JPS63149603A - Method for forming diffration grating - Google Patents

Method for forming diffration grating

Info

Publication number
JPS63149603A
JPS63149603A JP29656886A JP29656886A JPS63149603A JP S63149603 A JPS63149603 A JP S63149603A JP 29656886 A JP29656886 A JP 29656886A JP 29656886 A JP29656886 A JP 29656886A JP S63149603 A JPS63149603 A JP S63149603A
Authority
JP
Japan
Prior art keywords
film
resist
material film
diffraction grating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29656886A
Other languages
Japanese (ja)
Inventor
Mamoru Kanazawa
金澤 守
Harumi Fujima
晴美 藤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29656886A priority Critical patent/JPS63149603A/en
Publication of JPS63149603A publication Critical patent/JPS63149603A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the surface of a buffer layer on which a waveguide is formed from being damaged at the time of etching based on particle rays and to prevent the waveguide from increasing its transmission loss by covering a part other than a grating part with a film consisting of a specific substance. CONSTITUTION:A silicon oxide film 2 is stuck to an InP substrate 1, a resist 3 is formed on an area to be a diffraction grating part and then a 1st substance film, e.g. an Al 4 having an etching rate different from that of the substrate 1 is stuck to the surface of the film 2 and the resist 3. Then, the regist 3 is removed by lift-off method and a 2nd substance film, e.g. a TiO2 film 5 having an etching speed different from that of the film 4 and a resist film 6 are laminated to the whole surface. Then, a diffraction grating pattern with a required period is formed by two-beam interference method based on He-Cd lasers and Ar ion beams are radiated to the whole surface to etch the film 5. Then, the resist 6 and the film 4 are removed so as to leave a grating part 8 and then a waveguide 9 is formed adjacently to the grating part 8.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は光導波路素子に用いて有利な微細な回折格子の
形成方法に関す。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for forming a fine diffraction grating that is advantageous for use in optical waveguide devices.

(従来の技術) 従来、微細回折格子パターンを形成する手法として電子
線直接描画法が知られているが、0,7〜0.2μmの
パターンを得るのは甚だ困難であった。又、X線、SO
R等もあるが、マスクは電子線描画に依る為に限界は直
接描画と同じである。
(Prior Art) Conventionally, an electron beam direct writing method has been known as a method for forming a fine diffraction grating pattern, but it has been extremely difficult to obtain a pattern of 0.7 to 0.2 μm. Also, X-ray, SO
There are also R, etc., but since the mask relies on electron beam lithography, the limits are the same as direct lithography.

一方、0.1〜0.2μm程度の微細模様を実現する他
の方法として干渉露光法がある。この方法では、導波路
に重畳して、著しくは隣接して微小な格子領域を選択的
に形成する事が要せられる為に、予め所定の格子領域に
のみレジストを残すことが必要となる。
On the other hand, there is interference exposure method as another method for realizing fine patterns of about 0.1 to 0.2 μm. In this method, since it is necessary to selectively form a minute grating region superimposed on, or even adjacent to, the waveguide, it is necessary to leave the resist only in predetermined grating regions in advance.

格子領域のみならず、余の所にもレジストを残した場合
は、格子パターンが全面に形成されることになり不具合
である。
If the resist is left not only in the grating area but also in the remaining areas, a grating pattern will be formed over the entire surface, which is a problem.

然るに微細回折格子模様をレジストから誘電体に転写す
るにはイオン等の粒子線を用いることが要せられ、この
とき導波路表面若しくは導波路層の配置さるべきバッフ
ァ層表面に粒子線を照射する事になる。この工程を通っ
て形成した導波路の伝搬損失は照射しない場合の1.5
〜2倍になり不都合である。
However, in order to transfer a fine diffraction grating pattern from a resist to a dielectric material, it is necessary to use a particle beam such as ions, and at this time, the particle beam is irradiated onto the waveguide surface or the buffer layer surface where the waveguide layer is to be placed. It's going to happen. The propagation loss of the waveguide formed through this process is 1.5 compared to the case without irradiation.
This is inconvenient as it becomes twice as large.

尚、湿式化学蝕刻では微細パターンを転写する事が甚だ
困難である。即ち、化学蝕刻に於ては等方性エツチング
となり、0.2μm周期のとき、300八程度の深さが
限度であり、凸部と凹部の比も1:5程度となり、且つ
形状も矩形ではなくなり回折効率を大幅に減じ極めて不
都合である。
Note that it is extremely difficult to transfer fine patterns using wet chemical etching. In other words, chemical etching results in isotropic etching, and when the period is 0.2 μm, the depth is limited to about 3008, the ratio of convex parts to concave parts is about 1:5, and the shape is not rectangular. This is extremely inconvenient as it greatly reduces the diffraction efficiency.

更にこのとき、レジストと被蝕刻領域の接触面積も穐め
て小さく剥れ等が生じ歩留りの点でも不具合である。斯
くの如く、湿式化学蝕刻では微細格子を所望深さ安定し
て加工する事は甚だ困難であった。
Furthermore, at this time, the contact area between the resist and the area to be etched becomes very small and peeling occurs, which is a problem in terms of yield. As described above, it is extremely difficult to stably process fine gratings to a desired depth using wet chemical etching.

(発明が解決しようとする問題点) 本発明の目的は、上記従来技術の欠点に鑑みなされたも
のであり、光導波路伝搬損失を増大させる事なく微細回
折格子を実現することにある。
(Problems to be Solved by the Invention) The object of the present invention has been made in view of the above-mentioned drawbacks of the prior art, and is to realize a fine diffraction grating without increasing optical waveguide propagation loss.

〔発明の構成〕[Structure of the invention]

(問題点を解決する為の手段) 上記目的を達成する為に、本発明による微細回折格子の
形成方法を以下に示す。
(Means for Solving the Problems) In order to achieve the above object, a method for forming a fine diffraction grating according to the present invention will be described below.

干渉露光法を用い、光導波路に重畳し或は光導波路に隣
接して回折格子を形成するに際し、回折格子形成領域に
有機膜を配置し、それ以外の領域に金属膜等の第1の物
質膜を設け、リフトオフ法により格子部を開口した後筒
2の物質膜を全体上に被着し、レジスト塗布後干渉露光
法によりパターン形成し、エツチングした後、レジスト
、第1の物質膜を除去して所望の格子を得た後、これに
隣接若しくは重畳して光導波路を設ける。
When forming a diffraction grating superimposed on or adjacent to an optical waveguide using an interference exposure method, an organic film is placed in the diffraction grating formation area, and a first material such as a metal film is placed in the other area. After forming the film and opening the lattice portion using the lift-off method, the material film of cylinder 2 is applied over the entire surface, and after applying a resist, a pattern is formed using the interference exposure method, and after etching, the resist and the first material film are removed. After obtaining the desired grating, an optical waveguide is provided adjacent to or overlapping the grating.

(作用) この方法に於ては、必要な格子部以外を物質膜で覆うの
で、粒子線等によるエツチングの際、導波路若しくは導
波路が接触するバッファ層表面を傷つけることがない。
(Function) In this method, since parts other than the necessary lattice parts are covered with a material film, the waveguide or the surface of the buffer layer with which the waveguide comes into contact is not damaged during etching with a particle beam or the like.

(実施例) 本発明による微細回折格子の形成方法の一実施例を第1
図を参照して説明する。第1図は本発明による工程を試
料断面により示したものである。
(Example) A first example of the method for forming a fine diffraction grating according to the present invention will be described below.
This will be explained with reference to the figures. FIG. 1 shows the process according to the present invention using a cross section of a sample.

@1図(a)はInP基板1上にスパッタリング或はC
VD法により酸化珪素膜2を3〜4μ被着した後、回折
格子部となる領域に有機膜としてレジスト3を配置し、
その全体上に第1の物質膜としてアルミニウム(Al)
膜4を真空蒸着法により、0.2μ被着した状態を示す
。第1図(b)はり7トオフ法によりレジスト3を除去
した状態を示し、その上に第2の物質膜としてTi0.
300A5を絖いてレジスト6を配置した状態を第1図
(Qに示す。
@1 Figure (a) shows sputtering or C on InP substrate 1.
After depositing a silicon oxide film 2 of 3 to 4 μm by the VD method, a resist 3 is placed as an organic film in the region that will become the diffraction grating portion,
Aluminum (Al) is used as a first material film on the entire surface.
The state in which the film 4 is deposited to a thickness of 0.2μ by vacuum evaporation is shown. FIG. 1(b) shows a state in which the resist 3 has been removed by the beam 7-off method, and a second material film of Ti0.
300A5 and the resist 6 is placed is shown in FIG. 1 (Q).

ここでHe−Cdレーザの二光束干渉法を用い、0.2
〜0.3μ周期の微細回折格子模様を形成し、Arイオ
ンビーム7を照射しTie、を蝕刻する(第1図(d)
)。このとき、Arイオンは格子部以外を照射する事は
ない。レジストを除去した後、Al膜4を希弗酸で除去
すると、第1図(e)に示す如く格子部8が残る。(f
)に示す如く、導波路9を格子部8に隣接して工程を終
える。
Here, using the He-Cd laser two-beam interferometry, 0.2
A fine diffraction grating pattern with a period of ~0.3μ is formed, and the Tie is etched by irradiation with an Ar ion beam 7 (Fig. 1(d)).
). At this time, Ar ions do not irradiate areas other than the lattice portion. After removing the resist, the Al film 4 is removed with dilute hydrofluoric acid, leaving a lattice portion 8 as shown in FIG. 1(e). (f
), the process is completed by placing the waveguide 9 adjacent to the grating section 8.

この実施例では、基板としてInPを用いたが、珪素、
LiNb01石英専特に制限はなく、又熱酸化膜を配置
した珪素基板のような構成でも可である。また基板上の
19[Bとして酸化珪素膜の他に窒化珪素、アルミナ、
或はガラス等でも勿論良い。
In this example, InP was used as the substrate, but silicon,
LiNb01 quartz is not particularly limited, and a structure such as a silicon substrate on which a thermal oxide film is arranged is also possible. In addition to the silicon oxide film, silicon nitride, alumina,
Alternatively, glass or the like may of course be used.

有機膜としてはポリイシド等でも可である。The organic film may also be made of polyamide or the like.

第1の物質膜と第2の物質膜としてはA l 、!=T
iO。
As the first material film and the second material film, A l,! =T
iO.

の他TiとTio、、l!とT i O,等基板との組
合せも考慮して定める事ができる。ドライエツチングの
手法としてArイオンビーム照射を用いたが、反応性イ
オンエツチング、反応性イオンビームエツチング°、化
学増速式反応性イオンビームエツチング等でも構わない
Besides Ti and Tio,,l! It can be determined by considering the combination of substrates such as and T i O. Although Ar ion beam irradiation was used as the dry etching method, reactive ion etching, reactive ion beam etching, chemically enhanced reactive ion beam etching, etc. may also be used.

更に、導波路として三次元導波路を用いたが、二次元導
波路でも良゛<、格子部は導波路の上側でも良い。
Further, although a three-dimensional waveguide is used as the waveguide, a two-dimensional waveguide may also be used. The grating portion may be placed above the waveguide.

〔発明の効果〕〔Effect of the invention〕

本発明を用いる事により、極めて微細な回折格子を、こ
れと隣接若しくは重畳する光導波路の伝搬損失を増大さ
せる事なく実現できる。
By using the present invention, an extremely fine diffraction grating can be realized without increasing the propagation loss of the optical waveguide adjacent to or overlapping with the diffraction grating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による工程の試料断面図である。 1・・・基板 2・・・基板上の薄膜 3・・・有機膜 4・・・第1の物質膜 5・・・第2の物質膜 6・・・レジスト 7・・・微細回折格子 8・・・導波路 代理人 弁理士 則 近 憲 佑 同      竹  花  喜久男 第1図 FIG. 1 is a cross-sectional view of a sample in a process according to the present invention. 1... Board 2... Thin film on the substrate 3...Organic film 4...first material film 5...Second material film 6...Resist 7...Fine diffraction grating 8... Waveguide Agent: Patent Attorney Noriyuki Chika Same Bamboo Flower Kikuo Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)干渉露光法を用い、光導波路に重畳し或は光導波
路に隣接して回折格子を形成するに際し、基板上に所定
模様の有機膜を載置し、この有機膜の上に前記基板とは
異なる蝕刻速度を持つ第1の物質膜を被着し、リフトオ
フ法により前記有機膜をその上の第1の物質膜と共に少
なくとも一部分除去し、前記第1の物質膜上及び前記基
板上に前記第1の物質膜と異なる蝕刻速度を持つ第2の
物質膜を被着しレジストを塗布した後、干渉露光法によ
り所定の回折格子模様を形成し、前記第2の物質膜を蝕
刻した後、前記レジスト並びに第1の物質膜を除去し残
置する第2の物質膜領域に重畳する若しくは隣接する光
導波路を形成する事を特徴とする回折格子の形成方法。
(1) When forming a diffraction grating superimposed on or adjacent to an optical waveguide using interference exposure, an organic film with a predetermined pattern is placed on a substrate, and the substrate is placed on top of this organic film. depositing a first material film having an etching rate different from that of the first material film, removing at least a portion of the organic film together with the first material film thereon by a lift-off method, and depositing a first material film on the first material film and the substrate. A second material film having an etching speed different from that of the first material film is deposited, a resist is applied, a predetermined diffraction grating pattern is formed by an interference exposure method, and the second material film is etched. . A method for forming a diffraction grating, which comprises removing the resist and the first material film and forming an optical waveguide that overlaps or is adjacent to a second material film region that remains.
(2)基板は、InP基板であることを特徴とする特許
請求の範囲第1項記載の回折格子の形成方法。
(2) The method for forming a diffraction grating according to claim 1, wherein the substrate is an InP substrate.
(3)基板は、InP基板上に酸化珪素膜を形成したも
のであることを特徴とする特許請求の範囲第1項記載の
回折格子の形成方法。
(3) The method for forming a diffraction grating according to claim 1, wherein the substrate is an InP substrate with a silicon oxide film formed thereon.
JP29656886A 1986-12-15 1986-12-15 Method for forming diffration grating Pending JPS63149603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29656886A JPS63149603A (en) 1986-12-15 1986-12-15 Method for forming diffration grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29656886A JPS63149603A (en) 1986-12-15 1986-12-15 Method for forming diffration grating

Publications (1)

Publication Number Publication Date
JPS63149603A true JPS63149603A (en) 1988-06-22

Family

ID=17835225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29656886A Pending JPS63149603A (en) 1986-12-15 1986-12-15 Method for forming diffration grating

Country Status (1)

Country Link
JP (1) JPS63149603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0490320A2 (en) * 1990-12-10 1992-06-17 Canon Kabushiki Kaisha A method for producing a diffraction grating
US7159304B2 (en) * 2000-11-28 2007-01-09 Hitachi Global Storage Technologies Japan, Ltd. Method of manufacturing a spin-valve giant magnetoresistive head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0490320A2 (en) * 1990-12-10 1992-06-17 Canon Kabushiki Kaisha A method for producing a diffraction grating
US7159304B2 (en) * 2000-11-28 2007-01-09 Hitachi Global Storage Technologies Japan, Ltd. Method of manufacturing a spin-valve giant magnetoresistive head

Similar Documents

Publication Publication Date Title
US5154797A (en) Silicon shadow mask
JPS6245028A (en) Formation of positioning mark on wafer
JPH0677180A (en) Manufacture of fine linear etching mask
JPH0435726B2 (en)
JPS63149603A (en) Method for forming diffration grating
JPH06174907A (en) Production of metallic grating
JPH07169755A (en) Formation of narrow window or a groove
JPS62119924A (en) Manufacture of transmitting mask
JPS613489A (en) Manufacture of semiconductor device
JP2558128B2 (en) Method of forming metal wiring
JPH0416009B2 (en)
JPH02188702A (en) Formation of diffraction grating
JPH0473650A (en) Mask for fine working
JPS5924187B2 (en) Etching method
JPS62131515A (en) Alignment mark for particle beam exposure
JPH0391928A (en) Pattern formation by lift-off process
JPH02152218A (en) Manufacture of semiconductor device
JPH0282535A (en) Manufacture of electrode for transistor gate
JPH01145870A (en) Manufacture of semiconductor device
JPS5828854A (en) Silicon film formation
JPS62243330A (en) Formation of x-ray mask
JPH02210827A (en) Pattern forming method
JPS58223327A (en) Positioning method using electron beam
JPH02231722A (en) Wiring pattern forming method
JPH0396286A (en) Formation of patterned oxide superconducting thin film