JPS6314948B2 - - Google Patents

Info

Publication number
JPS6314948B2
JPS6314948B2 JP59084777A JP8477784A JPS6314948B2 JP S6314948 B2 JPS6314948 B2 JP S6314948B2 JP 59084777 A JP59084777 A JP 59084777A JP 8477784 A JP8477784 A JP 8477784A JP S6314948 B2 JPS6314948 B2 JP S6314948B2
Authority
JP
Japan
Prior art keywords
acid
fatty acid
reaction
sugar
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59084777A
Other languages
Japanese (ja)
Other versions
JPS60227687A (en
Inventor
Hajime Kyono
Takeshi Uchibori
Sachiko Inamasu
Hisayuki Nishitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI KOGYO SEIYAKU KK
Original Assignee
DAIICHI KOGYO SEIYAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI KOGYO SEIYAKU KK filed Critical DAIICHI KOGYO SEIYAKU KK
Priority to JP8477784A priority Critical patent/JPS60227687A/en
Priority to US06/640,892 priority patent/US4614718A/en
Priority to DE19843430944 priority patent/DE3430944A1/en
Publication of JPS60227687A publication Critical patent/JPS60227687A/en
Publication of JPS6314948B2 publication Critical patent/JPS6314948B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は酵素を用いた糖アルコール脂肪酸エス
テルの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing sugar alcohol fatty acid esters using enzymes.

シヨ糖高級脂肪酸エステルに代表される、糖脂
肪酸エステルは、従来糖と脂肪酸低級アルキルエ
ステルとを、アルカリ性触媒の存在下反応させる
エステル交換反応によつて製造されて来た。工業
的製造方法としては、糖と脂肪酸エステルとの共
通溶媒であるジメチルホルムアミドを使用する溶
媒法、糖をプロピレングリコールまたは水に溶解
し、脂肪酸アルカリ金属塩の存在下で脂肪酸エス
テルをミクロエマルジヨンとして分散させて反応
させるミクロエマルジヨン法、および糖と脂肪酸
エステルとを脂肪酸アルカリ金属塩と共に溶融し
て反応させる直接法等が知られている。これら方
法の欠点として、反応過程での加熱により、生成
物の着色が避けられないこと、また反応溶媒とし
てジメチルホルムアミドを使用する場合、それが
食品添加物の製造には不適当であることなどであ
る。
Sugar fatty acid esters, typified by sucrose higher fatty acid esters, have conventionally been produced by a transesterification reaction in which sugar and fatty acid lower alkyl ester are reacted in the presence of an alkaline catalyst. Industrial production methods include a solvent method using dimethylformamide, which is a common solvent for sugar and fatty acid ester, and a method in which sugar is dissolved in propylene glycol or water and the fatty acid ester is made into a microemulsion in the presence of a fatty acid alkali metal salt. A microemulsion method in which sugar and fatty acid ester are reacted by dispersion, and a direct method in which sugar and fatty acid ester are melted together with a fatty acid alkali metal salt and reacted are known. Disadvantages of these methods include the unavoidable coloration of the product due to heating during the reaction process, and the use of dimethylformamide as a reaction solvent, which is unsuitable for the production of food additives. be.

本発明者らは、これら欠点を避けるため、低温
で、しかも水系で反応を行う方法として、リパー
ゼ等の加水分解酵素を用いて糖と高級脂肪酸とか
ら糖脂肪酸エステルを製造する方法を先に見い出
した。これをさらに糖アルコールにも適用できる
ことを見い出し、本発明に到つた。
In order to avoid these drawbacks, the present inventors first discovered a method for producing sugar fatty acid esters from sugars and higher fatty acids using hydrolytic enzymes such as lipase, as a method of conducting the reaction at low temperatures and in an aqueous system. Ta. We have discovered that this can also be applied to sugar alcohols, leading to the present invention.

本発明は、ソルビトールまたはソルビタンと、
高級脂肪酸とを、リパーゼ活性を有する加水分解
酵素の存在下インキユベートすることを特徴とす
る酵素を用いた糖アルコール脂肪酸エステルの製
造法に存する。
The present invention provides sorbitol or sorbitan;
The present invention relates to a method for producing a sugar alcohol fatty acid ester using an enzyme, which comprises incubating a higher fatty acid in the presence of a hydrolase having lipase activity.

本発明に使用し得る糖アルコール成分として
は、ソルビトールおよびソルビタンである。
Sugar alcohol components that can be used in the present invention include sorbitol and sorbitan.

高級脂肪酸としては、炭素数8ないし22の飽和
または不飽和脂肪酸が適当である。その例として
は以下のようなものがある。
Suitable higher fatty acids are saturated or unsaturated fatty acids having 8 to 22 carbon atoms. Examples include:

カプリル酸、カプリン酸、ラウリン酸、ミリス
チン酸、パルミチン酸、ステアリン酸、アラキン
酸、ベヘニン酸、カプロレイン酸、リンデル酸、
ミリストレイン酸、パルミトレイン酸、オレイン
酸、カドレイン酸、エルカ酸、デカジエン酸、リ
ノール酸、ヒラゴ酸、リノレン酸、エイコサトリ
エン酸、ドコサトリエン酸、ヘキサデカテトラエ
ン酸、ステアリドン酸、アラキドン酸、ドコサテ
トラエン酸、エイコサペンタエン酸、イワシ酸、
サビニン酸、イプロール酸、ヤラピノール酸、リ
シノール酸、フエロン酸。
Caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, behenic acid, caproleic acid, Linderic acid,
Myristoleic acid, palmitoleic acid, oleic acid, cadreic acid, erucic acid, decadienoic acid, linoleic acid, hiraric acid, linolenic acid, eicosatrienoic acid, docosatrienoic acid, hexadecatetraenoic acid, stearidonic acid, arachidonic acid, docosatetra Enoic acid, eicosapentaenoic acid, sardine acid,
Sabinic acid, iprolic acid, yarapinoleic acid, ricinoleic acid, feronic acid.

リパーゼ活性を有する加水分解酵素には周知の
ように動物起源のものと、微生物由来のものとが
あるが、そのいずれでもよい。例えばブタすい臓
由来のもの、微生物由来のものとして、
Aspergillus、Rhizopus、Pseudomonas、
Enterobacterium、Chromobacterium、
Geotrichum、Penicillium、Mucor、Candida属
などの微生物由来のものがある。これら酵素は必
ずしも単離して用いる必要はなく、例えばパンク
レアチンのような粗酵素のままで、またはリパー
ゼを含む市販酵素製剤をそのまま使用することが
できる。
As is well known, hydrolytic enzymes having lipase activity include those derived from animals and those derived from microorganisms, and either of these may be used. For example, those derived from pig pancreas and those derived from microorganisms.
Aspergillus, Rhizopus, Pseudomonas,
Enterobacterium, Chromobacterium,
Some are derived from microorganisms such as Geotrichum, Penicillium, Mucor, and Candida genera. These enzymes do not necessarily need to be isolated and used; for example, crude enzymes such as pancreatin or commercially available enzyme preparations containing lipase can be used as they are.

その中でも、Candida Cylindracea由来の
Lipase MY(名糖産業(株)製)は糖アルコールエス
テルの生成収率が著しく大である。
Among them, those derived from Candida Cylindracea
Lipase MY (manufactured by Meito Sangyo Co., Ltd.) has a significantly high production yield of sugar alcohol esters.

これら酵素の最適PHは5ないし8であるが、PH
4ないし9のPH範囲を使用し得る。
The optimum pH for these enzymes is between 5 and 8;
A PH range of 4 to 9 may be used.

反応は緩衝液に前記基質および酵素を添加し、
20ないし60℃、好ましくは30ないし50℃において
平衡に達するまでインキユベートすることによつ
て行われる。糖アルコールと脂肪酸の割合は6:
1ないし1:6(モル比)の範囲で選ばれ、基質
総濃度は1ないし30%、一般には数%が使用され
る。脂肪酸は緩衝液中に難溶であるので、脂肪酸
を微細に粉砕して用いるか、または酵素に無害な
石鹸等により乳化して用いるのがよい。また反応
中たえずかきまぜることが好ましい。
The reaction involves adding the substrate and enzyme to a buffer solution,
This is carried out by incubating at 20 to 60°C, preferably 30 to 50°C, until equilibrium is reached. The ratio of sugar alcohol to fatty acid is 6:
The ratio is selected from 1 to 1:6 (molar ratio), and the total substrate concentration is 1 to 30%, generally several %. Since fatty acids are sparingly soluble in buffer solutions, it is preferable to use them after finely pulverizing them, or emulsifying them with soap or the like that is harmless to enzymes. It is also preferable to stir constantly during the reaction.

酵素の添加量は酵素の由来、種類、力価などに
よつて異なるが、要するに反応混合液が所定の酵
素活性を含んでいればよい。
The amount of enzyme added varies depending on the origin, type, potency, etc. of the enzyme, but it is sufficient as long as the reaction mixture contains a predetermined enzyme activity.

この反応は可逆反応であるので、ある程度反応
が進行した後平衡に達する。この状態で反応を止
め、常法により反応液から糖アルコール脂肪酸エ
ステルを分離し精製し、未反応脂肪酸を回収する
ことができる。
Since this reaction is reversible, equilibrium is reached after the reaction progresses to some extent. The reaction can be stopped in this state, and the sugar alcohol fatty acid ester can be separated and purified from the reaction solution by a conventional method, and the unreacted fatty acid can be recovered.

本発明の原理は、マイクロカプセル化、マトリ
ツクス化、または共有結合によつて担体へ結合し
た周知の固定化酵素を使用する酵素反応に応用し
得る。その場合は生成物の精製が著しく容易化さ
れ、また固定化酵素を充填したカラムに基質溶液
を流し、連続的な反応を実施することも可能であ
る。また使用した酵素は繰り返して使用すること
ができる。
The principles of the invention can be applied to enzymatic reactions using well-known immobilized enzymes attached to carriers by microencapsulation, matrixing, or covalent bonds. In this case, purification of the product is greatly facilitated, and it is also possible to carry out continuous reactions by flowing the substrate solution through a column packed with immobilized enzyme. Moreover, the enzyme used can be used repeatedly.

このように本発明によれば、反応過程で高温加
熱を要しないから生成物の着色が避けられ、媒体
として水を使用するので安全であり、また原料脂
肪酸成分として遊離脂肪酸を使用するので、従来
の純化学的なエステル交換法と比較して本発明は
すぐれた利点を有する。
As described above, according to the present invention, coloring of the product is avoided because high-temperature heating is not required in the reaction process, it is safe because water is used as a medium, and free fatty acids are used as the raw fatty acid component, which is different from conventional methods. Compared to purely chemical transesterification methods, the present invention has significant advantages.

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

実施例 1 市販リパーゼ製剤(Candida由来)2.00g、ソ
ルビトール3.64g、オレイン酸22.56gをPH5.4の
リン酸緩衝液1000ml中へ添加し、マグネチツクス
ターラーでかきまぜながら40℃で72時間インキユ
ベートした。
Example 1 2.00 g of a commercially available lipase preparation (derived from Candida), 3.64 g of sorbitol, and 22.56 g of oleic acid were added to 1000 ml of a phosphate buffer solution with a pH of 5.4, and the mixture was incubated at 40° C. for 72 hours while stirring with a magnetic stirrer.

反応混合物を凍結乾燥し、得られた凍結乾燥物
をクロロホルム抽出し、抽出液を減圧濃縮する。
クロホルム抽出物をテトラヒドロフランに溶か
し、3000r.p.mで遠心分離し、テトラヒドロフラ
ン可溶分とテトラヒドロフラン不溶分とに分け
る。
The reaction mixture is freeze-dried, the resulting freeze-dried product is extracted with chloroform, and the extract is concentrated under reduced pressure.
The chloroform extract is dissolved in tetrahydrofuran, centrifuged at 3000 rpm, and separated into a tetrahydrofuran-soluble fraction and a tetrahydrofuran-insoluble fraction.

テトラヒドロフラン可溶分についてゲルパーミ
エーシヨンクロマトグラフイーを行い、第1ピー
クとして溶出する分画を分取し、ソルビトールオ
レイン酸エステル7.49gを得た。
Gel permeation chromatography was performed on the tetrahydrofuran soluble fraction, and the fraction eluting as the first peak was collected to obtain 7.49 g of sorbitol oleate.

実施例 2 実施例1においてオレイン酸22.56gの代わり
にステアリン酸22.8gを用いた他は全く同様に操
作し、ソルビトールステアリン酸エステル6.27g
を得た。
Example 2 The same procedure as in Example 1 was carried out except that 22.8 g of stearic acid was used instead of 22.56 g of oleic acid, and 6.27 g of sorbitol stearate was used.
I got it.

実施例 3 ソルビトール5.46g、オレイン酸22.56g、市
販リパーゼ製剤(Candida由来)4.0gをPH7.3の
リン酸緩衝溶液1000ml中に入れ、マグソチツクス
ターラーでかきまぜながら40℃で72時間インキユ
ベートした。以下実施例1と同様に処理し、ソル
ビトールオレイン酸エステル16.92gを得た。
Example 3 5.46 g of sorbitol, 22.56 g of oleic acid, and 4.0 g of a commercially available lipase preparation (derived from Candida) were placed in 1000 ml of a phosphate buffer solution of pH 7.3, and incubated at 40° C. for 72 hours while stirring with a magsotic stirrer. Thereafter, the same treatment as in Example 1 was carried out to obtain 16.92 g of sorbitol oleate.

実施例 4 ソルビタン3.28g、オレイン酸22.56g、市販
のリパーゼ製剤(Candida由来)2.0gをPH7.3の
リン酸緩衝溶液1000ml中に入れ、以下実施例1と
同様な操作によつて、ソルビタンオレイン酸エス
テル8.65gを得た。
Example 4 3.28 g of sorbitan, 22.56 g of oleic acid, and 2.0 g of a commercially available lipase preparation (derived from Candida) were placed in 1000 ml of a phosphate buffer solution of pH 7.3, and sorbitan olein was prepared in the same manner as in Example 1. 8.65 g of acid ester was obtained.

実施例 5 ソルビタン4.93g、オレイン酸22.60g、市販
リパーゼ製剤(Candida由来)4.0gをPH7.3のリ
ン酸緩衝溶液1000ml中に入れ、以下実施例1と同
様な操作によつてソルビタンオレイン酸エステル
18.34gを得た。
Example 5 4.93 g of sorbitan, 22.60 g of oleic acid, and 4.0 g of a commercially available lipase preparation (derived from Candida) were placed in 1000 ml of a phosphate buffer solution of pH 7.3, and sorbitan oleate was prepared in the same manner as in Example 1.
18.34g was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 ソルビトールまたはソルビタンと高級脂肪酸
とを、リパーゼ活性を有する加水分解酵素の存在
下インキユベートすることを特徴とする酵素を用
いた糖アルコール脂肪酸エステルの製造法。
1. A method for producing a sugar alcohol fatty acid ester using an enzyme, which comprises incubating sorbitol or sorbitan and a higher fatty acid in the presence of a hydrolase having lipase activity.
JP8477784A 1983-08-23 1984-04-25 Production of sugar alcohol fatty acid esters Granted JPS60227687A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8477784A JPS60227687A (en) 1984-04-25 1984-04-25 Production of sugar alcohol fatty acid esters
US06/640,892 US4614718A (en) 1983-08-23 1984-08-14 Synthesis of sugar or sugar-alcohol fatty acid esters
DE19843430944 DE3430944A1 (en) 1983-08-23 1984-08-22 METHOD FOR PRODUCING SUGAR OR SUGAR ALCOHOL FATTY ACID ESTERS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8477784A JPS60227687A (en) 1984-04-25 1984-04-25 Production of sugar alcohol fatty acid esters

Publications (2)

Publication Number Publication Date
JPS60227687A JPS60227687A (en) 1985-11-12
JPS6314948B2 true JPS6314948B2 (en) 1988-04-02

Family

ID=13840109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8477784A Granted JPS60227687A (en) 1983-08-23 1984-04-25 Production of sugar alcohol fatty acid esters

Country Status (1)

Country Link
JP (1) JPS60227687A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8021000A (en) * 1999-10-15 2001-04-30 Danisco Cultor America, Inc. Method for the direct esterification of sorbitol with fatty acids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195292A (en) * 1986-02-21 1987-08-28 Dai Ichi Kogyo Seiyaku Co Ltd Production of fatty acid ester using lipase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195292A (en) * 1986-02-21 1987-08-28 Dai Ichi Kogyo Seiyaku Co Ltd Production of fatty acid ester using lipase

Also Published As

Publication number Publication date
JPS60227687A (en) 1985-11-12

Similar Documents

Publication Publication Date Title
US4614718A (en) Synthesis of sugar or sugar-alcohol fatty acid esters
EP0140542B1 (en) An immoblized lipase preparation and use thereof
US4956286A (en) Process for the preparation of esters
US4857462A (en) Process for obtaining D(+)-naproxen
Shabtai et al. Production, purification, and properties of a lipase from a bacterium (Pseudomonas aeruginosa YS-7) capable of growing in water-restricted environments
US7141399B2 (en) Process for the production of diglycerides
JPH0335912B2 (en)
US4327183A (en) Method for purifying fatty acid esters of saccharide
US5372940A (en) D-pantolactone hydrolase and process for the preparation thereof
JPS6314948B2 (en)
JPS6314949B2 (en)
US4022664A (en) Process for biochemical optical resolution of alpha-tocopheral
JPS6313677B2 (en)
Basheer et al. Sugar ester-modified lipase for the esterification of fatty acids and long-chain alcohols
JP3813585B2 (en) Method for producing diglyceride
JPH0710233B2 (en) Immobilized enzyme and method for producing the same
Boutur et al. Methyl esters production, in aqueous medium, by an enzymatic extract from Candida deformans (Zach) Langeron and Guerra.
JPH047680B2 (en)
JP3813584B2 (en) Method for producing diglyceride
JPH0528114B2 (en)
JPH0582197B2 (en)
JP2004208539A (en) Method for producing diglyceride
JPH0439320B2 (en)
JPS6256142B2 (en)
JPH0866186A (en) New lipase and its production