
縮室よりも圧縮後行程の第1圧縮室   □に通じ、背
圧室日は吸入室また吸入室に通じる第3圧縮室または吸
入室に通じる吸入側に通じ、背圧室Aと背圧室日との間
のに差圧がありその差圧が第1設定値の範囲にある場合
に弁体がバネ装置に抗して前進して開閉弁を開き、差圧
が第1設定値よりも大きい第2設定値の範囲にある場合
に弁体がさらに前進して開閉弁を閉じ、差圧のない場合
に弁体が後退して開閉弁を閉じる給油通路制御弁装置を
備えた構成である。
Means for Solving the Problems In order to solve the above problems, the scroll gas compressor of the present invention has an oil sump in the discharge chamber or an oil sump leading to the discharge chamber, and an oil sump that is lower in pressure than the oil sump and also has suction in the discharge chamber. The second room doesn't even lead to the room.
The compression chamber is communicated with the oil supply passage, and in the middle of the oil supply passage there is provided an oil supply passage control valve device consisting of an on-off valve that opens and closes the oil supply passage and an actuator that controls the on-off valve.
The actuator is equipped with a valve body, a back pressure chamber A of the valve body placed on both sides of the valve body, and a spring device that biases the valve body. The back pressure chamber does not communicate with the first compression chamber □ in the post-compression stroke than the second compression chamber, and the back pressure chamber communicates with the suction chamber, the third compression chamber that communicates with the suction chamber, or the suction side that communicates with the suction chamber, and the back pressure When there is a pressure difference between chamber A and the back pressure chamber and the pressure difference is within the range of the first set value, the valve body moves forward against the spring device to open the on-off valve and the pressure difference is increased. Refueling passage control valve device in which the valve body advances further to close the on-off valve when the second set value is greater than the first set value, and the valve body moves back to close the on-off valve when there is no differential pressure. It is a configuration with.

作  用 本発明は上記構成によって、圧縮機が始動し旋回スクロ
ールが旋回運動をして吸入室内の気体が圧縮室に吸入さ
れ一定の圧縮比にまで圧縮されて吐出室に吐出されると
共に、給油通路の途中に設けられた給油通路制御弁装置
の背圧室Aと背圧室Bとの間に差圧が生じて弁体が前進
して開閉弁を開いて給油通路を連通させ、吐出室の油溜
(吐出室に通じる油溜)の潤滑油は第2圧縮室に給油さ
れる。
According to the above configuration, the compressor is started, the orbiting scroll performs an orbiting motion, and the gas in the suction chamber is sucked into the compression chamber, compressed to a constant compression ratio, and discharged to the discharge chamber. A differential pressure is generated between back pressure chamber A and back pressure chamber B of the oil supply passage control valve device provided in the middle of the passage, and the valve body moves forward to open the on-off valve and communicate the oil supply passage, and the discharge chamber The lubricating oil in the oil sump (an oil sump communicating with the discharge chamber) is supplied to the second compression chamber.

万一、吐出室の油溜(吐出室に通じる油溜)に潤滑油が
無い場合には給油通路を通じて高温高圧の圧縮気体が第
2圧縮室に多量に流入して第1圧縮室の圧力が異常上昇
して背圧室への圧力も異常に上昇し背圧室Aと背圧室B
との間の差圧も設定値を超え、弁体がバネ装置の付勢力
に抗してさらに前進し開閉弁を閉じて給油通路を閉じる
。圧縮機が停止すると圧縮室間の隙間を通じて圧縮空間
の圧力と吸入室圧力とかはζに等しくなり(圧縮機東 停止直後は、逆転防止弁が圧縮空間と吐出室との間に設
けられている場合は圧縮室と吸入室との圧乏 力が吸入側の圧力になり、逆転防止弁が吸入側に設けら
れている場合は圧縮室と吸入室の圧力が吐克 出室圧力になり、逆転防止弁のない場合は旋回スクロー
ルが逆転をして圧縮室と吸入室との圧力差が瞬時に無く
なる)、弁体がバネ装置の付勢力や弁体の自重などによ
り後退して開閉弁を閉じて給油通路を遮断し、吐出室の
油溜(吐出室に通じる油溜)の潤滑油の無駄な流失を防
ぎ、有益な潤滑油の使用によって圧縮効率と耐久性を向
上することができる。
In the unlikely event that there is no lubricating oil in the oil sump in the discharge chamber (the oil sump connected to the discharge chamber), a large amount of high-temperature, high-pressure compressed gas will flow into the second compression chamber through the oil supply passage, causing the pressure in the first compression chamber to rise. The pressure in the back pressure chambers also rose abnormally, causing back pressure chambers A and B to rise abnormally.
The differential pressure between the two also exceeds the set value, and the valve body moves further forward against the biasing force of the spring device, closing the on-off valve and closing the oil supply passage. When the compressor stops, the pressure in the compression space and the pressure in the suction chamber become equal to ζ through the gap between the compression chambers (immediately after the compressor stops, a reverse prevention valve is installed between the compression space and the discharge chamber. In this case, the pressure deficit between the compression chamber and suction chamber becomes the pressure on the suction side, and if a reverse prevention valve is installed on the suction side, the pressure in the compression chamber and suction chamber becomes the discharge chamber pressure, preventing reverse rotation. (If there is no valve, the orbiting scroll reverses and the pressure difference between the compression chamber and the suction chamber disappears instantly), and the valve body moves back due to the biasing force of the spring device and its own weight, closing the on-off valve. By blocking the oil supply passage, wasteful loss of lubricating oil in the oil sump in the discharge chamber (oil sump communicating with the discharge chamber) can be prevented, and compression efficiency and durability can be improved by using useful lubricating oil.

実施例 以下本発明の5実施例のスクロール気体圧縮機について
、図面を参照しながら説明する。
EXAMPLES Below, scroll gas compressors according to five embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例における密閉型スクロー
ル冷媒圧縮機の縦断面図を示し、第2図、第3図、第4
図は第1図における給油通路制御弁装置の動作を説明す
る縦断面図を示し、第5図は第1図のA−A線における
圧縮部の横断面図を示し、第6図は吐出側に近くて吐出
室に連通しない圧縮室の圧力変化と給油通路制御弁装置
に導入された圧力変化との比較説明図を示し、第8図〜
第11図は本発明の別の実施例における密閉型スクロー
ル冷媒圧縮機の縦断面図と部分断面図を示す。
FIG. 1 shows a vertical cross-sectional view of a hermetic scroll refrigerant compressor in a first embodiment of the present invention, and FIGS.
The figure shows a longitudinal sectional view for explaining the operation of the oil supply passage control valve device in Fig. 1, Fig. 5 shows a cross-sectional view of the compression section taken along line A-A in Fig. 1, and Fig. 6 shows the discharge side. Figure 8-
FIG. 11 shows a longitudinal sectional view and a partial sectional view of a hermetic scroll refrigerant compressor in another embodiment of the present invention.

第1図において、1.2は鉄製の密閉ケース、3は鉄製
のフレームでその外周面部で密閉ケース1.2と共に単
一の溶接ビード4によって溶接密゛ 封され密閉ケース
1,2内を上側の吐出室5と下側の駆動室6(低圧側)
に仕切っている。
In Fig. 1, 1.2 is an iron sealed case, and 3 is an iron frame, which is welded and sealed together with the sealed case 1.2 on the outer peripheral surface by a single weld bead 4, and the inside of the sealed cases 1 and 2 is shown on the upper side. discharge chamber 5 and lower drive chamber 6 (low pressure side)
It is divided into

フレーム3に支承されインバータ電源(図示なし)によ
って運転制御されるモータ7により回転駆動される駆動
軸8の上端部の偏心穴9には旋回スクロール10の旋回
軸11が填め込まれ、旋回スクロール10の自転阻止部
品12が旋回スクロール10とフレーム3に係合し、旋
回スクロール10に噛み合う固定スクロール13がフレ
ーム3にボルト固定され、固定スクロール13の鏡板1
4には吐出ポート15が設けられ、鏡板14の上面には
吐出ポート15の開口端を塞ぐ逆止弁16と給油通路制
御弁装置17・が取り付けられている。吐出室5の底部
は吐出室油溜168でその上部ニは多数の小穴を有した
傘状のパンチングメタル19が密閉ケース1に取り付け
られ、密閉ケース1とパンチングメタル19との間には
細鉄線から成るフィルター20が詰められ、吐出室5は
密閉ケース1の上面に設けられた吐出管21を通じて外
部の冷凍サイクル′配管系を経て密閉ケース2の側面に
設けられた吸入管22を通じて低圧側の駆動室6に連通
し、駆動室6の底部にはモータ室油溜23が設けられ、
偏心穴9とモータ室油溜23とを連通する偏心油入24
を有した駆動軸8の下端がモータ室油溜23に埋没して
いる。
An orbiting shaft 11 of an orbiting scroll 10 is fitted into an eccentric hole 9 at the upper end of a drive shaft 8 which is supported by a frame 3 and rotationally driven by a motor 7 whose operation is controlled by an inverter power supply (not shown). The rotation prevention part 12 engages with the orbiting scroll 10 and the frame 3, the fixed scroll 13 that meshes with the orbiting scroll 10 is bolted to the frame 3, and the end plate 1 of the fixed scroll 13
4 is provided with a discharge port 15, and a check valve 16 for closing the open end of the discharge port 15 and an oil supply passage control valve device 17 are attached to the upper surface of the end plate 14. The bottom of the discharge chamber 5 is a discharge chamber oil reservoir 168, and the upper part thereof is an umbrella-shaped punching metal 19 with many small holes attached to the closed case 1, and a thin iron wire is connected between the closed case 1 and the punched metal 19. The discharge chamber 5 is filled with a filter 20 provided on the upper surface of the sealed case 1, passes through the external refrigeration cycle piping system, and then passes through the suction pipe 22 provided on the side of the sealed case 2 to the low-pressure side. A motor chamber oil reservoir 23 is provided at the bottom of the drive chamber 6 and communicates with the drive chamber 6.
Eccentric oil filler 24 that communicates eccentric hole 9 and motor chamber oil sump 23
The lower end of the drive shaft 8 having a diameter is buried in the motor chamber oil sump 23.

第2図、第3図、第4図、第5図において、給油通路制
御弁装置17eは鏡板14にガスケット25を挾んで取
り付けられ、本体ケース26eに設けられてその一端が
メクラ栓27によって塞がれたシリンダ2ae内には外
周溝29を有したプランジャー30が移動可能に装着さ
れている。シリンダ28・はプランジャー30によって
2つの背圧室に仕切られ、メクラ栓27の側の背圧室B
31はガス穴32によって吸入室a3に通じ、他方の背
圧室A34は極細の圧力導入穴35によって吐出ポート
15とは連通せず吐出ポート15に最も近い圧縮室A3
6(第1圧縮室)に連通している。背圧室831にはプ
ランジャー30の一端に設けられた円筒穴37に挿入支
持されプランジャー30に付勢力を与えるバネ装置38
がコイルバネA38aとコイルバネB58bの二重構造
で形成され、コイルバネB58bの外側に配置された形
状記憶合金製のコイルバネA38mは、その自由長さが
コイルバネB58bよりも長く、コイルバネB58bの
バネ定数はコイルバネA38mよりも極端に大きく設定
され、コイルバネA38aの付勢力は吸入室33と圧縮
室A36との間の差圧がほとんど無い場合に背圧室83
1の容積を広げるべくプランジャー30を一定量移動さ
せ、第3図の位置でプランジャー30が停止し、吸入室
33と圧縮室A36との間に差圧がありその差圧が設定
値の範囲にある場合に、プランジャー30に作用する差
圧力は背圧室B31の容積をコイルバネA38−に抗し
て狭めるべくプランジャー30を前進させるが、コイル
バネ日38bをわずかに収縮せしめた第2図の位置でプ
ランジャー30が停止し、コイルバネA38mはそれ自
身の温度が設定温度(例えば130℃)を超えるとバネ
定数が急増して付勢力を強めてプランジャー30を第3
図の位置に復帰させる。
In FIGS. 2, 3, 4, and 5, the oil supply passage control valve device 17e is attached to the end plate 14 with a gasket 25 in between, and is provided in the main body case 26e, with one end thereof being closed by a blind stopper 27. A plunger 30 having an outer circumferential groove 29 is movably mounted inside the detached cylinder 2ae. The cylinder 28 is partitioned into two back pressure chambers by a plunger 30, and the back pressure chamber B on the side of the blind plug 27
31 communicates with the suction chamber a3 through a gas hole 32, and the other back pressure chamber A34 does not communicate with the discharge port 15 through an extremely thin pressure introduction hole 35, but is connected to the compression chamber A3 closest to the discharge port 15.
6 (first compression chamber). In the back pressure chamber 831, a spring device 38 is inserted and supported in a cylindrical hole 37 provided at one end of the plunger 30 and applies a biasing force to the plunger 30.
is formed of a double structure of coil spring A38a and coil spring B58b, and coil spring A38m made of a shape memory alloy and placed outside of coil spring B58b has a free length longer than that of coil spring B58b, and the spring constant of coil spring B58b is the same as that of coil spring A38m. The biasing force of the coil spring A38a is set extremely larger than that of the back pressure chamber 83 when there is almost no differential pressure between the suction chamber 33 and the compression chamber A36.
The plunger 30 is moved by a certain amount in order to increase the volume of 1, and the plunger 30 stops at the position shown in FIG. When the pressure difference is within the range, the differential pressure acting on the plunger 30 advances the plunger 30 to narrow the volume of the back pressure chamber B31 against the coil spring A38-. The plunger 30 stops at the position shown in the figure, and when the temperature of the coil spring A38m exceeds the set temperature (for example, 130°C), the spring constant rapidly increases and the biasing force is strengthened to move the plunger 30 to the third position.
Return to the position shown in the figure.

圧力導入穴35を介して圧縮室A36に通じる背圧室A
34の圧力が異常上昇して背圧室A34と背圧室831
との間の差圧が設定値を超えた場゛合には、プランジャ
ー30がコイルバネA38m。
Back pressure chamber A communicating with compression chamber A36 via pressure introduction hole 35
34 pressure rises abnormally and back pressure chamber A34 and back pressure chamber 831
If the differential pressure between the two exceeds the set value, the plunger 30 releases the coil spring A38m.

コイルバネB58bに抗して移動し、第4図の位置で停
止する。
It moves against the coil spring B58b and stops at the position shown in FIG.

吸入室33と圧縮室A36との間に位置して吸入室33
とは連通しない圧縮室B59(第3圧縮室)(圧縮室B
a39a )は、極細の油インジェクション穴40(イ
ンジェクション管40m)と外周溝29と極細の油吸い
込み穴41で構成される給油通路を介して吐出室油溜1
8の底部に通じ、プランジャー30の停止位置により給
油通路が連通または遮断される。
The suction chamber 33 is located between the suction chamber 33 and the compression chamber A36.
Compression chamber B59 (third compression chamber) (compression chamber B
a39a) is connected to the discharge chamber oil sump 1 through an oil supply passage consisting of an extremely thin oil injection hole 40 (injection pipe 40m), an outer circumferential groove 29, and an extremely thin oil suction hole 41.
8, and the oil supply passage is communicated or blocked depending on the stop position of the plunger 30.

ち 第6図において、横軸は駆動軸島の回転角度を表し、縦
軸は冷媒圧力を表し、吸入・圧縮・吐出過程における冷
媒ガスの正常、異常時の圧力変化状態を表す。
In FIG. 6, the horizontal axis represents the rotation angle of the drive shaft island, and the vertical axis represents the refrigerant pressure, which represents the normal and abnormal pressure change states of the refrigerant gas during the suction, compression, and discharge processes.

第7図において、横軸は駆動軸重の回転角度を表し、縦
軸は冷媒圧力を表し、実線42は正常運転時の圧縮室A
36の圧力、点線71は異常圧力上昇時の圧縮室A36
の圧力、一点鎖線43は正常運転時の背圧室834の圧
力、二点鎖線72は圧縮室A36の圧力が異常上昇した
場合に追従して変化する背圧室A34の圧力をそれぞれ
表す。
In FIG. 7, the horizontal axis represents the rotation angle of the drive axle load, the vertical axis represents the refrigerant pressure, and the solid line 42 represents the compression chamber A during normal operation.
36 pressure, dotted line 71 is compression chamber A36 at the time of abnormal pressure rise
The one-dot chain line 43 represents the pressure in the back pressure chamber 834 during normal operation, and the two-dot chain line 72 represents the pressure in the back pressure chamber A34 that changes following an abnormal increase in the pressure in the compression chamber A36.

第8図は別の実施例のスクロール冷媒圧縮機の縦断面図
で、固定スクロール13−の鏡板14mに取り付けられ
た給油通路制御弁装置17・を介して吐出室油溜18が
駆動室6とフレーム3畠の軸受油溜44に通じている。
FIG. 8 is a longitudinal sectional view of a scroll refrigerant compressor according to another embodiment, in which a discharge chamber oil sump 18 is connected to a drive chamber 6 via an oil supply passage control valve device 17 attached to an end plate 14m of a fixed scroll 13-. It communicates with the bearing oil sump 44 of the frame 3.

すなわち、吐出室油溜18は固定スクロール13−の鏡
板14mに設けられた油吸い込み穴41蟲、給油通路制
御弁装置17eのプランジャー30の外周溝29.鏡板
14mに設けられてその途中に逆流防止弁装置を内蔵し
た(図示なし)油入A45.フレーム3−に設けられた
油穴B46および油穴C46aによって構成される給油
通路を介して軸受油部44または駆動室6に通じている
That is, the discharge chamber oil reservoir 18 is formed by an oil suction hole 41 provided in the end plate 14m of the fixed scroll 13-, and an outer circumferential groove 29 of the plunger 30 of the oil supply passage control valve device 17e. Oil-filled A45. installed on the end plate 14 m and with a built-in check valve device in the middle (not shown). It communicates with the bearing oil section 44 or the drive chamber 6 through an oil supply passage constituted by an oil hole B46 and an oil hole C46a provided in the frame 3-.

第9図は別の実施例のスクロール冷媒圧縮機の断面図で
、tb、2bは鉄製の密閉ケース、45は鉄製の支持板
でその外周面部で密閉ケースtb。
FIG. 9 is a cross-sectional view of a scroll refrigerant compressor of another embodiment, in which tb and 2b are an iron closed case, 45 is an iron support plate, and its outer peripheral surface is connected to the closed case tb.

2bと共に単一の溶接ビードによって溶接密封され、支
持板45の上面には旋回スクロール10bを挾んで固定
スクロール13bが取り付けられ下面には駆動軸8bを
支承するフレーム3bが取り付けられ、吐出室5bと駆
動室6bとは固定スクロール13bの鏡板14bの上面
に開口した吐出ガス通路46aと支持板45に設けられ
た吐出ガス通路461>とで連通し、旋回スクロール1
0bと支持板45とフレーム3bとで形成された中間圧
背圧室47は駆動軸8bに設けられた軸心油水48や駆
動軸8bに係合する軸受49 、50 、旋回軸受51
の各微小隙間を経由してモータ室油溜23bに連通する
と共に、旋回スクロールtabに設けられた極細のバイ
パス穴50を介して吸入室33bにも連通している。旋
回スクロール10bが中間圧背圧室47の圧力によって
押し付けられる固定スクロール13bの鏡板14bの下
面に設けられた環状油溝53は鏡板14b上面に取り付
けられた給油通路制御弁装置17・を介して吐出室油溜
tabに通じている。すなわち、吐出室油溜18bから
環状油溝53までの給油通路は、固定スクロール13b
の鏡板14bに設けられた油吸い込み穴41b、給油通
路制御弁装置17eのプランジャー30の外周溝29.
鏡板14bに設けられた油穴54によって順次通じてい
る。
A fixed scroll 13b is attached to the upper surface of the support plate 45, sandwiching the orbiting scroll 10b, and a frame 3b supporting the drive shaft 8b is attached to the lower surface of the support plate 45. The drive chamber 6b communicates with a discharge gas passage 46a opened on the upper surface of the end plate 14b of the fixed scroll 13b and a discharge gas passage 461 provided in the support plate 45, and the orbiting scroll 1
0b, the support plate 45, and the frame 3b, the intermediate pressure back pressure chamber 47 has an axial oil/water 48 provided on the drive shaft 8b, bearings 49, 50, and a swing bearing 51 that engage with the drive shaft 8b.
It communicates with the motor chamber oil sump 23b via each minute gap, and also communicates with the suction chamber 33b via an extremely thin bypass hole 50 provided in the orbiting scroll tab. An annular oil groove 53 provided on the lower surface of the end plate 14b of the fixed scroll 13b against which the orbiting scroll 10b is pressed by the pressure of the intermediate pressure back pressure chamber 47 discharges oil through an oil supply passage control valve device 17 attached to the upper surface of the end plate 14b. It leads to the room oil sump tab. That is, the oil supply passage from the discharge chamber oil reservoir 18b to the annular oil groove 53 is connected to the fixed scroll 13b.
oil suction hole 41b provided in end plate 14b, outer peripheral groove 29 of plunger 30 of oil supply passage control valve device 17e.
The oil holes 54 provided in the mirror plate 14b communicate with each other in sequence.

吸入管22bは密閉ケース1bと鏡板14bを貫通して
吸入室33に+に達し、吸入管22bの端部と吸入室3
3bとの間には逆止弁16t)が設けられ、吐出管21
bは密閉ケース2bに設けられて駆動室6bに通じてい
る。
The suction pipe 22b passes through the sealed case 1b and the end plate 14b to reach the suction chamber 33, and the end of the suction pipe 22b and the suction chamber 3
A check valve 16t) is provided between the discharge pipe 21 and the discharge pipe 21.
b is provided in the closed case 2b and communicates with the drive chamber 6b.

第10図は別の実施例のスクロール冷媒圧縮機の縦断面
図で、密閉ケース1Cの内部全体が吐出室5cで、上部
にモータ7、下部に圧縮部と給油通路制御弁装置17c
とが固定スクロール13cの鏡板14cに取り付けられ
底部の油溜23cに浸漬して配置され、油溜23cから
吸入室33aまでの給油通路(第1給油通路とする)は
、給油通路制御弁装置17cの本体ケース26cに取り
付けられた油吸い込み管41g、外周溝29g。
FIG. 10 is a longitudinal cross-sectional view of a scroll refrigerant compressor according to another embodiment, in which the entire interior of a sealed case 1C is a discharge chamber 5c, a motor 7 is provided in the upper part, and a compression section and an oil supply passage control valve device 17c are provided in the lower part.
is attached to the end plate 14c of the fixed scroll 13c and is immersed in the oil reservoir 23c at the bottom, and the oil supply passage (referred to as the first oil supply passage) from the oil reservoir 23c to the suction chamber 33a is connected to the oil supply passage control valve device 17c. An oil suction pipe 41g and an outer peripheral groove 29g are attached to the main body case 26c.

鏡板14cに設けられた油入55.フレーム3cと固定
スクロール13cに挾まれた支持板45cに設けられた
油穴56.フレーム3cに設けられた油穴57.駆動軸
8cを支承する軸受58の微小な軸受隙間、フレーム3
cと支持板45cと旋回スクロール10aとで形成され
た中間圧背圧室47c、駆動軸8cの下端に設けられた
旋回軸受51cと旋回スクロール10oの旋回軸11a
との間の微小な軸受隙間、旋回スクロール10cに設け
られた油入59.バイパス穴52cで構成され、油溜2
3cから圧縮室839c(第2圧縮室)までの給油通路
(第2給油通路とする)は、油吸い込み穴41c、外周
溝29c、鏡板14aに設けられたインジェクション穴
40aで構成され、プランジャー30cが図示の位置で
は油溜23cから吸入室33cまでの第1給油通路およ
び油溜23cから圧縮室B59cまでの第2給油通路が
開通し、背圧室日の容積が最小になるまでプランジャー
30cが左へ移動すると第1給油通路は開通を続けるが
第2給油通路は遮断され、背圧室A34の容積が最小に
なるまでプランジャー30cが右へ移動すると第1給油
通路および第2給油通路はともに遮断されるように構成
されている。
Oil container 55 provided on the mirror plate 14c. Oil hole 56 provided in support plate 45c sandwiched between frame 3c and fixed scroll 13c. Oil hole 57 provided in frame 3c. The small bearing gap of the bearing 58 that supports the drive shaft 8c, the frame 3
an intermediate pressure back pressure chamber 47c formed by the support plate 45c and the orbiting scroll 10a, an orbiting bearing 51c provided at the lower end of the drive shaft 8c, and the orbiting shaft 11a of the orbiting scroll 10o.
A small bearing gap between the oil tank 59 and the oil tank provided in the orbiting scroll 10c. It is composed of a bypass hole 52c, and the oil sump 2
The oil supply passage (referred to as the second oil supply passage) from 3c to the compression chamber 839c (second compression chamber) is composed of an oil suction hole 41c, an outer peripheral groove 29c, and an injection hole 40a provided in the end plate 14a, and the plunger 30c In the illustrated position, the first oil supply passage from the oil reservoir 23c to the suction chamber 33c and the second oil supply passage from the oil reservoir 23c to the compression chamber B59c are opened, and the plunger 30c is opened until the volume of the back pressure chamber becomes minimum. When the plunger 30c moves to the left, the first oil supply passage continues to open, but the second oil supply passage is blocked, and when the plunger 30c moves to the right, the first oil supply passage and the second oil supply passage are closed until the volume of the back pressure chamber A34 becomes the minimum. are configured so that both are blocked.

吐出ポート15cから吐出室5Cまでの圧縮ガス通路は
、固定スクロール13cと本体ケース26cとで形成さ
れた吐出ガス通路60.固定スクロール13cと支持板
45aとフレーム3Gにそれぞれ設けられた吐出ガス通
路61,62゜63で構成される。
The compressed gas passage from the discharge port 15c to the discharge chamber 5C is a discharge gas passage 60. formed by the fixed scroll 13c and the main body case 26c. It is composed of a fixed scroll 13c, a support plate 45a, and discharge gas passages 61, 62, and 63 provided in the frame 3G, respectively.

また、フレーム3cに設けられた軸受64に対向する駆
動軸8cの表面には螺線状の油溝65が設けられ、油溝
65の巻き方向は駆動軸8oの回転に伴うネジポンプ作
用により油穴57の潤滑油を軸受64の上部開口端へも
供給できる方向に設けられている。
Further, a spiral oil groove 65 is provided on the surface of the drive shaft 8c facing the bearing 64 provided on the frame 3c, and the winding direction of the oil groove 65 is determined by the screw pump action accompanying the rotation of the drive shaft 8o. The lubricating oil of 57 can also be supplied to the upper open end of the bearing 64.

また、吸入管22cは密閉ケース1cを貫通して固定ス
クロール13aに挿入され、逆止弁(図示なし)を介し
て吸入室33cに連通し、吐出管21aは密閉ケース1
Cの上側面に設けられている。
Further, the suction pipe 22c penetrates the sealed case 1c, is inserted into the fixed scroll 13a, and communicates with the suction chamber 33c via a check valve (not shown), and the discharge pipe 21a is inserted into the fixed scroll 13a through the sealed case 1c.
It is provided on the upper side of C.

第11図は給油通路制御弁装置の開閉弁部を固定スクロ
ール13dの鏡板14dの内部に設けた別の実施例のス
クロール冷媒圧縮機の部分断面図で、シリンダ28dが
鏡板1tdに設けられ、吐出室5とは連通せず吐出室5
に最も近い側の圧縮室A36と背圧室A34dとは埋め
込みネジ66とネジ穴との微小隙間を介した圧力導入穴
35dで連通され、吸入室33とは連通せず吸入室33
に近い側の圧縮室839とプランジャー30の外周溝2
9とは鏡板14dに設けられたインジェクション穴40
d、鏡板14dとガスケット25dとガスケット押さえ
67とで形成される極細のインジェクション通路68と
で連通し、プランジャー30に付勢力を与えるバネ装置
38は前述のようにそれ自身が設定温度(例えば130
℃)゛を超えるとその付勢力を強めて外周溝29とイン
ジェクション通路68との連通を断つべくプランジャー
30を作動させるような前述のバネ特性を備えた形状記
憶合金材質から成り、吐出室油溜18から圧縮室839
までの給油通路が油吸い込み穴41d、外周溝29.イ
ンジェクション通路68゜インジェクション穴40dで
構成される。
FIG. 11 is a partial sectional view of a scroll refrigerant compressor of another embodiment in which the on-off valve part of the oil supply passage control valve device is provided inside the end plate 14d of the fixed scroll 13d, and the cylinder 28d is provided on the end plate 1td, and the discharge Discharge chamber 5 without communicating with chamber 5
The compression chamber A 36 and the back pressure chamber A 34 d, which are closest to each other, communicate with each other through a pressure introduction hole 35 d through a small gap between the embedded screw 66 and the screw hole, and do not communicate with the suction chamber 33 .
The compression chamber 839 on the side closer to and the outer circumferential groove 2 of the plunger 30
9 is an injection hole 40 provided in the mirror plate 14d.
d. The spring device 38, which communicates with the extremely thin injection passage 68 formed by the end plate 14d, the gasket 25d, and the gasket retainer 67, and which applies a biasing force to the plunger 30, has its own set temperature (for example, 130
The discharge chamber oil is made of a shape memory alloy material with the above-mentioned spring characteristics that increases the biasing force and operates the plunger 30 to cut off the communication between the outer circumferential groove 29 and the injection passage 68 when the temperature exceeds ℃). From reservoir 18 to compression chamber 839
The oil supply passage up to the oil suction hole 41d and the outer circumferential groove 29. It consists of an injection passage 68° and an injection hole 40d.

以上のように構成されたスクロール冷媒圧縮機について
、その動作を説明する。
The operation of the scroll refrigerant compressor configured as above will be explained.

第1図〜第7図において、モータ7によって駆動軸8が
回転駆動されると旋回スクロール10が旋回運動をし、
圧縮機に接続した冷凍サイクルから吸入冷媒ガスが吸入
管22を通して駆動室6に流入し、その中に含まれる潤
滑油の一部が分離された後に吸入室33に吸入され、こ
の吸入冷媒ガスは旋回スクロール10と固定スクール1
3との間に形成された圧縮室内に閉じ込められ、旋回ス
クロール10の旋回運動に伴って順次圧縮され中央部の
吐出ポート15.逆止弁16を経て吐出室5へ吐出され
、吐出冷媒ガス中に含まれる潤滑油の一部はその自重お
よびパンチングメタル19の小穴や細鉄線から成るフィ
ルター20を通過する際にその表面に付着などして吐出
冷媒ガスから分離して吐出室油溜18に収集され、残り
の潤滑油は吐出冷媒ガスと共に吐出管21を経て外部の
冷凍サイクルへ搬出され、再び吸入冷媒ガスと共に吸入
管22を通して圧縮機内に帰還する。
In FIGS. 1 to 7, when the drive shaft 8 is rotationally driven by the motor 7, the orbiting scroll 10 makes an orbiting motion,
Suction refrigerant gas from the refrigeration cycle connected to the compressor flows into the drive chamber 6 through the suction pipe 22, and after a part of the lubricating oil contained therein is separated, it is sucked into the suction chamber 33, and this suction refrigerant gas is Orbiting scroll 10 and fixed school 1
3, and is sequentially compressed as the orbiting scroll 10 rotates, and is discharged from the central discharge port 15. A part of the lubricating oil contained in the discharged refrigerant gas is discharged into the discharge chamber 5 through the check valve 16 and adheres to the surface of the punched metal 19 when it passes through its own weight and the filter 20 made of small holes and fine iron wire. The remaining lubricating oil is separated from the discharged refrigerant gas and collected in the discharge chamber oil sump 18, and the remaining lubricating oil is carried out to the external refrigeration cycle through the discharge pipe 21 together with the discharged refrigerant gas, and is again passed through the suction pipe 22 together with the suctioned refrigerant gas. Return to the compressor.

一方、駆動室6で吸入冷媒ガスから分離した底部のモー
タ室油溜2aに収集された潤滑油は駆動軸8の偏心油水
24による遠心ポンプ作用で偏心油入24.駆動軸8に
係わる軸受隙間(偏心穴9と旋回軸11との隙間を含む
)、旋回スクロール10に係わるスラスト軸受部や自転
阻止部品12の摺動面を順次潤滑して吸入冷媒ガスと共
に吸入室33へ流入し、隣接する圧縮室間の隙間を油膜
で密封し圧縮冷媒ガスの漏洩を少なくする。
On the other hand, the lubricating oil collected in the motor chamber oil sump 2a at the bottom separated from the suction refrigerant gas in the drive chamber 6 is pumped into the eccentric oil reservoir 24 by the centrifugal pump action by the eccentric oil/water 24 of the drive shaft 8. The bearing gap related to the drive shaft 8 (including the gap between the eccentric hole 9 and the rotating shaft 11), the thrust bearing part related to the orbiting scroll 10, and the sliding surfaces of the rotation prevention component 12 are sequentially lubricated and the suction chamber is filled with the suction refrigerant gas. 33, and seals the gap between adjacent compression chambers with an oil film to reduce leakage of compressed refrigerant gas.

また、吐出室5に連通せず吐出ポート15に最も近い側
の圧縮室A36の圧縮機運転中の圧力は第7図に示すよ
うに大きく変化するが、極細の圧力導入穴35を介して
導入した背圧室A圧力43はその変化が少なくて圧縮室
日圧力42−の最大値よりも大きい。このため背圧室A
34の圧力は吸入室33に通じる背圧室B31の圧力よ
りも安定して大きく、このためにプランジャー30がコ
イルバネA38aの付勢力に抗して前進しコイルバネB
58bにも付勢力を与える。しかし、コイルバネB58
bの付勢力が大きいのでプランジャー30は第2図に示
す位置で停止して給油通路が開かれ、吐出室油溜18の
潤滑油は油吸い込み穴41、外周溝29.インジェクシ
ョン穴40e(またはインジエク・ジョン管40 a 
) +インジェクション穴40を経て漸次減圧されて圧
縮室B39に間欠給油され、この潤滑油はモータ室油溜
23から給油され、吸入冷媒ガスと共に吸入室33を経
て圧縮室B39に搬送されて来た潤滑油と合流し、隣接
する圧縮室間の隙間を油膜でより一層の密封を図り、圧
縮冷媒ガスと共に吐出室5へ吐出される。
In addition, the pressure in the compression chamber A36, which is not connected to the discharge chamber 5 and is closest to the discharge port 15, changes greatly during compressor operation as shown in FIG. The back pressure chamber A pressure 43 changes less and is larger than the maximum value of the compression chamber daily pressure 42-. For this reason, back pressure chamber A
34 is stably higher than the pressure in the back pressure chamber B31 that communicates with the suction chamber 33, so that the plunger 30 moves forward against the biasing force of the coil spring A38a and
A biasing force is also applied to 58b. However, coil spring B58
Since the biasing force of b is large, the plunger 30 stops at the position shown in FIG. Injection hole 40e (or injection tube 40a)
) + The pressure is gradually reduced through the injection hole 40 and the compression chamber B39 is intermittently supplied with oil, and this lubricating oil is supplied from the motor chamber oil sump 23 and conveyed together with the suction refrigerant gas to the compression chamber B39 through the suction chamber 33. It merges with the lubricating oil, further seals the gap between adjacent compression chambers with an oil film, and is discharged to the discharge chamber 5 together with the compressed refrigerant gas.

また、万一、圧縮機運転中に冷凍サイクル配管系の詰ま
り現象などによって圧縮機内への潤滑油帰還が無く吐出
室油溜18の潤滑油が不足して給油通路を経て高温で粘
性の小さい吐出冷媒ガスが圧縮室B39に多量流入した
場合は、第6図に示すように圧縮室の圧力が点線7oの
ように異常上昇し、第7図に示すように圧力導入穴開口
部の圧縮室への圧カフ2もその平均圧力が高くなる。こ
の結果、プランジャー3oはコイルバネ日38bの付勢
力に抗して前進し第4図に示す位置で停止し給油通路を
遮断する。また、圧縮機停止後は前述の如くプランジャ
ー30が第13図に示す位置に後退して給油通路を遮断
する。
In addition, in the unlikely event that lubricating oil is not returned to the compressor due to a clogging phenomenon in the refrigeration cycle piping system during compressor operation, lubricating oil in the discharge chamber oil sump 18 becomes insufficient, and high temperature and low viscosity oil is discharged through the oil supply passage. When a large amount of refrigerant gas flows into the compression chamber B39, the pressure in the compression chamber increases abnormally as indicated by the dotted line 7o as shown in FIG. 6, and as shown in FIG. The pressure cuff 2 also has a higher average pressure. As a result, the plunger 3o moves forward against the biasing force of the coil spring 38b and stops at the position shown in FIG. 4, thereby blocking the oil supply passage. Further, after the compressor is stopped, the plunger 30 retreats to the position shown in FIG. 13 to block the oil supply passage as described above.

また、圧縮室や吐出室5内が異常温度上昇しコイルバネ
A38aが設定温度(例えば130℃)を超えると、形
状記憶合金材質から成るコイルバネA38aの付勢力と
自由長さが増大してプランジャー30は第3図の位置に
移動し給油通路が遮断される。
Further, when the temperature inside the compression chamber or the discharge chamber 5 rises abnormally and the coil spring A38a exceeds the set temperature (for example, 130 degrees Celsius), the biasing force and free length of the coil spring A38a made of a shape memory alloy material increase and the plunger 30 moves to the position shown in FIG. 3, and the oil supply passage is blocked.

また、圧縮機停止後は逆止弁16が閉じ、吐出室5の圧
力は数分間はぼ吐出圧力状態を保持されるが相対滑り運
動の無い圧縮室間の隙間は油膜による密封効果が無く、
吐出ボート15と各圧縮室の圧力は旋回スクロールの瞬
時逆転によって吸入室33と同じ圧力になる。
In addition, after the compressor is stopped, the check valve 16 is closed, and the pressure in the discharge chamber 5 is maintained at the discharge pressure state for several minutes, but the gap between the compression chambers where there is no relative sliding movement is not sealed by the oil film.
The pressure in the discharge boat 15 and each compression chamber becomes the same as that in the suction chamber 33 by instantaneous reversal of the orbiting scroll.

この結果、プランジャー30はコイルバネA38暑の付
勢力によって移動し、第3図に示すように給油通路が遮
断されて吐出室油溜18から圧縮室日39への給油が停
止する。
As a result, the plunger 30 is moved by the biasing force of the coil spring A38, and as shown in FIG. 3, the oil supply passage is blocked and the supply of oil from the discharge chamber oil sump 18 to the compression chamber 39 is stopped.

第8図においては、圧縮機運転中の吐出室油溜18の潤
滑油は上述のようにプランジャーaOの作動によって油
吸い込み穴41−1外周溝29゜油入A45.油穴B4
6で構成される第1給油通路および油穴B46の途中か
ら油穴C46cを介して駆動室6ヘバイパスする第2給
油通路を経て適切に漸次減圧され、軸受油溜44への給
油と駆動室6への油戻しに供され、その後は駆動軸8に
係わる軸受部や旋回スクロール10のスラスト軸受部な
どの摺動面を潤滑しながら低圧側の駆動室6や吸入室a
3に流入する。吸入冷媒ガヌと共に吸入室に流入した潤
滑油は上述のように隣接する圧縮室間の隙間を油膜によ
り密封して圧縮効率を高め、駆動室6に流入した潤滑油
は底部のモータ室油溜23に収集された後、駆動軸8に
設けられた偏心油穴24の遠心ポンプ作用によって上述
のように各摺動面へ供給される。
In FIG. 8, the lubricating oil in the discharge chamber oil sump 18 during compressor operation is transferred to the oil suction hole 41-1 outer circumferential groove 29° by the operation of the plunger aO as described above. Oil hole B4
6 and a second oil supply passage that bypasses the oil hole C46c from the middle of the oil hole B46 to the drive chamber 6. After that, the oil is returned to the drive chamber 6 and suction chamber a on the low pressure side while lubricating the sliding surfaces such as the bearings related to the drive shaft 8 and the thrust bearings of the orbiting scroll 10.
3. The lubricating oil that has flowed into the suction chamber together with the suction refrigerant Ganu seals the gap between adjacent compression chambers with an oil film to increase compression efficiency, as described above, and the lubricating oil that has flowed into the drive chamber 6 flows into the motor chamber oil reservoir at the bottom. After being collected at 23, the oil is supplied to each sliding surface as described above by the centrifugal pump action of the eccentric oil hole 24 provided in the drive shaft 8.

なお、圧縮機停止後の給油通路の遮断や冷媒ガスの流れ
、冷媒ガス中の潤滑油の分離などについては上述と同様
で説明を省略する。
Note that the shutoff of the oil supply passage, the flow of refrigerant gas, the separation of lubricating oil in refrigerant gas, etc. after the compressor is stopped are the same as described above, and a description thereof will be omitted.

第9図においては、モータ7によって駆動軸8が回転駆
動されて旋回スクロールが旋回運動をし、圧縮機に接続
した冷凍サイクルから吸入冷媒ガスが吸入管22.bを
通り、その終端部に設けられた逆圧弁16bに抗して吸
入室33bに流入され、圧縮室内で一定の圧縮比にまで
圧縮された後、吐出室5bへ吐出され、吐出冷媒ガス中
に含まれる潤滑油の一部はその自重などによって吐出冷
媒ガスから分離して吐出室油溜18bに収集される。
In FIG. 9, the drive shaft 8 is rotationally driven by the motor 7 to cause the orbiting scroll to orbit, and suction refrigerant gas is supplied from the refrigeration cycle connected to the compressor to the suction pipe 22. b, flows into the suction chamber 33b against the back pressure valve 16b provided at the terminal end thereof, is compressed to a constant compression ratio in the compression chamber, is discharged to the discharge chamber 5b, and is discharged into the discharged refrigerant gas. A part of the lubricating oil contained in the refrigerant gas is separated from the discharged refrigerant gas due to its own weight and collected in the discharge chamber oil sump 18b.

その後、吐出冷媒ガスは吐出冷媒ガス通路46a。Thereafter, the discharged refrigerant gas flows through the discharged refrigerant gas passage 46a.

46bを経て駆動室6bに搬送され、吐出冷媒ガス中の
潤滑油の一部は駆動室6bでも分離して底部のモータ室
油溜23bに収集される。モータ室油溜23bの潤滑油
は中間圧背圧室47との差圧により駆動室8bの軸心油
穴48.旋回軸受51の微小隙間、フレーム3bの軸受
49,50の微小隙間を経て漸次減圧されて中間圧背圧
室47に給油された後、バイパス穴52を通じて吸入室
33bに流入して隣り合う圧縮室間隙間を油膜で密封し
て圧縮効率を高める。
A part of the lubricating oil in the discharged refrigerant gas is separated in the drive chamber 6b and collected in the motor chamber oil sump 23b at the bottom. The lubricating oil in the motor chamber oil sump 23b flows through the shaft center oil hole 48. of the drive chamber 8b due to the differential pressure with the intermediate pressure back pressure chamber 47. The pressure is gradually reduced through the small gap between the swing bearing 51 and the small gap between the bearings 49 and 50 of the frame 3b, and the oil is supplied to the intermediate pressure back pressure chamber 47.Then, the oil flows into the suction chamber 33b through the bypass hole 52, and then flows into the adjacent compression chamber. Seal the gap with an oil film to increase compression efficiency.

また、中間圧背圧室47の潤滑油圧力は旋回スクロール
10bを固定スクロール13bの鏡板14b面に押圧す
るスラスト力を生じる。
Further, the lubricating oil pressure in the intermediate pressure back pressure chamber 47 generates a thrust force that presses the orbiting scroll 10b against the surface of the end plate 14b of the fixed scroll 13b.

また、給油通路制御弁装置17eのプランジャー30は
前述の如く圧縮機運転中に給油通路を開き、吐出室油溜
18bの潤滑油は油吸い込み穴41b、外周溝29.油
穴54を経て鏡板14bの環状油溝53に差圧給油され
、鏡板14bと旋回スクロール10bとの摺動面の潤滑
に供された後、吸入室33bに流入して隣り合う圧縮室
間の隙間の密封にも寄与する。また、圧縮機停止後は逆
止弁16bが吸入管22bを塞ぎ、圧縮室圧力は吐出室
圧力に等しくなり、前述の如くプランジャー30は給油
通路を遮断する。
Further, the plunger 30 of the oil supply passage control valve device 17e opens the oil supply passage during compressor operation as described above, and the lubricating oil in the discharge chamber oil sump 18b flows through the oil suction hole 41b, the outer circumferential groove 29. Oil is supplied to the annular oil groove 53 of the head plate 14b through the oil hole 54 under a differential pressure, and after lubricating the sliding surfaces of the head plate 14b and the orbiting scroll 10b, it flows into the suction chamber 33b and flows between adjacent compression chambers. It also helps seal gaps. Further, after the compressor is stopped, the check valve 16b closes the suction pipe 22b, the compression chamber pressure becomes equal to the discharge chamber pressure, and the plunger 30 blocks the oil supply passage as described above.

第10図においては、吸入管22cを通して吸入室33
cに流入した吸入冷媒ガスは圧縮された後、吐出ポート
15c、吐出ガス通路60,61゜62.63を経て吐
出室5cに吐出され、吐出冷媒ガス中に含まれる潤滑油
の一部はその自重などによって吐出冷媒ガスから分離し
て底部のモータ室油溜23cに収集され、残りの潤滑油
は吐出冷媒ガスと共に吐出管21cを通して外部の冷凍
サイクルへ搬出される。
In FIG. 10, the suction chamber 33 is passed through the suction pipe 22c.
After being compressed, the suction refrigerant gas that has flowed into the refrigerant gas is discharged into the discharge chamber 5c via the discharge port 15c and the discharge gas passages 60, 61, 62, 63, and some of the lubricating oil contained in the discharged refrigerant gas is The lubricating oil is separated from the discharged refrigerant gas due to its own weight and collected in the motor chamber oil sump 23c at the bottom, and the remaining lubricating oil is carried out to the external refrigeration cycle through the discharge pipe 21c together with the discharged refrigerant gas.

前述の如く圧縮機運転中は、給油通路制御弁装置17c
のプランジャー30cが作動して給油通路を開き、モー
タ室油溜23oの潤滑油は油吸い込み管419.外周溝
299.油穴55 、56 。
As mentioned above, during compressor operation, the oil supply passage control valve device 17c
The plunger 30c operates to open the oil supply passage, and the lubricating oil in the motor chamber oil sump 23o flows into the oil suction pipe 419. Outer circumferential groove 299. Oil holes 55, 56.

57、駆動軸8cと軸受58との間の微小隙間。57, a minute gap between the drive shaft 8c and the bearing 58;

中間圧背圧室47c、旋回軸11aと旋回軸受51cと
の間の微小隙間、油水59.バイパス穴52cを経て漸
次減圧され摺動面を潤滑しながら吸入室33cに流入す
る第1給油通路と、油吸い込み穴41c、外周溝29c
、インジェクション穴40cを経て漸次減圧されながら
圧縮室839cに流入する第2給油通路とを通じて圧縮
空間に差圧給油され、吸入冷媒ガスと共に再び圧縮・吐
出され、その過程で圧縮室間の隙間を油膜で密封して圧
縮冷媒ガスの漏洩を少くする。
Intermediate pressure back pressure chamber 47c, minute gap between pivot shaft 11a and pivot bearing 51c, oil/water 59. A first oil supply passage through which the pressure is gradually reduced through the bypass hole 52c and flows into the suction chamber 33c while lubricating the sliding surface, the oil suction hole 41c, and the outer circumferential groove 29c.
The pressure is gradually reduced through the injection hole 40c and the second oil supply passage flows into the compression chamber 839c, and the compression space is supplied with oil under a differential pressure, and is again compressed and discharged together with the sucked refrigerant gas. In the process, the gap between the compression chambers is filled with an oil film. to reduce leakage of compressed refrigerant gas.

なお、油穴57の潤滑油の一部は駆動軸8cの外周に設
けられた螺線状の油溝のネジポンプ作用により吐出室5
cへも搬出されて軸受64の摺動面を潤滑する。
A portion of the lubricating oil in the oil hole 57 is pumped into the discharge chamber 5 by the screw pump action of a spiral oil groove provided on the outer periphery of the drive shaft 8c.
c is also carried out to lubricate the sliding surface of the bearing 64.

圧縮機内の潤滑油が一時的に不足して油溜23cの油面
が油吸い込み穴41cの開口端まで低下した場合は、第
2給油通路を通じて圧縮室839cに吐出冷媒ガスが流
入し、前述のようにプランジャー30aがさらに前進し
て第2給油通路を閉じて潤滑油不足を防ぐが、第1給油
通路は開通を続けて潤滑油が軸受部などの摺動面へ差圧
給油される。
If the lubricating oil in the compressor is temporarily insufficient and the oil level in the oil reservoir 23c drops to the open end of the oil suction hole 41c, the discharged refrigerant gas flows into the compression chamber 839c through the second oil supply passage, and the above-mentioned As shown, the plunger 30a further advances to close the second oil supply passage to prevent lubricant shortage, but the first oil supply passage remains open and lubricant is supplied to sliding surfaces such as bearings under differential pressure.

また、前述の如く圧縮機停止後は、プランジャー30 
aが給油通路を遮断する。
Also, as mentioned above, after the compressor is stopped, the plunger 30
a blocks the refueling passage.

第11図においては、圧縮機運転中に吐出室油溜18の
潤滑油が不足した場合には、高温で粘性の少ない圧縮冷
媒ガスが給油通路(油吸い込み穴41d、外周溝29.
インジェクション通路68゜インジェクション穴40d
)を経て圧縮室839に多量流入し、圧縮冷媒ガスの圧
力や温度を異常上昇せしめる。この結果、鏡板14dの
内部に装着された形状記憶合金材質から成るコイルバネ
38は圧縮室A36.圧縮室B39 、吐出室5か等の
直接的伝熱によって早急に設定温度(例えば130℃)
を超えて付勢力が増大しプランジャー3oを後退せしめ
て給油通路を遮断する。
In FIG. 11, when the lubricating oil in the discharge chamber oil sump 18 runs out during compressor operation, high temperature and low viscosity compressed refrigerant gas is supplied to the oil supply passage (oil suction hole 41d, outer circumferential groove 29.
Injection passage 68° Injection hole 40d
) and flows into the compression chamber 839 in large quantities, causing the pressure and temperature of the compressed refrigerant gas to rise abnormally. As a result, the coil spring 38 made of a shape memory alloy material mounted inside the end plate 14d moves into the compression chamber A36. Immediately set temperature (for example, 130°C) by direct heat transfer from compression chamber B39, discharge chamber 5, etc.
The biasing force increases beyond this point, causing the plunger 3o to retreat and cutting off the oil supply passage.

また、吐出室油溜18に潤滑油が充分にあり、通常の圧
縮機運転中や停止後の給油通路の開閉については上述の
通りである。
Further, there is sufficient lubricating oil in the discharge chamber oil reservoir 18, and the opening and closing of the oil supply passage during normal compressor operation and after stopping is as described above.

以上のように上記実施例によれば吐出室油溜18の底部
と吸入室33にも吐出室5にも通ぜず吸入室33に近い
側の圧縮室B59(吸入圧力と吐出圧力との間の中間圧
力)との間を油吸い込み穴41.外周溝29.インジェ
クション穴40a。
As described above, according to the above embodiment, the bottom of the discharge chamber oil sump 18 and the compression chamber B59 (between the suction pressure and the discharge pressure intermediate pressure) and the oil suction hole 41. Outer circumferential groove 29. Injection hole 40a.

40で形成される給油通路により連通させ、給油通路の
途中には給油通路を開閉するプランジャー30と7クチ
エータとで構成される給油通路制御弁装置17・を設け
、アクチェータにはプランジャー30とその両側に配置
した背圧室A34と背圧室831およびプランジャー3
0を背圧室A34の方へ付勢するバネ装置38を設け、
背圧室A34は吐出室Sにも吸入室33にも連通せず圧
縮室B39よりも圧縮後行程の圧縮室A36に通じ、背
圧室831は吸入室33に通じ、背圧室A34と背圧室
8a1との間に差圧がありその差圧が第1設定値の範囲
にある場合に、プランジャー30がバネ装置に抗して前
進して吐出室油溜18に通じる油吸い込み穴41と圧縮
室839に通じるインジェクション穴4o・との間をプ
ランジャー30の外周溝29を介して連通し、背圧室A
34と背圧室B31との間の差圧が第1設定値よりも大
きい第2設定値の範囲にある場合に、プランジャー30
がバネ装置38に抗してさらに前進して油吸い込み穴4
1とインジェクション穴、40eとの間を遮断して給油
通路を閉じ、背圧室A34と背圧室831との間の差圧
のない場合にバネ装置38の付勢力によってプランジャ
ー30が後退して油吸い込み穴41とインジェクション
穴40・との間を遮断して給油通路を閉じる給油通路制
御弁装置17eを備えることにより、圧縮機運転中は冷
媒ガスの圧縮比が一定なために圧縮室A36の圧力は吐
出室5の圧力に影響されずに吸入室3aの圧力の一定倍
率の圧力まで確実に上昇し、アクチェータ殻ランジャー
30が差圧力によって前進して圧縮機起動直後から給油
通路を開き、吐出基油!fI418の潤滑油を圧縮初期
行程から圧縮室839へ油インジェクションさせて吸入
体積効率を低下することなく隣接する圧縮室間の隙間を
油膜で密封して、圧縮機起動初期から圧縮効率を高める
と共に圧縮冷媒ガスの異常温度上昇を防ぎ耐久性を向上
できる。また、圧縮室への油インジェクションによりス
クロール部の加工寸法精度を適性化して圧縮機コストの
低減が図れる。また、吐出室油溜18の潤滑油が不足し
て粘性が低く通路抵抗の極めて小さい吐出冷媒ガスが圧
縮室839に流入した場合でも圧縮室圧力が異常に上昇
して差圧が設定値を超えてプランジャー30をさらに前
進せしめて給油通路を閉じ、圧縮効率の低化を防ぐ。
A refueling passage control valve device 17 is provided in the middle of the refueling passage, which is composed of a plunger 30 that opens and closes the refueling passage and seven actuators, and the actuator has the plunger 30 and an actuator. Back pressure chamber A34, back pressure chamber 831 and plunger 3 arranged on both sides
A spring device 38 is provided that biases 0 toward the back pressure chamber A34,
The back pressure chamber A34 does not communicate with the discharge chamber S or the suction chamber 33, but rather communicates with the compression chamber A36 in the post-compression stroke than the compression chamber B39, and the back pressure chamber 831 communicates with the suction chamber 33 and is connected to the back pressure chamber A34 and the back pressure chamber A34. When there is a pressure difference between the pressure chamber 8a1 and the pressure difference within the range of the first set value, the plunger 30 moves forward against the spring device to open the oil suction hole 41 which communicates with the discharge chamber oil sump 18. and the injection hole 4o, which communicates with the compression chamber 839, are communicated via the outer circumferential groove 29 of the plunger 30, and the back pressure chamber A
When the differential pressure between the plunger 34 and the back pressure chamber B31 is within the range of the second set value that is larger than the first set value, the plunger 30
moves further against the spring device 38 and opens the oil suction hole 4.
1 and the injection hole 40e to close the oil supply passage, and when there is no differential pressure between the back pressure chamber A34 and the back pressure chamber 831, the plunger 30 is moved back by the urging force of the spring device 38. By providing the oil supply passage control valve device 17e that closes the oil supply passage by blocking the oil suction hole 41 and the injection hole 40. The pressure of the compressor increases reliably to a constant multiple of the pressure of the suction chamber 3a without being affected by the pressure of the discharge chamber 5, and the actuator shell plunger 30 moves forward due to the differential pressure to open the oil supply passage immediately after starting the compressor. Discharge base oil! Lubricating oil of fI418 is injected into the compression chamber 839 from the initial compression stroke to seal the gap between adjacent compression chambers with an oil film without reducing suction volumetric efficiency, increasing compression efficiency from the initial stage of compressor startup and compressing. It prevents abnormal temperature rise of refrigerant gas and improves durability. In addition, by injecting oil into the compression chamber, the machining dimensional accuracy of the scroll portion can be optimized and the cost of the compressor can be reduced. Furthermore, even if the lubricating oil in the discharge chamber oil sump 18 is insufficient and discharged refrigerant gas with low viscosity and extremely low passage resistance flows into the compression chamber 839, the compression chamber pressure will abnormally rise and the differential pressure will exceed the set value. The plunger 30 is moved further forward to close the oil supply passage and prevent compression efficiency from decreasing.

また、圧縮機停止後は吸入室33と圧縮室A36との差
圧が無くなり給油通路が遮断されるので、吐出室油溜1
8から圧縮室B39への無駄な潤滑油流入を防止して、
潤滑油の有効利用による摺動面の耐久性や圧縮効率の向
上、圧縮機再起動時の油圧縮による圧縮機破損防止を図
ることも出来る。
In addition, after the compressor is stopped, the differential pressure between the suction chamber 33 and the compression chamber A36 disappears, and the oil supply passage is cut off.
8 to the compression chamber B39 is prevented,
It is also possible to improve the durability of sliding surfaces and compression efficiency by effectively using lubricating oil, and to prevent damage to the compressor due to oil compression when restarting the compressor.

また、上記実施例によればバネ装置38がバネ定数と自
由長さの異なるコイルバネA38mとコイルバネB58
bのバネから成ることにより、背圧室間の差圧力によっ
てバネ装置38の付勢力に停 抗して前進移動するプランジャー30の廃止位置が差圧
力に多少の変動が生じる場合でも安定しており、この結
果、プランジャー30による給油通路の開通、遮断にチ
ャタリング現象も生ぜず、給油を必要とする圧縮機運転
時にプランジャー30が前進して給油通路を閉じること
もなく、安定した差圧給油によって安定した圧縮効率の
向上に寄与する。
Further, according to the above embodiment, the spring device 38 includes a coil spring A38m and a coil spring B58 having different spring constants and free lengths.
By using the spring b, the discontinuation position of the plunger 30, which moves forward against the urging force of the spring device 38 due to the differential pressure between the back pressure chambers, remains stable even if the differential pressure varies slightly. As a result, no chattering phenomenon occurs when the plunger 30 opens and closes the oil supply passage, and the plunger 30 does not move forward and close the oil supply passage when the compressor requires oil supply, resulting in a stable differential pressure. Oil supply contributes to stable compression efficiency improvement.

また、プランジャー30と圧縮室A36との間のインジ
ェクション穴40と、その底部にモータ室油溜23を有
し吸入通路でもあり駆動軸8の遠心ポンプ作用による給
油装置を備えた駆動室6との間または駆動軸を支承する
軸受の間に設けられた軸受油溜44との間を油入A45
.油穴B46゜油入〇46cで構成する油戻し通路で連
通させることにより、圧縮機運転中は給油通路の開閉弁
(プランジャー30)を開いて吐出室内で吐出冷媒ガス
中から分離した潤滑油を軸受摺動面などに給油しながら
給油装置の油溜に戻して圧縮機外部への無駄な潤滑油流
出を防いで、圧縮室日39への油インジェクション効果
による圧縮効率の向上。
Further, there is an injection hole 40 between the plunger 30 and the compression chamber A36, and a drive chamber 6 which has a motor chamber oil reservoir 23 at its bottom and is also a suction passage and is equipped with an oil supply device by the centrifugal pump action of the drive shaft 8. Oil-filling A45 between the bearing oil reservoir 44 provided between
.. The lubricating oil separated from the discharged refrigerant gas in the discharge chamber is released by opening the on-off valve (plunger 30) of the oil supply passage during compressor operation by communicating with the oil return passage consisting of oil hole B46゜oil filler〇46c. The lubricating oil is returned to the oil reservoir of the oil supply device while lubricating the sliding surfaces of the bearings, preventing unnecessary lubricating oil from leaking to the outside of the compressor, and improving compression efficiency through the effect of oil injection into the compression chamber.

摺動部摩耗の低減による耐久性向上を図ると共に、圧縮
機外部冷凍サイクル中に配した熱交換器の性能向上も図
ることが出来る。
It is possible to improve the durability by reducing the wear of the sliding parts, and also to improve the performance of the heat exchanger placed in the refrigeration cycle outside the compressor.

なお上記実施例では冷媒圧縮機について動作を説明した
が、潤滑油を使用する酸素、窒素、ヘリウムなどの他の
気体圧縮機の場合も同様の作用効果を期待できる。
Although the operation of the refrigerant compressor has been described in the above embodiment, similar effects can be expected in the case of compressors of other gases such as oxygen, nitrogen, and helium that use lubricating oil.

また、上記実施例ではインジェクション管40暑を用い
てプランジャー30の外周溝29と圧縮室A36とを連
通したが、インジェクション管40aの代わりに鏡板1
4にその通路を設けてもよい。
Further, in the above embodiment, the injection pipe 40a was used to communicate the outer circumferential groove 29 of the plunger 30 and the compression chamber A36, but the end plate 1 was used instead of the injection pipe 40a.
4 may be provided with the passage.

また、上記実施例では背圧室831と吸入室33とを連
通したが、プランジャー30の寸法やコイルバネ38な
どを適切に選定することにより、吸入室33に通じる圧
縮室(第3圧縮室とする)と背圧室831とを連通して
もよい。
Further, in the above embodiment, the back pressure chamber 831 and the suction chamber 33 are communicated with each other, but by appropriately selecting the dimensions of the plunger 30, the coil spring 38, etc. ) and the back pressure chamber 831 may be communicated with each other.

また、上記実施例ではプランジャーが水平方向に移動す
るように給油通路制御弁装置を固定スクロールの鏡板に
取り付け、背圧室Aと背圧室Bとの間に差圧が無くなっ
た場合にバネ装置の付勢力によってプランジャーを後退
せしめる構成であるが、背圧室Aを下側に、背圧室Bを
上側に配置して、画室間の差圧が無くなった場合にプラ
ンジャーがその自重により後退して開閉弁を遮断する立
置型の給油通路制御弁装置を鏡板の上面または側面に取
り付けてもよい。
In addition, in the above embodiment, the oil supply passage control valve device is attached to the end plate of the fixed scroll so that the plunger moves in the horizontal direction, and when the differential pressure between the back pressure chamber A and the back pressure chamber B disappears, the spring is activated. The configuration is such that the plunger is retracted by the biasing force of the device, but the back pressure chamber A is placed on the lower side and the back pressure chamber B is placed on the upper side, so that when the differential pressure between the chambers disappears, the plunger will move under its own weight. A vertical oil supply passage control valve device that retreats to shut off the on-off valve may be attached to the top or side surface of the end plate.

また、上記実施例ではバネ装置38をバネ定数と自由長
さの異なるコイルバネA38 aとコイルバネB58b
とで構成したが、その変位が進行途中でバネ定数が急増
するバネC例えば、円椎形コイルバネなど)や、自由長
さの異なる複数個のコイルバネで構成した場合も同様の
作用効果を生じる。
Further, in the above embodiment, the spring device 38 is a coil spring A38a and a coil spring B58b having different spring constants and free lengths.
However, similar effects can be obtained when the spring is constructed with a spring whose spring constant rapidly increases during the course of displacement (for example, a cylindrical coil spring), or with a plurality of coil springs with different free lengths.

また、上記実施例ではプランジャー3oの外周部に特別
なシール部材を設けていないが、例えばテフロン製のピ
ストンリングやテフロン被膜を施したゴム製のオーリン
グ(0−リング)を使用してプランジャ−30外周部か
らの軸方向漏れを少なくしてもよい。
Further, in the above embodiment, a special sealing member is not provided on the outer circumference of the plunger 3o, but for example, a Teflon piston ring or a rubber O-ring (0-ring) coated with Teflon is used to seal the plunger. -30 Axial leakage from the outer circumference may be reduced.

発明の効果 以上のように本発明は、吐出室の油溜または吐出室に通
じる油溜とその油溜よりも圧力が低く吐出室にも吸入室
にも通じない第2圧縮室とを給油通路により連通させ、
給油通路の途中には給油通路を開閉する開閉弁とその開
閉弁を制御するアクチェータとで構成される給油通路制
御弁装置を設け、アクチェータには弁体とその弁体の両
側に配置した弁体の背圧室Aと背圧室Bおよび弁体を付
勢するバネ装置を設け、背圧室Aは吐出室にも吸入室に
も連通せず第2圧縮室よりも圧縮後行程の第1圧縮室に
通じ、背圧室Bは吸入室または吸入室に通じる第3圧縮
室または吸入室に通じる吸入側に通じ、背圧室Aと背圧
室Bとの間に差圧がありその差圧が第1設定値の範囲に
ある場合に弁体がバネ装置に抗して前進して開閉弁を開
き、差圧が第1設定値よりも大きい第2設定値の範囲に
ある場合に弁体がさらに前進して開閉弁を閉じ、差圧の
ない場合に弁体が後退して開閉弁を閉じる給油通路制御
弁装置を備えることにより、圧縮機運転中はスクロール
圧縮機構における圧縮気体の圧縮比が一定なために第1
圧縮室の圧力は吐出室の圧力に影響されずに吸入室の圧
力の一定倍率の圧力まで確実に上昇し、第1圧縮室に通
じる背圧室Aと吸入室(または第3圧縮室または吸入室
に通じる吸入側)に通じる背圧室Bとの間の差圧力によ
ってアクチェータの弁体が前進して開閉弁を開き、これ
によって圧縮機起動直後から給油通路が開いて吐出室の
油溜または吐出室に通じる油溜の潤滑油を第2圧縮室に
油インジェクシコンして吸入体積効率を低下させること
なく圧縮室間の隙間密封効果によって、圧縮機起動初期
から圧縮空間の圧縮気体漏れを少なくして圧縮効率を高
めると共に圧縮部の異常温度上昇を防いで耐久性を向上
し、スクロール部の加工寸法精度を量産適性化して圧縮
機コストの低減を図ることができる。
Effects of the Invention As described above, the present invention provides an oil supply path that connects the oil reservoir in the discharge chamber or the oil reservoir communicating with the discharge chamber, and the second compression chamber, which has a lower pressure than the oil reservoir and does not communicate with either the discharge chamber or the suction chamber. communicated by
A refueling passage control valve device is provided in the middle of the refueling passage, which is composed of an on-off valve that opens and closes the refueling passage and an actuator that controls the on-off valve. A spring device is provided to bias the back pressure chamber A and back pressure chamber B and the valve body. The back pressure chamber B communicates with the suction chamber or the third compression chamber that communicates with the suction chamber or the suction side that communicates with the suction chamber, and there is a pressure difference between the back pressure chamber A and the back pressure chamber B. When the pressure is within the range of the first set value, the valve body moves forward against the spring device to open the on-off valve, and when the differential pressure is within the range of the second set value, which is greater than the first set value, the valve is opened. By providing an oil supply passage control valve device in which the body moves forward further to close the on-off valve, and when there is no differential pressure, the valve body moves back and closes the on-off valve, the compressed gas is compressed in the scroll compression mechanism during compressor operation. Because the ratio is constant, the first
The pressure in the compression chamber is not affected by the pressure in the discharge chamber and reliably rises to a pressure that is a constant multiple of the pressure in the suction chamber. Due to the differential pressure between the back pressure chamber B and the back pressure chamber B that leads to the suction side (which leads to The lubricating oil in the oil reservoir leading to the discharge chamber is injected into the second compression chamber to seal the gap between the compression chambers without reducing the suction volumetric efficiency, thereby reducing leakage of compressed gas from the compression space from the beginning of compressor startup. This makes it possible to increase compression efficiency, prevent abnormal temperature rises in the compression section, improve durability, and make the machining dimensional accuracy of the scroll section suitable for mass production, thereby reducing compressor costs.

また、圧縮機高速運転などは吐出室内(または油分離装
置内)での吐出気体の流速度が増大して潤滑油まき込み
現象が生じ、吐出室内(または油分離装置内)での潤滑
油分離効率が劣下して吐出室の油溜の潤滑油が不足した
場合、あるいは、圧縮機に接続する外部の配管系の詰ま
り現象などによって圧縮機内への潤滑油帰還がなく吐出
室の油溜の潤滑油が不足した場合などは、給油通路を経
て吐出気体が第2圧縮室に多量流入して第2圧縮室より
も圧縮後行程の第1圧縮室の圧力が異常上昇し、これに
追従して背圧室Aの圧力も異常上昇して背圧室Aと背圧
室臼との差圧が増大し、弁体がバネ装置の付勢力に抗し
てさらに前進して給油通路を閉じ、第2圧縮室への吐出
気体の流入を阻止し、圧縮室内圧力や圧縮部温度の異常
上昇を防止して圧縮効率や耐久性(破損、摺動部摩耗な
ど)の低下を防ぐことが出来る。
In addition, when the compressor is operated at high speed, the flow velocity of the discharged gas in the discharge chamber (or oil separator) increases, causing lubricant oil entrainment phenomenon, which causes the lubricant to separate in the discharge chamber (or oil separator). If efficiency deteriorates and there is a shortage of lubricating oil in the oil sump in the discharge chamber, or if there is a blockage in the external piping system connected to the compressor, the lubricating oil is not returned to the compressor and the oil sump in the discharge chamber becomes insufficient. When lubricating oil is insufficient, a large amount of discharged gas flows into the second compression chamber through the oil supply passage, and the pressure in the first compression chamber in the post-compression stroke increases abnormally compared to the second compression chamber. The pressure in the back pressure chamber A also rises abnormally, and the differential pressure between the back pressure chamber A and the back pressure chamber mortar increases, and the valve body moves further against the biasing force of the spring device to close the oil supply passage. It is possible to prevent the discharge gas from flowing into the second compression chamber, prevent the pressure in the compression chamber and the temperature of the compression section from rising abnormally, and prevent a decrease in compression efficiency and durability (damage, wear of sliding parts, etc.).

また、圧縮機停止後は吸入室(または吸入室に通じる第
3圧縮室または吸入室に通じる吸入側)と第1圧縮室と
が同じ圧力になり、背圧室Aと背圧室臼との差圧が無く
なりバネ装置の付勢力などによって弁体が後退して開閉
弁を閉じて給油通路が遮断されるので、吐出室の油溜(
または吐出室に通じる油溜)から圧縮室内への無駄な潤
滑油流入(吸入側に逆転防止弁のない場合は吸入側へも
流入する)を防止して圧縮機再起動直後の給油不足や油
圧縮を無くして耐久性を向上できるなど吐出室圧力の影
響を受けることなく圧縮機の運転状態(停止または運転
中)と油溜の潤滑油の有無を検出する機能と給油通路の
開閉を制御する機能とを備えた応答性の高い給油通路制
御弁装置を実現できる。
In addition, after the compressor is stopped, the suction chamber (or the third compression chamber leading to the suction chamber or the suction side leading to the suction chamber) and the first compression chamber have the same pressure, and the back pressure chamber A and the back pressure chamber mill are at the same pressure. When the differential pressure disappears, the valve body retreats due to the biasing force of the spring device, closes the on-off valve, and shuts off the oil supply passage, so the oil sump in the discharge chamber (
This prevents unnecessary lubricating oil from flowing into the compression chamber from the oil sump (or oil sump leading to the discharge chamber) (if there is no reverse prevention valve on the suction side, it will also flow into the suction side). It has a function that detects the operating status of the compressor (stopped or running) and the presence or absence of lubricating oil in the oil sump, and controls the opening and closing of the oil supply passage without being affected by discharge chamber pressure, such as eliminating compression and improving durability. It is possible to realize a highly responsive refueling passage control valve device having the following functions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における密閉型スクロー
ル冷媒圧縮機の縦断面図、第2図、第3図、第4図は第
1図における給油通路制御弁装置の動作を説明する要部
縦断面図、第5図は第1図のA−A線における圧縮部の
横断面図、第6図は吸入行程から圧縮行程までの気体の
圧力変化の説明図、第7図は圧縮室の定点における圧力
変化などの比較説明図、第8図、第9図、第10図は本
発明のそれぞれ異なる別の実施例の密閉型スクロール冷
媒圧縮機の縦断面図、第11図は本発明の別の実施例の
スクロール型冷媒圧縮機の部分断面図、第12図〜第1
5図はそれぞれ異なる従来のスクロール型気体圧縮機の
縦断面図および部分断面図、第16図は従来の給油通路
制御装置を備えたロークリ型気体圧縮機の縦断面図、第
17図は第16図のA−A線における縦断面図である。 1.2・・・・・・密閉ケース、5・・・・吐出室、6
・・・・・駆動室、7・・・・・・モータ、10・・・
・・旋回スクロール、13・・・・・・固定スクロール
、15・・・・・・吐出ポート、17・・・・・給油通
路制御弁装置、18・・・・・・吐出室油溜、23・・
・・・・モータ室油溜、30・・・・プランジャー、3
1・・・・・・背圧室B133・・・・・・吸入室、3
4・・・・・・背圧室A136・・・・・・圧縮室A1
38・・・・・・コイルバネ、39・・・・・・圧縮室
B140・・・・・・インジェクション穴、41・・・
・・油吸い込み穴、44・・・・・・軸受油溜、47・
・・・・・中間圧背圧室。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名10
−一廁回スクロール 26e一本体ケース η−メクラ栓 &゛−シリンダ 10−−一施回スクロール +3−!]疋ススクロー ル5・−・吐出ボート 33−暇人! 五−圧27溝入欠 χ−圧#宝A 、??−−−圧S室B 59a  If m ’JE Be −一一インジエクシ言ン欠 第5  図4Qa−インジエクシコン管お 69−  正常1転眸の圧力 第 6 図           乃−巽ネ圧力上界時
の圧か糸動軸回転角l (rad) 、駆動軸o傘王角度      砕入xByy6−駈動
寛 第 9 図               lb、2b
−%間ケース3b−フレーム 5−吐出室    篤−肯圧首A l山−固定スクロール シー圧カ講入欠均−傭  板 
   36−圧扁!A 15−吐田ボー h  33−バ序騰118−吐出宣膚
眉 1−圧浦里 B 忍−・−ガス ケ 9 ト 窃−インジIクションスβ
−シリング−41d−泊嗟込み欠 課−ガス欠    68−イシジエクシ日ンi1%33
−吠入! 211図 第10図 C /C−−雪間ケース 3C−フレーム 5C−吐出室 7− モータ 釦−j[動軸 α−旋回スクロール ^c一本体本体メ ース イ゛ンジェクレヨン穴 51cm−一旋回輸受 52cm−バイパス欠 55.56.517一−泊 欠 望、μ−・軸 受 第12図 第13図 第14図     第15図
FIG. 1 is a vertical cross-sectional view of a hermetic scroll refrigerant compressor according to a first embodiment of the present invention, and FIGS. 2, 3, and 4 explain the operation of the oil supply passage control valve device in FIG. 1. 5 is a cross-sectional view of the compression section taken along the line A-A in FIG. 8, 9, and 10 are longitudinal sectional views of hermetic scroll refrigerant compressors according to different embodiments of the present invention, and FIG. Partial sectional views of a scroll type refrigerant compressor according to another embodiment of the invention, FIGS.
5 is a longitudinal sectional view and a partial sectional view of different conventional scroll-type gas compressors, FIG. It is a longitudinal cross-sectional view taken along the line AA in the figure. 1.2... Sealed case, 5... Discharge chamber, 6
...Drive chamber, 7...Motor, 10...
...Orbiting scroll, 13...Fixed scroll, 15...Discharge port, 17...Oil supply passage control valve device, 18...Discharge chamber oil sump, 23・・・
... Motor room oil sump, 30 ... Plunger, 3
1... Back pressure chamber B133... Suction chamber, 3
4... Back pressure chamber A136... Compression chamber A1
38... Coil spring, 39... Compression chamber B140... Injection hole, 41...
・・Oil suction hole, 44・・・・Bearing oil sump, 47・
...Intermediate pressure back pressure chamber. Name of agent: Patent attorney Toshio Nakao and 1 other person10
- One turn scroll 26e - Main body case η - Blind stopper & - Cylinder 10 - One turn scroll +3-! ] Hikisu Scroll 5 --- Discharge Boat 33 -- Freeman! 5-pressure 27 grooves missing χ-pressure #treasure A,? ? ---Pressure S chamber B 59a If m 'JE Be -11 Injiexicon pipe 69- Pressure at normal 1st turn Fig. 6 No-Tatsune pressure upper limit Pressure thread driving shaft rotation angle l (rad), drive shaft o umbrella angle Breaking xByy6-Cantering rotation Fig. 9 lb, 2b
- % Case 3b - Frame 5 - Discharge chamber Atsushi - Affirmative pressure neck A l mountain - Fixed scroll Sea pressure force adjustment - Temperature plate
36- Compression! A 15-Touta Bo h 33-Ba Jotou 118-Duta Senda Eyebrow 1-Pressure Urari B Shinobi...-Gas Ke 9 To Theft-Inji Ictions β
- Schilling - 41d - Missed class including overnight stay - Out of gas 68 - Ishijiekushi day i1% 33
-Barry in! 211 Figure 10 C/C--Snow case 3C-Frame 5C-Discharge chamber 7-Motor button-j [Moving shaft α-Orbiting scroll^c-Main main body Mace Engine crayon hole 51cm-One turning transfer 52cm-Bypass missing 55.56.517 One night missing, μ- Bearing Figure 12 Figure 13 Figure 14 Figure 15

Claims (3)

【特許請求の範囲】[Claims] (1) 固定スクロールに対して旋回スクロールを揺動
回転自在に噛み合わせ、両スクロール間に渦巻き形の圧
縮空間を形成し、前記圧縮空間は吸入側より吐出側に向
けて連続移行する複数個の圧縮室に区画されて流体を圧
縮するスクロール式圧縮機構を形成し、吐出室の油溜ま
たは吐出室に通じる油溜と前記油溜よりも圧力が低く前
記吐出室にも吸入室にも通じない第2圧縮室とを給油通
路により連通させ、前記給油通路の途中には前記給油通
路を開閉する開閉弁と前記開閉弁を制御するアクチェー
タとで構成される給油通路制御弁装置を設け、前記アク
チェータには弁体と前記弁体の両側に配置した前記弁体
の背圧室Aと背圧室Bおよび前記弁体を付勢するバネ装
置を設け、前記背圧室Aは前記吐出室にも吸入室にも連
通せず前記第2圧縮室よりも圧縮後行程の第1圧縮室に
通じ、前記背圧室Bは前記吸入室または前記吸入室に通
じる第3圧縮室または前記吸入室に通じる吸入側に通じ
、前記背圧室Aと前記背圧室Bとの間に差圧が有りその
差圧が第1設定値の範囲にある場合に前記弁体が前記バ
ネ装置に抗して前進し前記開閉弁を開き、前記差圧が前
記第1設定値よりも大きい第2設定値の範囲にある場合
に前記弁体がさらに前進して前記開閉弁を閉じ、前記差
圧のない場合に前記弁体が後退して前記開閉弁を閉じる
給油通路制御弁装置を備えたスクロール気体圧縮機。
(1) An orbiting scroll is engaged with a fixed scroll so as to be able to swing and rotate freely, and a spiral-shaped compression space is formed between both scrolls. A scroll-type compression mechanism is formed that is divided into a compression chamber and compresses fluid, and an oil sump in the discharge chamber or an oil sump that communicates with the discharge chamber has a lower pressure than the oil sump and does not communicate with either the discharge chamber or the suction chamber. The second compression chamber is communicated with the oil supply passage, and in the middle of the oil supply passage there is provided an oil supply passage control valve device comprising an on-off valve that opens and closes the oil supply passage and an actuator that controls the on-off valve. is provided with a valve body, a back pressure chamber A and a back pressure chamber B of the valve body disposed on both sides of the valve body, and a spring device for biasing the valve body, and the back pressure chamber A is also connected to the discharge chamber. The back pressure chamber B communicates with the suction chamber or a third compression chamber that communicates with the suction chamber or the suction chamber rather than the second compression chamber without communicating with the suction chamber. The valve element advances against the spring device when there is a pressure difference between the back pressure chamber A and the back pressure chamber B and the pressure difference is within a first set value. and when the on-off valve is opened and the differential pressure is within a second set value range larger than the first set value, the valve body moves further to close the on-off valve, and when there is no differential pressure, A scroll gas compressor comprising an oil supply passage control valve device in which the valve body retreats to close the on-off valve.
(2) バネ装置が変位進行途中でバネ定数が急増する
バネ、またはバネ定数と自由長さ若しくは自由長さの異
なる複数個のバネから成る特許請求の範囲第1項記載の
スクロール気体圧縮機。
(2) The scroll gas compressor according to claim 1, wherein the spring device comprises a spring whose spring constant rapidly increases during displacement, or a plurality of springs whose spring constants and free lengths differ.
(3) 開閉弁と第1圧縮室との間の給油通路とそれよ
りも下流側の給油装置を備えた油溜室との間または摺動
部との間を油戻し通路により連通させた特許請求の範囲
第1項または第2項記載のスクロール気体圧縮機。
(3) A patent in which an oil return passage communicates between the oil supply passage between the on-off valve and the first compression chamber and an oil reservoir chamber equipped with an oil supply device on the downstream side or between the sliding part. A scroll gas compressor according to claim 1 or 2.
JP29947986A 1986-12-16 1986-12-16 Scroll gas compressor Expired - Lifetime JPH073230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29947986A JPH073230B2 (en) 1986-12-16 1986-12-16 Scroll gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29947986A JPH073230B2 (en) 1986-12-16 1986-12-16 Scroll gas compressor

Publications (2)

Publication Number Publication Date
JPS63150491A true JPS63150491A (en) 1988-06-23
JPH073230B2 JPH073230B2 (en) 1995-01-18

Family

ID=17873105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29947986A Expired - Lifetime JPH073230B2 (en) 1986-12-16 1986-12-16 Scroll gas compressor

Country Status (1)

Country Link
JP (1) JPH073230B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149380A (en) * 1989-11-02 1991-06-25 Matsushita Electric Ind Co Ltd Scroll compressor
US5391066A (en) * 1991-11-14 1995-02-21 Matsushita Electric Industrial Co., Ltd. Motor compressor with lubricant separation
CN108386357A (en) * 2018-04-18 2018-08-10 北京燕都碧城科技有限公司 A kind of single screw compressor anti-liquid impact device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149380A (en) * 1989-11-02 1991-06-25 Matsushita Electric Ind Co Ltd Scroll compressor
US5391066A (en) * 1991-11-14 1995-02-21 Matsushita Electric Industrial Co., Ltd. Motor compressor with lubricant separation
CN108386357A (en) * 2018-04-18 2018-08-10 北京燕都碧城科技有限公司 A kind of single screw compressor anti-liquid impact device

Also Published As

Publication number Publication date
JPH073230B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
US4545747A (en) Scroll-type compressor
JP2782858B2 (en) Scroll gas compressor
KR100740211B1 (en) Hermetic scroll compressor and refrigerating air conditioner
KR970005860B1 (en) Multi-stage gas compressor provided with bypass valve device
JP2585380Y2 (en) Rotary compressor
JPH11107950A (en) Injection device of compressor
JP2004011482A (en) Rotary compressor
JPS62178791A (en) Scroll compressor
JP2009257287A (en) Scroll compressor
JPS63150489A (en) Scroll gas compressor
JP3045961B2 (en) Scroll gas compression
JPS63150491A (en) Scroll gas compressor
JPH1037868A (en) Scroll compressor
JP2790126B2 (en) Scroll gas compressor
JPH02294584A (en) Scroll compressor
JPH01177481A (en) Scroll compressor
JPH073229B2 (en) Scroll gas compressor
JP2870489B2 (en) Scroll gas compressor
JPH01170780A (en) Scroll gas compressor
JPS63176689A (en) Scroll gas compressor
JP2870490B2 (en) Scroll gas compressor
JPH08303369A (en) Scroll gas compressor
JPH0633786B2 (en) Scroll gas compressor
JP2000027768A (en) Scroll type liquid pump
JP2692097B2 (en) Scroll gas compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term